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de Finetti’s notions of coherence

• Bruno de Finetti introduced two operational definitions of
probabilities:
(1st criterion) coherence based on the betting scheme ;
(2nd criterion) coherence based on the penalty criterion.
• de Finetti proved the equivalence between the two crite-

rions for unconditional events and random quantities.
• The penalty criterion, based on the Brier quadratic scor-

ing rule, was adopted as the main criterion in case of
conditional events.
“In order to give definitions of conditional probability and
conditional prevision, and as a foundation for rigorous
proofs, we choose to base ourselves on the second cri-
terion” (de Finetti, 1974, vol.1, p. 135).

The notion of strengthened coherence

• de Finetti strengthened the notion of coherence for con-
ditional events:
“In order to extend the notions and rules of the calculus of
probability to this new case, it is necessary to strengthen
the condition of coherence” (de Finetti, 1974, vol.2, p.
339, Axiom 3).
• In (Regazzini, 1985), in agreement with the strengthened

coherence principle, a definition of coherence for con-
ditional events based on the betting scheme has been
given. Conditioning events with zero probability are prop-
erly managed by such a notion of coherence (see also
Holzer 1985, Williams 1975).
Definition 1. A probability assessment P defined on an
arbitrary family of conditional events K is coherent iff, for
every finite subfamily Fn ⊆ K and for every choice of
s1, . . . , sn one has

min G|Hn ≤ 0 ≤ max G|Hn ( or equiv. max G|Hn ≥ 0),

where G|Hn is the gain G =
∑n
i=1 siHi(Ei − pi) , associ-

ated with (Fn,Pn), restricted to Hn = H1 ∨ · · · ∨Hn.

Proper scoring rules

Let p be your degree of belief on the event E and x be the
degree of belief on E that You announce publicly. Suppose
You are penalized as follows:
if E = 1, you have to pay f (x); otherwise, if E = 0 you have
to pay g(x). By setting s(1, x) = f (x) and s(0, x) = g(x) your
random penalty is

s(E, x) = Es(1, x) + (1− E)s(0, x).

The function s(E, x) is a (strictly) proper scoring rule if
(a) for every x, p ∈ [0, 1], with x 6= p, it holds

p s(1, x) + (1− p) s(0, x) > p s(1, p) + (1− p) s(0, p) ;

(b) the functions s(1, x) and s(0, x) are continuous.

Condition (a) means that your expected penalty is mini-
mized only at x = p.
Thus, You are strictly incentivized to tell the truth.
Given a scoring rule s and a conditional event E|H we set

s(E|H, x) = Hs(E, x) =

 s(1, x), EH,
s(0, x), EcH,
0, Hc.

Dominance and admissibility w.r.t. s

Given an assessment P on K and a subfamily Fn =
{E1|H1, E2|H2, . . . , En|Hn} ⊆ K, let Pn = (p1, p2, . . . , pn) be
the restriction of P to Fn. Given any proper scoring rule s
we define the random penalty, or loss function, L associ-
ated with the pair (Fn,Pn) as

L =

n∑
i=1

s(Ei|Hi, pi) =

n∑
i=1

His(Ei, pi).

In particular, for s(E, x) = (E − x)2 (Brier quadratic scoring
rule) we have

L =

n∑
i=1

Hi(Ei − pi)2.

Given the pair (Fn,Pn) and a scoring rule s, we de-
note by Lk the value of L associated with the constituent
Ck, k = 0, 1, . . . ,m; if Hn = H1∨ · · · ∨Hn 6= Ω, we denote by
L0 the loss associated with C0 = Hc

1H
c
2 · · ·H

c
n . Of course,

L0 = 0.
Definition 2. Let be given a scoring rule s and a probability
assessment Pn on Fn. Given any assessment P∗n on Fn,
with P∗n 6= Pn, we say that Pn is weakly dominated by P∗n
with respect to s if L∗ ≤ L, that is: L∗k ≤ Lk, for every k.

Definition 3. We say that Pn is admissible w.r.t. s if Pn is
not weakly dominated by any P∗n 6= Pn.
Remark. By Definition 3, if the assessment Pn on Fn is admis-
sible, then for every subfamily FJ ⊂ Fn the sub-assessment PJ
associated with FJ is admissible.
Definition 4. Let be given a scoring rule s and a probability
assessment P on K. We say that P is admissible w.r.t s if,
for every finite subfamily Fn ⊆ K, the restriction Pn of P on
Fn is admissible w.r.t. s.

Coherence and admissibility

• In order to unify the treatment of unconditional and con-
ditional events, the definition of coherence given by de
Finetti with the penalty criterion, based on the Brier scor-
ing rule, was suitably modified in (Gilio 1990, 1992), by
avoiding in this way any need for the strengthening of co-
herence.
Definition 5. A probability assessment P defined on K
is coherent if and only if do not exist a finite subfam-
ily Fn ⊆ K and an assessment P∗n on Fn such that
L∗ ≤ L and L∗ 6= L, where L∗ =

∑n
i=1Hi(Ei − p∗i )

2 and
L =

∑n
i=1Hi(Ei − pi)2.

• The equivalence between Definition 1 and Definition 5
has been proved in (Gilio 1990, 1996).
• A generalization of the work of de Finetti to a broad class

of scoring rules has been given in (Lindley 1982) where it
is shown that the numerical values of the score function,
after a suitable transformation, satisfy basic properties of
conditional probabilities.
• In (Predd et al., 2009) the relationship between coher-

ence and non-dominance w.r.t. continuous strictly proper
scoring rules has been investigated for the case of un-
conditional events.
• A rich analysis of scoring rules which extends the results

obtained in (Predd et al. 2009) to conditional probability
assessments has been given in (Schervish et al. 2009)
where also the cases of scoring rules which are discon-
tinuous and/or not strictly proper have been examined.
Notice that in such a paper it is not used the strengthened
coherence of de Finetti which allows to properly manage
conditioning events with zero probability.

Main result

We prove the equivalence between the notion of (strength-
ened) coherence based on the betting scheme and the no-
tion of coherence based on the penalty criterion in which the
Brier quadratic scoring rule is replaced by a generic strictly
(bounded) continuous proper scoring rule.
Theorem. Let be given a probability assessment P on a
family of conditional events K; moreover, let be given any
bounded continuous (strictly) proper scoring rule s. The as-
sessment P is coherent if and only if it is admissible with
respect to s.

Sketch of the proof

Geometrical approach to coherence.
Given the pair (Fn,Pn) with each constituent Ck, k =
1, 2, . . . ,m we associated the point

Qk = (qh1, . . . , qkn) , qkj =


1, if Ch ⊆ EjHj,
0, if Ch ⊆ EcjHj,

pj = P (Ej|Hj), if Ck ⊆ Hc
j .

Denoting by I the convex hull of the points Q1, . . . , Qm the
following characterization of the notion of coherence for
conditional events can be proved (Gilio 1990, 1995)
Theorem. The assessment P is coherent if and only if, for
every finite sub-family Fn ⊆ K, one has Pn ∈ I.
For every Fn ⊆ K coherence of P requires that Pn ∈ I, that
is Pn =

∑
k λkQk, with λk ≥ 0 and

∑
k λk = 1. Then for any

P∗n 6= Pn it can be proved that
∑
k λkLk <

∑
k λkL

∗
k, which

implies Lk < L∗k for at least an index k.
Then coherence of P implies that P is admissible.

The function s(p, x)

We consider, for any given proper scoring rule s defined on
{0, 1}×[0, 1], the extension of s to the set [0, 1]×[0, 1], defined
as

s(p, x) = p s(1, x) + (1− p) s(0, x) .

We have
P(s(E, x)) = s(P(E), x) = s(p, x) .

In case p = P (E|H) it is s(p, x) = P[s(E|H, x) |H ].

The function s(p, x) satisfies the following properties.
1. s(αp′ + (1− α)p′′, x) = α s(p′, x) + (1− α) s(p′′, x);

2. s(p, x) ≥ s(p, p), with s(p, x) = s(p, p) if and only if x = p;

3. s(p, p) is strictly concave on (0, 1);

4. s(p, x) is partially derivable with respect to x at (p, p), for
every p ∈ (0, 1), and it is ∂s(p,x)

∂x |(p,p) = 0 ;

5. for every p ∈ (0, 1), s(p, p) is differentiable, with a continu-
ous decreasing derivative s′(p, p) = a(p) = s(1, p)−s(0, p) ;

6. for every p ∈ [0, 1], x ∈ (0, 1), it holds

s(p, x) = s(x, x) + s′(x, x)(p− x) .

Bregman Divergence
Given two vectors

Vn = (v1, . . . , vn), Pn = (p1, . . . , pn) ∈ [0, 1]n,

we set S(Vn,Pn) =
∑n
i=1 s(vi, pi) . By exploiting the proper-

ties of s(p, x) we have:

S(Vn,Pn) = −Φ(Pn)−∇Φ(Pn) · (Vn − Pn) ,

where Φ(Pn) = −S(Pn,Pn) , is a strictly convex function,
differentiable in (0, 1)n. The Bregman divergence (see e.g.
Censor and Zenios, 1997) corresponding to Φ defined on
[0, 1]n × [0, 1]n is given by

dΦ(Vn,Pn) = Φ(Vn)− Φ(Pn)−∇Φ(Pn) · (Vn − Pn) =
= S(Vn,Pn)− S(Vn, Vn) .

(1)

It is dΦ(Vn,Pn) ≥ 0 and dΦ(Vn,Pn) = 0 if and only if Vn = Pn.

Given I ⊆ [0, 1]n, for each Pn ∈ [0, 1]n \ I, there exists a
unique P∗n ∈ I, called the projection of Pn onto I, such
that

dΦ(P∗n,Pn) ≤ dΦ(Vn,Pn) , ∀Vn ∈ I .
Moreover, for all Vn ∈ I , Pn ∈ [0, 1]n \ I it is

dΦ(Vn,P∗n) + dΦ(P∗n,Pn) ≤ dΦ(Vn,Pn) , (2)

By recalling (1), the value Lk of the penalty L associated
with (Fn,Pn) is given by

Lk = S(Qk,Pn)− S(Qk, Qk) + αk = dΦ(Qk,Pn) + αk ,

where αk depends only on Fn (and not on Pn).
If P is not coherent, there exists Fn such that Pn /∈ I; then
considering the projection P∗n of Pn onto I and its associ-
ated points Q∗k, for every k = 1, 2 . . . ,m, it holds

L∗k−αk = dΦ(Q∗k, P
∗
n) ≤ dΦ(Qk,P∗n) < dΦ(Qk, Pn) = Lk−αk.

Hence P would be not admissible.
Therefore, if P is admissible then P is coherent.
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