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Background

Normal Form Solutions

aim: find optimal paths from N1 to N4
set of paths judged optimal is a normal form solution

Rewards

binary operator +: for combining rewards.
left identity element: 0 + r = r
left inverse: (−r ) + r = 0
no additional structure assumed (no utility, no full ranking)

Gambles and Choice Functions

each path corresponds to a gamble (an uncertain reward)

N1→ N2→ N4 = X + Z

find optimal paths by finding optimal gambles
choice function opt maps sets of gambles to (optimal) subsets

Standard Normal Form Solution

apply choice function to the set of all the problem’s gambles
choose one of the paths judged optimal by this process

inefficient for large problems!
but we can do more cleverly. . .
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Backward Induction

Backward Induction Method

apply choice function recursively to gambles from last stage
first, apply opt on {W ,V ,U}, say opt({W ,V ,U}) = {V ,U}
next, only need opt on {X + Z ,Y + W ,Y + V ,Y + U}

Problem

will not always coincide with the standard normal form solution
e.g. Γ-maximin and interval dominance do not [1]
partial answer in [1]:
sufficient condition for backward induction
under assumption of utility
our contribution:
necessary and sufficient conditions for backward induction
necessary and sufficient conditions for subtree perfectness
no utility assumed

Necessary and Sufficient Conditions for Backward Induction

Insensitivity to Omission of Non-Optimal Elements

opt(X ) ⊆ Y ⊆ X ⇒ opt(Y) = opt(X ).

Preservation of Non-Optimality Under Addition of Elements

Y ⊆ X ⇒ opt(Y) ⊇ opt(X ) ∩ Y .
Backward Addition Property

opt(X + Y) ⊆ X + opt(Y).

Subtree Perfectness

Example of Failure of Subtree Perfectness

say opt({W ,V ,U} = {V ,U}, so W is deleted
but global solution is {X + Z ,Y + U}, so also V is deleted
removal of V not caused by the local choice at N3
but by global choice when X + Z was also considered at N1
choice at N3 is not completely determined by the options
available at N3
this is a failure of subtree perfectness: choice in subproblem
is influenced by problem into which it is embedded [3]

Necessary and Sufficient Conditions for Subtree Perfectness

Intersection Property

opt(Y) = opt(X ) ∩ Y .
Addition Property

opt(X + Y) = X + opt(Y).

Final Remarks

Insensitivity to Omission implied by Intersection
Intersection is equivalent to Total Preorder
indeterminate choice functions can never be subtree perfect
similar results well known for other decision problems [2, 4]
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