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Introduction

In realistic decision problems there is more often
than not uncertainty in the background
information. As for representation of uncertain or
imprecise probability values, second-order
probability, i.e. probability distributions over
probabilities, offers an option. With a subjective
view of probability second-order probability would
seem to be impractical since it is hard for a
person to construct a second-order distribution
that reflects his or her beliefs. From the
perspective of probability as relative frequency
the task of constructing or updating a
second-order probability distribution from data is
somewhat easier. Here a very simple model for
updating lower bounds of probabilities is
employed.

But the difficulties in choosing second-order
distributions may be further alleviated if
structural properties are considered. Either some
of the probability values are dependent in some
way, e.g. that they are known to be almost equal,
or they are not dependent in any other way than
what follows from that the values sum to one.

In this work we present the unique family of
discrete second-order probability distributions
that correspond to the case where dependence is
limited. These distributions are shown to have
the property that the joint distributions are equal
to normalised products of marginal distributions.
The distribution family introduced here is a
generalisation of a special case of the multivariate
Pólya distribution and is shown to be conjugate
prior to a compound hypergeometric distribution.

Why Discrete?

The study of second-order probability
distributions has sofar mostly been restricted to
continuous distributions. One family of
continuous second-order distributions is a
generalisation of a special case of the Dirichlet
distribution with the property of the joint
distribution being proportional to the product of
marginal distributions. In the absence of
information about dependencies among the
first-order probabilities these distributions appear
to offer a corresponding non-informativeness.
These continuous second-order distributions have
as parameters the lower bounds of the first-order
probabilities.

In a continuous second-order setting, a lower
bound of a probability can rarely if ever be the
result of an observation. But after seeing a
three-eyed dog in a kennel of ten, I know that at
least one out of ten dogs in that kennel has three
eyes. Outside the kennel, I cannot, based on the
observation, say much more than that the
probability of coming across a three-eyed dog is
non-zero. Thus updating of lower bounds comes
natural when there is a relative frequency
interpretation of probabilities.

In this paper the discrete counterpart of the
shifted Dirichlet distribution is found and an
environment for updating of lower bounds is
suggested. But the non-informativeness or limited
dependency associated with the distributions that
factor into marginals remain after updating only
with a compound hypergeometric likelihood
function of which there is more to learn.

Finding the Distributions

We want to find probability distributions
p(k1, k2, . . . , kn) with ki being integers such that�
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pi(ki) ,

where pi is the marginal distribution corresponding to
variable ki.
Then the marginal distribution pi(ki) equals
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K
pi(ki)∗j �=ipj (N − ki) ,

where ∗j �=i is the n − 1-fold repeated convolution
p1 ∗ p2 ∗ · · · ∗ pi−1 ∗ pi+1 ∗ · · · ∗ pn and
K = ∗n

i=1pi(N).

p2 ∗ p3 ∗ p4 ∗ . . . ∗ pn(N − k1) = K

p1 ∗ p3 ∗ p4 ∗ . . . ∗ pn(N − k2) = K

...
p1 ∗ p2 ∗ p3 ∗ . . . ∗ pn−1(N − kn) = K

In the transform domain,

Z{p2}Z{p3} . . .Z{pn} = Z{KH(c1 − k1)}
Z{p1}Z{p3} . . .Z{pn} = Z{KH(c2 − k2)}

...
Z{p1}Z{p2} . . .Z{pn−1} = Z{KH(cn − kn)}
where H is the Heaviside function and the support of
pi ends at ki = ci.
If pi(ki) can be written as a shifted function
qi(ki − ai),
Z{pi(ki)} = Z{qi(ki − ai)} = Z{qi(ki)}z−ai
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Putting back the shift ki − ai
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Updating of Lower Bounds

Let there be N balls of n different colours in an urn.
By picking up ai balls of type i we can conclude that
there are at least ai balls of type i among the N .
The observed number of balls gives us the lower
bounds ai of the distribution. Since the distribution is
concerned with how many balls there are in total of
each colour, even those picked from the urn count, as
well as those still inside, that is why we leave the
observed balls visible on the side.
The unknown balls are in the urn and the known balls
on the plate.

The Urn and the Plate

Let N = 12 and n = 3. At first the plate is
empty, that is a1 = a2 = a3 = 0 and the prior
distribution is
12!Γ(k1 + 1/2)Γ(k2 + 1/2)Γ(k3 + 1/2)

2Γ(1/2)2Γ(13 + 1/2)k1!k2!k3!
For all three marginal prior distributions
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Then four balls are picked from the urn, three of
which are of type 1 and one of type 2, so the
posterior is
8!Γ(k1 − 5/2)Γ(k2 − 1/2)Γ(k3 + 1/2)

2Γ(1/2)2Γ(9 + 1/2)(k1 − 3)!(k2 − 1)!k3!
We see the marginal distributions of k1 and k2

below, observe that p1(k) = p2(k − 2).
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If we assume conjugacy, that the balls are
distributed according to the same type of shifted
Pólya as the prior even after updating, the
likelihood function p(ai|ki) also factors into
marginals. We have the same expressions
ki − ai but since ai is the variable and ki

constant the graph is mirrored.
Given k1 = 6, k2 = 4, k3 = 2,

�3
i=1 ai = 4

The likelihood function would then have marginal
probabilities such that

Pr(a1 = 0) = 0.157,Pr(a1 = 1) = 0.172,
Pr(a1 = 2) = 0.191,Pr(a1 = 3) = 0.218

and Pr(a1 = 4) = 0.262
For a2 we have
Pr(a2 = 0) = 0.111,Pr(a2 = 1) = 0.127,
Pr(a2 = 2) = 0.152,Pr(a2 = 3) = 0.202

and Pr(a2 = 4) = 0.406
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