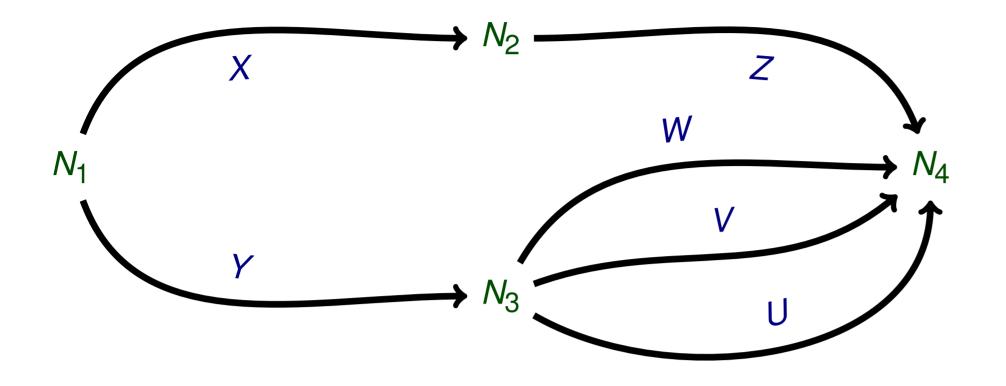
# Dynamic Programming and Subtree Perfectness for Deterministic Discrete-Time Systems with Uncertain Rewards

Nathan Huntley Matthias C. M. Troffaes

Durham University, Department of Mathematical Sciences

27 July, 2011



# Background

# **Backward Induction**

#### **Backward Induction Method**

apply choice function recursively to gambles from last stage

- first, apply opt on  $\{W, V, U\}$ , say opt $(\{W, V, U\}) = \{V, U\}$
- next, only need opt on  $\{X + Z, Y + W, Y + V, Y + U\}$

### Problem

- will not always coincide with the standard normal form solution
- e.g. Γ-maximin and interval dominance do not [1]
- partial answer in [1]: sufficient condition for backward induction under assumption of utility

#### **Normal Form Solutions**

aim: find optimal paths from  $N_1$  to  $N_4$ set of paths judged optimal is a normal form solution

### Rewards

■ binary operator +: for combining rewards. left identity element: 0 + r = rleft inverse: (-r) + r = 0no additional structure assumed (no utility, no full ranking)

# Gambles and Choice Functions

each path corresponds to a gamble (an uncertain reward)

 $N_1 \rightarrow N_2 \rightarrow N_4 = X + Z$ 

find optimal paths by finding optimal gambles choice function opt maps sets of gambles to (optimal) subsets

## Standard Normal Form Solution

apply choice function to the set of all the problem's gambles choose one of the paths judged optimal by this process

> inefficient for large problems! but we can do more cleverly...

## References

[1] G. De Cooman and M.C.M. Troffaes.

Dynamic programming for deterministic discrete-time systems with uncertain

- our contribution:

necessary and sufficient conditions for backward induction necessary and sufficient conditions for subtree perfectness no utility assumed

### Necessary and Sufficient Conditions for Backward Induction

Insensitivity to Omission of Non-Optimal Elements

 $opt(\mathcal{X}) \subseteq \mathcal{Y} \subseteq \mathcal{X} \Rightarrow opt(\mathcal{Y}) = opt(\mathcal{X}).$ 

Preservation of Non-Optimality Under Addition of Elements

 $\mathcal{Y} \subseteq \mathcal{X} \Rightarrow \mathsf{opt}(\mathcal{Y}) \supseteq \mathsf{opt}(\mathcal{X}) \cap \mathcal{Y}.$ 

Backward Addition Property

 $opt(X + Y) \subseteq X + opt(Y).$ 

# **Subtree Perfectness**

#### Example of Failure of Subtree Perfectness

- say opt( $\{W, V, U\} = \{V, U\}$ , so W is deleted
- but global solution is  $\{X + Z, Y + U\}$ , so also V is deleted
- removal of V not caused by the local choice at  $N_3$ but by global choice when X + Z was also considered at  $N_1$
- choice at  $N_3$  is not completely determined by the options available at  $N_3$
- this is a failure of subtree perfectness: choice in subproblem is influenced by problem into which it is embedded [3]

gain.

International Journal of Approximate Reasoning, 39(2-3):257–278, Jun 2005.

#### [2] N. Huntley and M. C. M. Troffaes.

Characterizing factuality in normal form sequential decision making. In Thomas Augustin, Frank P. A. Coolen, Serafin Moral, and Matthias C. M. Troffaes, editors, ISIPTA'09: Proceedings of the Sixth International Symposium on Imprecise Probability: Theories and Applications, pages 239-248, 2009.

#### [3] R. Selten.

Reexamination of the perfectness concept for equilibrium points in extensive games.

International Journal of Game Theory, 4(1):25–55, Mar 1975.

#### [4] M. C. M. Troffaes, N. Huntley, and R. Shirota Filho.

Sequential decision processes under act-state independence with arbitrary choice functions.

In E. Huellermeier, R. Kruse, and F. Hoffmann, editors, Information Processing and Management of Uncertainty in Knowledge-Based Systems, pages 98-107. Springer, 2010.

## Necessary and Sufficient Conditions for Subtree Perfectness

## Intersection Property

 $\mathsf{opt}(\mathcal{Y}) = \mathsf{opt}(\mathcal{X}) \cap \mathcal{Y}.$ 

Addition Property

$$opt(X + Y) = X + opt(Y)$$

### **Final Remarks**

Insensitivity to Omission implied by Intersection

Intersection is equivalent to Total Preorder

indeterminate choice functions can never be subtree perfect similar results well known for other decision problems [2, 4]



Nathan Huntley, Matthias C. M. Troffaes