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Background

Normal Form Solutions

m aim: find optimal paths from Ny to Ny
m set of paths judged optimal is a normal form solution

Rewards

m binary operator +: for combining rewards.

m |eft identity element: 0 +r=r

mleftinverse: (—r)+r=20

m no additional structure assumed (no utility, no full ranking)

Gambles and Choice Functions

m each path corresponds to a gamble (an uncertain reward)
N-| %N2%N4=X—|—Z

m find optimal paths by finding optimal gambles
m choice function opt maps sets of gambles to (optimal) subsets

Standard Normal Form Solution

m apply choice function to the set of all the problem’s gambles
m choose one of the paths judged optimal by this process

inefficient for large problems!
but we can do more cleverly. ..
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Backward Induction

Backward Induction Method

m apply choice function recursively to gambles from last stage
m first, apply opt on { W, V, U}, say opt({ W, V,U}) ={V, U}
mnext,onlyneedopton{X+Z, Y+ W, Y+ V Y+ U}

m will not always coincide with the standard normal form solution
m e.g. [-maximin and interval dominance do not [1]
m partial answer in [1]:
sufficient condition for backward induction
under assumption of utility
m our contribution:
necessary and sufficient conditions for backward induction
necessary and sufficient conditions for subtree perfectness
no utility assumed

Necessary and Sufficient Conditions for Backward Induction

m Insensitivity to Omission of Non-Optimal Elements
opt(X) C Y C & = opt(Y) = opt(X).
m Preservation of Non-Optimality Under Addition of Elements
Y < X = opt(Y) 2 opt(X)N Y.
m Backward Addition Property
opt(X + V) C X + opt().

Subtree Perfectness

Example of Failure of Subtree Perfectness

msay opt({W, V, U} ={V, U}, so W is deleted

m but global solutionis {X + Z, Y + U}, so also V is deleted

m removal of V not caused by the local choice at Nj
but by global choice when X + Z was also considered at N;

m choice at N3 is not completely determined by the options
available at Ns

m this is a failure of subtree perfectness: choice in subproblem
IS Influenced by problem into which it is embedded [3]

Necessary and Sufficient Conditions for Subtree Perfectness

m Intersection Property
opt(V) = opt(X)N Y.
m Addition Property
opt(X + ) = X + opt(}).

Final Remarks

m Insensitivity to Omission implied by Intersection
m Intersection is equivalent to Total Preorder

m indeterminate choice functions can never be subtree perfect
similar results well known for other decision problems [2, 4]
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