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Abstract

We review several of de Finetti’s fundamental con-
tributions where these have played and continue to
play an important role in the development of impre-
cise probability research. Also, we discuss de Finetti’s
few, but mostly critical remarks about the prospects
for a theory of imprecise probabilities, given the lim-
ited development of imprecise probability theory as
that was known to him.
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1 Introduction

Researchers, especially members of SIPTA, approach-
ing the theory of imprecise probabilities [IP] may eas-
ily deduce that Bruno de Finetti’s ideas were influen-
tial for its development.

Consider de Finetti’s foundational Foresight paper
(1937), which is rightly included in the first volume
of the series Breakthroughs in Statistics [16]. In that
paper we find fundamental contributions to the now
familiar concepts of coherence of subjective probabil-
ities – having fair odds that avoid sure loss – and
exchangeable random variables – where permutation
symmetric subjective probabilities over a sequence of
variables may be represented by mixtures of iid sta-
tistical probabilities. Each of these concepts is part
of the active research agendas of many within SIPTA
and have been so since the Society’s inception. That
is, we continue to see advances in IP that are based on
novel refinements of coherence, and contributions to
concepts of probabilistic independence as those relate
also to exchangeability. For instance, 7 of 47 papers
in the ISIPTA’09 Proceedings include at least one ci-
tation of de Finetti’s work. And it is not hard to
argue that another 7, at least, rely implicitly on his
fundamental contributions.

Regarding origins of SIPTA, consider for instance

Walley’s book [42], nowadays probably the best
known extensive treaty on imprecise probabilities.
Key concepts like upper and lower previsions, their
behavioural interpretation, the consistency notions of
coherence and of previsions that avoid sure loss, ap-
pear at once as generalizations of basic ideas from de
Finetti’s theory. In the preface to [42], Walley ac-
knowledges that

‘My view of probabilistic reasoning has been
especially influenced by the writings of Ter-
rence Fine, Bruno de Finetti, Jack Good,
J.M. Keynes, Glenn Shafer, Cedric Smith
and Peter Williams’.

In their turn, most of these authors knew de Finetti’s
theory, while Smith [36] and especially Williams [45]
were largely inspired by it.

For another intellectual branch that has roots in de
Finetti’s work, consider contributions to SIPTA from
Philosophy. For example, Levi [24, 25] generalizes
de Finetti’s decision–theoretic concept of coherence
through his rule of E–admissibility applied with con-
vex sets of credal probabilities and cardinal utilities.

However, a closer look at de Finetti’s writings demon-
strates that imprecise probabilities were a secondary
issue in his work, at best. He did not write very
much about them. In fact, he was rather skeptical
about developing a theory based on what he under-
stood IP to be about. To understand the incongruity
between the incontrovertible fact that many SIPTA
researchers recognize the origins for their work in de
Finetti’s ideas but that de Finetti did not think there
was much of a future in IP, we must take into account
the historical context in the first half of the last cen-
tury, and the essentially marginal role in the scientific
community of the few papers known at the time that
treated imprecision by means of alternatives to precise
probability.

Our note is organized as follows: In Section 2 we dis-



cuss de Finetti’s viewpoint on imprecision. After re-
viewing some historical hints (Section 2.1), we sum-
marize what we understand were de Finetti’s thoughts
on IP (Section 2.2). In Section 3 we respond to some
of de Finetti’s concerns about IP from the current
perspective, i.e., using arguments and results that are
well known now but were not so at the earlier time.
We review some key aspects of the influence of de
Finetti’s thought in IP studies in Section 4. Section
5 concludes the paper.

2 Imprecise Probabilities in de
Finetti’s Theory

2.1 A Short Historical Note

De Finetti published his writings over the years 1926–
1983, and developed a large part of his approach to
probability theory in the first thirty years. In the
first decade (1926–1936) he wrote about seventy pa-
pers, the majority on probability theory. At the
beginning of his activity, measure–theoretic proba-
bility was a relatively recent discipline attracting a
growing number of researchers. There was much in-
terest in grounding probability theory and its laws
(Kolmogorov’s influential and measure–theoretic ap-
proach to probability was published in 1933), and few
thought of other ways of quantifying uncertainty. Yet,
alternatives to probability had already been explored:
even in 1713, more or less at the origins of probabil-
ity as a science, J. Bernoulli considered non-additive
probabilities in Part IV of his Ars Conjectandi, but
this aspect of his work was essentially ignored (with
the exception of J.H. Lambert, who derived a special
case of Dempster’s rule in 1764 ([32], p. 76).

In the time between Bernoulli’s work and the six-
ties of last century, some researchers were occasionally
concerned with imprecise probability evaluations, but
generally as a collateral problem in their approaches.
Among them, de Finetti quotes (in [14], p. 133, and
[15]) B.O. Koopman and I.J. Good, asserting that the
introduction of numerical values for upper and lower
probabilities was a specific follow–up of older ideas by
J.M. Keynes [22].

Starting from the sixties, works focusing on various
kinds of imprecise probabilities appeared with slowly
increasing frequency. Their authors originally ex-
plored different areas, including non-additive mea-
sures (Choquet, whose monograph [2] remained virtu-
ally unknown when published in 1954 and was redis-
covered several years later), Statistics [7], Philosophy
[23, 24, 37, 41], robustness in statistics [20, 21], be-
lief functions [32]. See e.g. [19] for a recent historical
note.

Among these, de Finetti certainly read two papers
which referred to his own approach, [36] and [45].
While Smith’s paper [36] was still a transition work,
Williams’ [45] technical report stated a new, in-depth
theory of imprecise conditional previsions, which gen-
eralized de Finetti’s betting scheme to a conditional
environment, proving important results like the enve-
lope theorem. De Finetti’s reaction to Smith’s paper
was essentially negative and, as he explained, led to
the addition of two short sections in the final version
of [14]. We discuss de Finetti’s reactions below.

As for Williams’ paper, de Finetti read it in a
later phase of his activity, the mid-seventies, and
we are aware of no written comments on it. How-
ever Williams commented on this very point many
years later, in an interview published in The SIPTA
Newsletter, vol. 4 (1), June 2006. In his words:

De Finetti himself thought the 1975 paper
was too closely connected to “formal logic”
for his liking, which puzzled me, though he
had expressed interest and pleasure in the
earlier 1974 paper linking subjective proba-
bility to the idea of the indeterminacy of em-
pirical concepts.

Throughout his career de Finetti proposed original
ideas that were often out of the mainstream. For
example, he championed the use of finite additivity
as opposed to the more restrictive, received theory of
countably additive probability, both regarding uncon-
ditional and conditional probability. Criticism from
the prevailing measure theoretic approach to probabil-
ity often dubbed finitely additive subjective probabil-
ity as arbitrary. It might have been too hard to spread
the even more innovative concepts of imprecise prob-
abilities. This may be a motivation for de Finetti’s
caution towards imprecise probabilities. It certainly
contributes to our understanding why Williams’ re-
port [45] was published [46] only in 2007, more than
thirty years later. (See [40].)

2.2 Imprecision in de Finetti’s Papers

In very few places in his large body of written work
does de Finetti discuss imprecise probabilities, and
nowhere does he do so exclusively. Discussions of
some length appear in [12, 14, 15]. De Finetti’s basic
ideas on imprecision appear already in the philosophi-
cal, qualitative essay [12] Probabilismo. Saggio critico
sulla teoria delle probabilità e sul valore della scienza,
which de Finetti quotes in his autobiography in [17]
as the first description of his viewpoint on probability.
In this paper, he acknowledges that an agent’s opin-
ion on several events is often determined up to a very



rough degree of approximation, but observes that the
same difficulty arises in all practical problems of mea-
suring quantities (p. 40). He then states (p. 41) that
under this perspective probability theory is actually
perfectly analogous to any experimental science:

In experimental sciences, the world of feel-
ings is replaced by a fictitious world where
quantities have an exactly measurable value;
in probability theory, I replace my vague, elu-
sive mood with that of a fictitious agent with
no uncertainty in grading the degrees of his
beliefs.

Continuing the analogy, shortly after (p. 43) he points
out a disadvantage of probability theory, that

measuring a psychological feeling is a much
more vaguely determined problem than mea-
suring any physical quantity,

noting however that just a few grades of uncertainty
might suffice in many instances. On the other hand,
he observes that the rules of probability are intrinsi-
cally precise, which allows us to evaluate the proba-
bility of various further events without adding impre-
cision.

In an example (p. 43, 44, abridged here), he notes
that P (A ∧ B) = P (A|B)P (B) is determined pre-
cisely for an agent once P (A|B) and P (B) are deter-
mined. By contrast, when starting from approximate
evaluations like P (B) ∈ [0.80, 0.95] and P (A|B) ∈
[0.25, 0.40], imprecision propagates. Then P (A ∧ B)
can only be said to lie in the interval [0.80 · 0.25 =
0.20, 0.95 · 0.40 = 0.38].

If B is the event: the doctor visits an ill patient at
home, and A: the doctor is able to heal the ill patient,
approximate evaluations – he notes – are of little use,
as they do not let us conclude much more than the fol-
lowing merely qualitative deduction, which we para-
phrase: If it is nearly sure that the doctor will come,
and fairly dubious that he can heal his patient, then
it is slightly more dubious that the doctor comes and
heals his patient.

Further, de Finetti notes that probabilities can often
be derived from mere qualitative opinions. For in-
stance, in many games the atoms of a finite partition
are believed to be equally likely. This remark sug-
gests a reflection on the role of qualitative uncertainty
judgements in de Finetti’s work. Interestingly, he
displayed a different attitude towards this definitely
more imprecise tool than to imprecise probabilities.
In fact, in the same year 1931 he wrote Sul significato
soggettivo della probabilità [13], discussing rational-
ity conditions, later known as de Finetti’s conditions,

for comparative (or qualitative) probabilities, showing
their analogy with the laws of numerical probability.
This paper pointed out what became an important
research topic, concerning existence of agreeing or al-
most agreeing probabilities for comparative probabil-
ity orderings. (See [18] for an excellent review.)

The ideas expressed in [12] were not substantially
modified in later writings. For instance, in [14], p.
95, de Finetti and Savage quote E. Borel as sharing
their thesis, that

the vagueness seemingly intrinsic in cer-
tain probability assessments should not be
regarded as something qualitatively different
from uncertainty in any quantities, numbers
and data one works with in applied mathe-
matics.

The jointly authored 1962 paper [14], Sul modo di
scegliere le probabilità iniziali, adds some arguments
to de Finetti’s ideas on imprecise probabilities while
discussing Smith’s then recently published paper [36].
Recall that Smith proposed a modification of de
Finetti’s betting scheme, introducing a one–sided
lower probability P (A) and a one–sided upper prob-
ability, P (A) ≥ P (A), for an event A, rather than a
single two–sided probability, as we explain next. In
Smith’s approach, the agent judges a bet on A (win-
ning 1 if and only if A obtains) at a price p < P (A) to
be favorable over the status quo, which has 0 payoff for
sure. Such a favorable gamble has a positive lower ex-
pected value, hence greater than 0. And for the same
reason the agent prefers to bet against A (paying 1
if and only if A obtains) in order to receive a price
p > P (A) over the status quo. For prices p between
the lower and upper probability, P (A) ≤ p ≤ P (A),
the agent is allowed to abstain from betting and re-
main with the status quo.

In de Finetti’s theory, by contrast, the agent is obliged
to give one two-sided probability P (A) for betting
on/against the event A. At the fair price p = P (A)
the de–Finetti–agent is indifferent between a gamble
on/against A and abstaining, and may either accept
or reject the bet. For prices p < P (A) the de–Finetti–
agent judges a bet on A favorable, etc. Thus, de
Finetti’s theory is the special case of Smith’s theory
when P (A) = P (A) = P (A), modulo the interpreta-
tion of how the agent may respond to the case of a
fair bet.

After expressing perplexity about the idea of avoiding
stating one exact fair value P (A) by introducing an
indecision interval I = [P (A), P (A)], with two differ-
ent exact (one-sided) values as endpoints, de Finetti
and Savage focus on two questions: first, existence of



the indecision interval I and second, consistency of
the agent’s betting using the interval I.

As for the first question, de Finetti and Savage agree
that nobody is actually willing to accept all of the
bets required according to the idealized version of de
Finetti’s coherence principle. They concede that the
betting model introduced by de Finetti in order to
give an operational meaning to subjective probability
requires that an idealized, rational agent is obliged to
have a real–valued probability P (A) and, thus, to ac-
cept bets at favorable odds – betting on A for any
price less than P (A) and betting against A for any
price greater than P (A).1 The real agent is com-
mitted to behave according to the idealized theory
in hypothetical circumstances where he/she has re-
flected adequately on the problem. In other words,
de Finetti’s opinion, expressed on this point also in
other papers, seems to be that the betting scheme
should not be taken literally. Rather it is a way of
defining the subjective probability concept in ideal-
ized circumstances. Hence, intervals of indecision ex-
ist in practice, but only where the real decision agent
has not thought through the betting problem with the
precision asked of the idealized agent.

As for the second question, de Finetti and Savage
argue that, rather than allowing the indecision in-
terval, from the perspective of coherence it may be
better to employ the precise two–sided probability
P = (P + P )/2. They report the following intrigu-
ing example as evidence for their view.

Example (de Finetti and Savage, 1962, p. 139).
An agent may choose whether to buy or not any com-
bination of the following 200 tickets involving varying
gambles on/against event A. The first 100 tickets are
offered for prices, respectively, of 1, 2,. . ., 100 Euros2

and each one pays 100 Euros if event A occurs, and
0 otherwise. The remaining 100 tickets are offered,
respectively, at the same prices but on the comple-
mentary event, Ac. Each of these 100 tickets pays
100 Euros if Ac occurs and 0 otherwise. If the agent
assesses a two–sided personal probability for A as in
de Finetti’s theory, e.g., P (A) = 0.63, he/she will
maximize expected value by buying the first 63 tick-
ets on A with prices 1,. . ., 63, for a combined price 1
+ 2 +. . . + 63 = 2016 Euros, and buying the first 37
tickets on Ac for a combined price 1 + 2 +. . . + 37
= 703 Euros. (The agent is indifferent about buying
the 63rd ticket from the first group and, likewise, the
37th ticket from the second group.) The agent’s total
expense for the 100 tickets, then, is 2719 Euros. The

1As recalled in [14], such agents were termed Stat Rats (by
G.A. Barnard) in the discussion of [36].

2We introduce an anachronism, here and in later examples,
updating the monetary unit to 2011.

agent gains 6300 − 2719 = 3581 Euros if A occurs;
he/she gains 981 Euros otherwise, when Ac occurs.

Suppose, instead the agent fixes a lower probability
P (A) = 0.53 and an upper probability P (A) = 0.73,
as allowed by Smith’s theory. De Finetti and Savage
interpret this to mean that the Smith-agent will buy
only the first 53 tickets for A and only the first 27
tickets for Ac – those gambles that are individually
(weakly) favorable. Then the Smith–agent will gain
only 5300 − 1809 = 3491 Euros if A occurs, and will
gain only 2700−1809 = 891 Euros if Ac occurs. Their
conclusion is that in this decision problem it is bet-
ter for the agent to assess the real–valued, two–sided
probability 0.63 = P (A) = (P (A) + P (A))/2 than to
use the interval I = [0.53, 0.73]. The decision maker’s
gain increases by 90 Euros, whatever happens, using
this two-sided, de Finetti–styled probability. We re-
spond to this example in the next section. �
De Finetti and Savage continue their criticism of IP
theory on pp. 140 ÷ 144 of [14]. To our thinking, the
most interesting argument they offer is perhaps that
imprecision in probability assessments does not give
rise to a new kind of uncertainty measure, but rather
points out an incomplete elicitation by a third party
and/or even incomplete self–knowledge. They write,

Even though in our opinion they are not fit
for characterizing a new, weaker kind of co-
herent behaviour, structures and ideas like
Smith’s may allow for important interpre-
tations and applications, in the sense that
they elicit what can be said about a behaviour
when an incomplete knowledge is available of
the opinions upon which decisions are taken.

They continue with a clarifying example.

What is the area of a triangle with largest
side a and shortest side b? Any S such that
S ≤ S ≤ S, with S: area of the triangle with
sides (a, b, b), S: area of the triangle with
sides (a, a, b). This does not mean: there ex-
ists a triangle whose area is indeterminate
(S: lower area, S: upper area); every trian-
gle has a well determined area, but we might
at present be unable to determine it for lack
of sufficient information.

In the Appendix of [15], while mainly summarizing
ideas on imprecise probabilities already expressed in
[12, 14], de Finetti adds other examples support-
ing the same thesis. One is particularly interesting
because it does not resort to the analogy between
probabilities and other experimental measures but in-
volves his Fundamental Theorem of Prevision. As well



known, that theorem ensures that, given a coherent
probability function P (·) defined on an arbitrary set
of events D, all of its coherent extensions that include
a probability for an additional event E /∈ D belong to
a non-empty closed interval IE = [P (E), P (E)]. This
interval IE of potential (coherent) values for P (E) is
defined by analogy with how one may extend a mea-
sure µ to give a value for a non-measurable set us-
ing the interval of inner and outer measure values.
In de Finetti’s theorem, the interval IE arises by ap-
proximations to E (from below and from above) using
events from the linear span of D. But, de Finetti ar-
gues, the fact that prior to the extension, we can only
affirm about P (E) that it belongs to IE rather than
having a unique value

does not imply that some events like E have
an indeterminate probability, but only that
P (E) is not uniquely defined by the starting
data we consider.

De Finetti’s thinking about imprecise personal proba-
bility is unchanged from his early work. In his classic
([31], p. 58) Savage quotes de Finetti’s [16] view on
this question.

The fact that a direct estimate of a probabil-
ity is not always possible is just the reason
that the logical rules of probability are useful.

Revealing of Savage’s subsequent thinking on this
question of existence of unsure, or imprecise (per-
sonal) probabilities is the footnote on p. 58, added
for the 1972 edition of [31], where Savage teases us
with these guarded words.

One tempting representation of the unsure is
to replace the person’s single probability mea-
sure P by a set of such measures, especially
a convex set. Some explorations of this are
Dempster (1968), Good (1962), and Smith
(1961).

3 Rejoinder from the Perspective of
2011

Many of the objections raised by de Finetti (and oth-
ers) towards the use of imprecise probabilities have
been discussed at length elsewhere. (See especially
[42], Secs. 5.7, 5.8, 5.9). Of course, some recently for-
mulated arguments in favor of IP, e.g., some relating
to group decision making [34] or IP models for fre-
quency data [10], were not anticipated by de Finetti.
Here, we offer brief comments, including responding

to the challenges against IP raised in the previous sec-
tion.

The first of de Finetti’s arguments supporting precise
rather than imprecise probabilities is roughly that –
barring e.g., Quantum Mechanical issues – ordinary
theoretical quantities that are the objects of experi-
mental measurement are precise. In practice however,
when the process for eliciting a precise personal prob-
ability is not sufficiently reliable, impractical, or too
expensive, the use of imprecise probabilities seems ap-
propriate. By modeling the elicitation process, e.g.,
by considering psychometric models of introspection,
we may be able to formalize the degree of impreci-
sion of the assessment [27]; a first, intuitive measure
of imprecision is of course the difference P (A)−P (A).

De Finetti hits the mark with his second observation,
basically that inferences with imprecise probabilities
may be highly imprecise. This is unquestionably true,
but there are different levels: highly imprecise mea-
sures like possibilities and necessities typically ensure
many vacuous inferences [44], while standard, less im-
precise instruments are (now) available in other in-
stances, e.g., the Choquet integral for 2–monotone
measures [3], the imprecise Dirichlet distribution [43],
etc..

De Finetti and Savage’s [14] example, which we
summarized in Section 2.2, merits several responses.
First, it is not clear what general claim they make.
Are they suggesting that a decision maker who
uses Smith’s lower and upper IP betting odds al-
ways makes inferior decisions compared with some de
Finetti–styled decision maker who uses precise betting
odds but has no other advantage – no other special in-
formation? Is their claim instead that sometimes the
IP decisions will be inferior? What is their objection?

De Finetti and Savage’s example uses particular val-
ues for P, P , and P , combined with a controversial
(we think unacceptable) interpretation of how the IP
decision maker chooses in their decision problem. It
is not difficult to check that the same conclusion they
reach may be achieved by varying the three quantities
P, P , and P subject to the constraint that P < P < P
and these belong to the set {0, 1/100, 2/100, . . . , 1}
while retaining the same ticket prices, and the same
seemingly myopic decision rule for determining which
tickets the IP decision maker purchases. That is, it
appears to us that what drives de Finetti and Savage’s
result in this example is the tacit use of a decision rule
that is invalid with sets of probabilities but which is
valid in the special case of precise probabilities.

We think they interpret Smith’s lower and upper bet-
ting odds to mean that when offered a bet on or
against an event A at a price between its lower and



upper values, the IP decision maker will reject that
option regardless what other (non-exclusive) options
are available. That is, we think they reason that, be-
cause at odds between the lower and upper probabili-
ties it is not favorable to bet either way on A compared
with the one option to abstain, therefore the IP deci-
sion maker will abstain, i.e. not buy such a ticket in
their decision problem.

The familiar decision rule to reject as inadmissible any
option that fails to maximize expected utility reduces
to pairwise comparisons between pairs of acts when
the agent uses a precise probability. That is, in the
example under discussion where utility is presumed to
be linear in the numeraire used for the gambles3, a de
Finetti–styled decision maker will maximize expected
utility by buying each ticket that, by itself, has posi-
tive expected value: Buy each ticket that in a pairwise
comparison with abstaining is a favorable gamble and
only those. But this rule is not correct for a decision
maker who uses sets of probabilities. De Finetti and
Savage’s conclusion about which tickets the IP deci-
sion maker will buy is incorrect when she/he uses an
appropriate decision rule.

As members of SIPTA know, there is continuing de-
bate about decision rules for use with an IP theory.
However, for the case at hand, we think it is non-
controversial that the IP decision maker will judge
inadmissible any combination of tickets that is sim-
ply dominated in payoff by some other combination of
tickets. That is, in the spirit of de Finetti’s coherence
condition, particularly as he formulates it with Brier
score, the decision maker will not choose an option
when there is a second option available that simply
dominates the first. Then, in this example, it is per-
missible for such an IP decision maker to buy the very
same combination of tickets as would any de Finetti–
styled decision maker who has a precise personal prob-
ability for the event A. That is because, in this finite
decision problem, all and only Bayes–admissible op-
tions are undominated. Thus, it is impermissible for
the IP decision maker to buy only the 80 = (53 + 27)
tickets that de Finetti and Savage allege will be pur-
chased.

Call House the vendor of the 200 tickets. House is
clearly incoherent. In fact, an agent can make arbi-
trage without needing to consider her/his uncertainty
about the event A: buying the first 50 tickets for A
and the first 50 for Ac produces a sure gain of 2450
Euros! See [35] for different indices for the degree

3Linearity of utility is no real restriction, because coherence
is equivalent to constrained coherence, where an arbitrary up-
per bound k > 0 is set a priori on the agent’s gains/losses in
absolute value (see [30], Sec. 3.4). Just choose k such that the
utility variation is to a good approximation linear.

of incoherence displayed by House, what strategies
maximize the sure gains that can be achieved against
House, and how these are related to different IP mod-
els for the events in question.

There is a related point about IP-coherence that we
think is worth emphasizing. Consider making a single
bet in favor of A. If the decision maker adopts a
precise probability P (A), her/his gain per Euro staked
on a bet on A will be G = A − P (A). However, if
the decision maker’s judgment is unsure and she/he
uses Smith’s lower betting odds with P (A) < P (A),
her/his gain increases to G = A−P (A) > G. It is true
that in this latter case the decision maker will abstain
from betting when the price for A is higher than P
and lower than P , and provided there are no other
options to consider. But this results only in the loss
of some additional opportunities for gambling. There
is no loss of a sure gain.

The role of the Fundamental Theorem in relation to
IP theory is also of worth discussing. Let us accept
de Finetti’s interpretation of the interval IE as giving
all coherent extensions of the decision maker’s current
probability P (·), defined with respect to events in the
set D, in order to include the new event E. Suppose,
however, that we consider extending P to include a
second additional event F as well. To use the Fun-
damental Theorem to evaluate probability extensions
for both E and F we must work step–by–step. Extend
P (·) to include only one of the two events E or F us-
ing either interval IE or IF defined with respect to the
set D. For instance, first extend P to include a precise
value for P (E) taken from IE . Denote the resulting
probability PE(·) defined with respect to the set D∪
{E}. Then iterate to extend PE(·) to include a pre-
cise value for PE(F ). Of course, the two intervals IF
and IEF usually are not the same. We state without
demonstration that, nonetheless, if the step–by–step
method allows choosing the two values P (E) = c and
PE(F ) = d, then it is possible to reverse the steps
to achieve the same pair, P (F ) = d and PF (E) = c.
Then the order of extensions is innocuous.

If instead we interpret the starting coherent probabil-
ity P (defined on the linear span of D) as a special
coherent lower probability, and look for a lower prob-
ability which coherently extends it, we can avoid the
step–by–step procedure, simply by always choosing the
lower endpoint from the intervals based on the com-
mon set D and using these as 1-sided lower proba-
bilities. We obtain what Walley [42] calls the nat-
ural extension of P , interpreted as a coherent lower
probability (actually, it is even n–monotone) on all
additional events. The correctness of such a proce-
dure depends also on the transitivity property of the
natural extension.



There is a second consideration relevant to de Finetti’s
preferred interpretation of the interval IE from the
Fundamental Theorem relating to IP theory, which is
particularly relevant in the light of Levi’s [26] dis-
tinction between imprecision and indeterminacy of
interval–valued probabilities. Levi’s distinction is il-
lustrated by Ellsberg’s well known challenge [9].

In Ellsberg’s puzzle [9] the decision maker faces de-
cisions under risk and decisions under uncertainty si-
multaneously. The decision maker contemplates two
binary choices: Problem I is a choice between two
options labeled 1 and 2, and Problem II is a choice
between two options labeled 3 and 4. The payoffs for
these options are determined by the color of a ran-
domly drawn chip from an urn known to contain only
red, black, or yellow chips.

In Problem I, option 1 pays off 1,000 Euros if the
chip drawn is red, 0 Euros otherwise, i.e. if it is black
or yellow. Option 2 pays off 1,000 Euros if the chip
drawn is black, 0 Euros otherwise, i.e, if the chip is
red or yellow. In Problem II, option 3 pays off 1,000
Euros if the chip drawn is either red or yellow, 0 if
it is black. Option 4 pays off 1,000 Euros if the chip
drawn is black or yellow, 0 Euros if it is red. In addi-
tion, the urn is stipulated to contain exactly 1/3rd red
chips, with unknown proportions of black and yellow
other than that their total is 2/3rds the contents of
the urn. Thus, under the assumptions for the prob-
lem, options 1 and 4 have determinate risk: they are
just like a Savage gamble with determinate (personal)
probabilities for their outcomes. However Ellberg’s
conditions leave options 2 and 3 as ill–defined gam-
bles: the personal probabilities for the payoffs are not
determined.

Across many different audiences with varying levels of
sophistication, the modal choices are option 1 from
Problem I and option 4 from Problem II. Assum-
ing that the agent prefers more money to less, that
there is no moral hazard relating the decision maker’s
choices with the contents of the urn, and that the
choices reveal the agent’s preferences, there is no ex-
pected utility model for the modal pattern, 1 over 2
and 4 over 3.

In a straightforward IP–de–Finetti representation of
this puzzle, the decision maker has a precise proba-
bility for the events {red, black or yellow}: P (red) =
1/3, P (black or yellow) = 2/3. But the agent’s uncer-
tainty about black or yellow is represented by the com-
mon intervals Iblack = Iyellow = [0, 2/3]. Under these
circumstances the agent’s imprecise probabilities do
not dictate the choices for either problem. However,
if after reflection the agent decides for option 1 over
option 2 in Problem I, then (as in the Fundamen-

tal Theorem) this corresponds to an extension of P (·)
where now P (black) < 1/3. But then P (yellow) > 1/3
and option 3 has greater expected utility than option
4 relative to this probability extension. Likewise, if
the agent reflects first on Problem II and decides for
option 4 over option 3, this corresponds to an exten-
sion of P (·) where now P (yellow) < 1/3. Then in
Problem I option 2 has greater expected utility than
option 1.

In short, under what we understand to be de Finetti’s
favored interpretation of the Fundamental Theorem,
the modal Ellsberg choices are anomalous. They can-
not be justified even when the agent uses the uncer-
tainty intervals from the Fundamental Theorem. Levi
calls this a case of imprecise probability intervals. Un-
der this interpretation the agent is committed to re-
solving her/his uncertainty with a coherent, precise
probability.

By contrast, if the agent uses the two intervals,
Iblack = Iyellow = [0, 2/3], to identify a set of prob-
abilities for the two events, then relative to this set
neither option in either Problem is ruled out by con-
siderations of expected utility. That is, in Problem I,
for some probabilities in the set, option 1 has greater
expected utility than option 2, and for other prob-
abilities in the set this inequality is reversed. Like-
wise with the two options in Problem II. If the non–
comparability between options by expected utility is
resolved through an appeal to lower expected utility,
e.g., as a form of security, then in Problem I the agent
chooses option 1 and in Problem II the agent chooses
option 4. This is what Levi means by saying that the
decision maker’s IP is an indeterminate (not an im-
precise) probability. With indeterminate probability,
the agent is not committed to resolving uncertainty
with a precise probability prior to choice.

4 De Finetti’s Theory in Imprecise
Probabilities

Let us repeat a simple fact. Notwithstanding what
we see as de Finetti’s mostly unsupportive opinions
on imprecise probabilities, in the sense of IP as that
is used by many in SIPTA, our co-researchers in this
area find it appropriate to refer to his work in the de-
velopment of their own. One reason for this is that
many within SIPTA use aspects of de Finetti’s work
on personal probability which often are in conflict
with the more widely received but less general, clas-
sical theory, associated with Kolmogorov’s measure
theoretic approach.

Take for instance de Finetti’s concept of a coherent
prevision P (X) of a (bounded) random quantity X,



which is a generalization of a coherent probability.
That special case obtains when X is the indicator
function for an event, and then a prevision is a prob-
ability.

A prevision may be viewed as a finitely additive ex-
pectation E(X) of X. But there are non-trivial differ-
ences between de Finetti’s concept of prevision and
the more familiar concept of a mathematical expec-
tation as that is developed within the classic measure
theoretic account. In order to determine the classical
expectation of a random variable X, we first have to
assess a probability for the events {ω : X(ω) = x},
or at least assess a density function. In uncountable
state spaces, common with familiar statistical models,
the classical theory includes measurability constraints
imposed by countable additivity. But this is not at all
necessary for assessing a prevision, P (X), which may
be determined directly within de Finetti’s theory free
of the usual measurability constraints. The difference
may seem negligible, but it becomes more apprecia-
ble when considering previsions for several random
quantities at the same time, and by far more so when
passing to imprecise previsions, where additivity in
general no longer applies. This is an illustration of
how de Finetti’s foundational ideas can become more
important in IP theory than they are even in tradi-
tional probability theory.

The problem reiterates within the theory of condi-
tional expectations, magnified by the fact that finitely
additive conditional expectations do not have to sat-
isfy what de Finetti called conglomerability, first in his
1930 paper Sulla proprietà conglomerativa delle prob-
abilità subordinate [11]. Assume that P (·) is a coher-
ent unconditional probability. Let π = {h1, . . .} be a
denumerable partition, and let {P (·|hi) : i = 1, . . .} be
a set of corresponding coherent conditional probabil-
ity functions for P , given each element of π. With re-
spect to an event E, define mE = infh∈π P (E|h), and
ME = suph∈π P (E|h). These conditional probabili-
ties for event E are conglomerable in π provided that
P (E) ∈ [mE ,ME ]. Schervish et al. [33] establish that
each finitely but not countably additive probability
fails to be conglomerable for some event E and denu-
merable partition π. Also, they identify the greatest
lower bound for the extent of non–conglomerability of
P , where that is defined by the supremum difference
between the unconditional probability P (E) and the
nearest point to the interval [mE ,ME ], taken over all
denumerable partitions π and events E.

The treatment of conglomerability in IP is still con-
troversial. While Walley [42] imposes some conglom-
erability axioms to his concepts of coherence for con-
ditional lower previsions, Williams’ more general ap-
proach does not. In Walley’s words ([42], p. 644)

Because it [. . .] does not rely on the con-
glomerative principle, Williams’ coherence is
also a natural generalization of de Finetti’s
(1974) definition of coherence.

See [29], Secs. 3.4, 4.2.2 for a further discussion of
[11], Williams’ coherence and of some arguments in
favor/against conglomerativity in IP theory.

Also de Finetti’s use of a generalized betting scheme
to define coherent previsions serves as an example for
several subsequent variants, which underly many un-
certainty measures. Examples include coherent upper
and lower previsions [45, 42], convex previsions [30],
and capacities ([1], Sec. 4). Moreover, in all such in-
stances this approach based on de Finetti’s theory of
previsions provides vivid, immediate interpretations
of basic concepts and often relatively simple proofs of
important results.

Another issue, which was our focus in the previous
section, concerns de Finetti’s attention to extension
problems, i.e. to the existence of at least one coher-
ent extension of a coherent prevision, defined on an
arbitrary set of (bounded) variables. Walley [42] used
this idea in the realm of imprecise probabilities to
define several useful notions: a natural extension; a
regular extension; an independent extension, etc. For
instance, a natural extension is the largest, i.e., “least
committal” coherent IP extension.

In general, research in IP theory exposes new facets
of probability concepts already discussed and some-
times not quite fixed by de Finetti. An illustration is
with the notion of stochastic independence, which de
Finetti found unconvincing in its classical identifica-
tion with the factorization property, but which he left
somewhat undeveloped in his own work. In [15] he
gives an epistemically puzzling example of two ran-
dom quantities that are functionally dependent and
stochastically independent according to the factoriza-
tion property. Problems for a theory of independence
arise especially when conditioning on events of ex-
treme (0 or 1) probability. For instance, Dubins’ ver-
sion [8] of de Finetti’s theory leads to an asymmetric
relevance relation. The situation is more complex in
the IP framework, and de Finetti would perhaps be
surprised at the variety of independence concepts that
have been developed. (See, e.g., [5, 6, 38, 39]).

De Finetti discovered important connections between
independence and exchangeability as reported in his
Representation Theorem, 1937. IP generalizations are
being developed, e.g., [4]. Soon, will we see IP gen-
eralizations of partial exchangeability along the same
lines. In yet other settings, IP methods have been em-
ployed to achieve advances in probability problems to
which de Finetti himself contributed [28].



5 Conclusions

We close our comments with this metaphor, which
will be entirely familiar to any parent. You raise your
children with an eye for the day when each becomes
an independent agent. Sometimes, however, contrary
to your advice, one embarks on what you fear is an
ill conceived plan. When to your great surprise the
plan succeeds, does not that offspring then make you
a very proud parent?!
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