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Abstract

Analysts in many domains must choose a design, a
strategy, or an intervention without being able to test
all relevant alternatives. We consider a situation in
which one of two alternatives must be chosen, while
only one alternative can be tested prior to decision.
The probability of success from blind choice is 1/2.
The probability of success if the distribution of the
system attributes is known is 3/4. The 1-test algo-
rithm assures probability greater than 1/2 of choosing
the better system based on a single test, even with-
out knowing the probability distribution of the system
attributes. If the distribution is poorly known, then
info-gap theory can robustify the 1-test algorithm.
Using the info-gap robustness function we show that
robust-satisficing algorithms may differ from the nom-
inally optimal algorithm when the attribute distribu-
tion is uncertain.
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1 The 1-Test Algorithm

Consider a choice between two design concepts for a
technological system. We would like to choose the
system with higher reliability (or longer life or lower
mean time between failure, etc.). It may be very ex-
pensive to construct and test both physical systems.
It would be useful if the better system could be reli-
ably chosen based on testing only one system.

Consider the choice between two medical interven-
tions for a specific patient (or macro-economic in-
terventions for a specific economy, or biological in-
terventions in an ecosystem). We can do one or the
other, but not both. Given all available information,
we are epistemically indifferent between the interven-
tions: we have no reason to believe that one inter-
vention is better than the other, though they are dif-
ferent. We choose one intervention by flipping a fair
coin, and we observe the result (reduction in fever, or

increase in blood count, etc.). For future reference we
would like to know which of the two would have been
better.

Decisions such as these can be thought about generi-
cally as follows.

Two systems each have a real-valued attribute (e.g.
lifetime, reliability, etc.). We would like to choose
the system with the larger—better—value, but we are
able to measure the attribute of only one system. We
must decide if the measured attribute is the smaller
or the larger of the two, where we have chosen the
system to test by a throw of a fair coin. We know
nothing about the distribution of the attribute values,
other than that they can take any value in a specified
interval.

The 1-test algorithm is stated without proof by Cover
[2] and proven by Snapp [6]. The idea is also discussed
in a blog [7]. We can formalize it as follows.

Two different real numbers, x1 and x2, are chosen by
an algorithm unknown to you. One of these numbers,
call it xr, is revealed to you, where you know that the
probability that xr = x1 is 0.5. You must decide if xr

is the smaller or the larger of the two numbers.

The 1-test algorithm for deciding whether xr is
the smaller or larger of the two values is as follows.
Let q(y) be a non-atomic probability density function
(pdf) which is positive on an interval containing x1

and x2. The interval may be finite, half-finite, or in-
finite. We will refer to q(y) as the “decision pdf”.
Decide according to the following decision rule:

1. Draw a random number, y, distributed according
to q(y).

2. If y ≥ xr then decide that xr is the smaller of the
two xi.

3. If y < xr then decide that xr is the larger of the
two xi.

The 1-test algorithm succeeds if the number chosen by
the algorithm is in fact the larger of the two numbers.



Let Ps(x1, x2, q) denote the probability of success of
the 1-test algorithm using a pdf q(y) applied to real
numbers x1 and x2. We will prove the following the-
orem. See Cover [2] and Snapp [6].

Theorem 1 The probability of success of the 1-test
algorithm exceeds 1/2.

Given:

• The two numbers, x1 and x2, are different.

• q(y) is a non-atomic probability density function
which is non-zero on an interval containing x1 and
x2. q(y) is zero outside this interval.

Then:

Ps(x1, x2, q) >
1

2
(1)

Proof of theorem 1. The two numbers are different,
so one is larger. Denote the larger of the two num-
bers by x1, where xr is the number which has been
revealed. Our information is:

Prob(xr = x1) = Prob(xr = x2) = 0.5 (2)

If xr is the larger of the two numbers, then the prob-
ability of success equals the probability that y < xr:

Ps(xr = x1) =

∫ x1

−∞

q(y) dy = Q(x1) (3)

where Q(y) is the cumulative distribution function of
q(y). Similarly, if xr is the smaller of the two numbers,
then the probability of success equals the probability
that y ≥ xr:

Ps(xr = x2) =

∫ ∞

x2

q(y) dy = 1−Q(x2) (4)

Ps(xr = x1) and Ps(xr = x2) are illustrated in fig. 1.
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Figure 1: Q(x1) and 1−Q(x2) for
x2 < x1; eqs.(3) and (4).

Recall that x1 > x2 which, since q(y) is non-zero on
an interval containing x1 and x2, implies:

Q(x1) > Q(x2) (5)

Thus the total probability of success, with the q-based
decision algorithm, is:

Ps(x1, x2, q)

= Prob(xr = x1)Ps(xr = x1)

+ Prob(xr = x2)Ps(xr = x2) (6)

= 0.5Q(x1) + 0.5[1−Q(x2)] (7)

= 0.5[1 +Q(x1)−Q(x2)︸ ︷︷ ︸
>0

] > 0.5 (8)

which completes the proof.

2 Info-Gap Robustness of the 1-Test

Algorithm

The system attributes, x1 and x2, are random vari-
ables. Let p(x1, x2) denote their joint pdf. If we knew
this distribution we could choose the 1-test decision
distribution, q(y), to maximize the probability of suc-
cess. But suppose we only have a guess or plausi-
ble supposition of the joint pdf of x1 and x2. That
is, we think they are drawn from a joint pdf which
is something like p̃(x1, x2), but the true distribution
may have a different shape or different moments. How
should we choose q(y)?

In this section we introduce info-gap models to repre-
sent non-probabilistic uncertainty about the true pdf
of x1 and x2. We then define the info-gap robustness
function and illustrate its use in selecting the decision
pdf q(y).

2.1 Info-Gap Uncertainty and Robustness

An info-gap model [1], [4] is a family of nested sets,
U(h, p̃), h ≥ 0. The elements of these sets are real-
izations of the uncertain quantity, which is the joint
pdf of x1 and x2 in the present case. The set-valued
functions, U(h, p̃), of an info-gap model, have the fol-
lowing properties:

Contraction: U(0, p̃) = {p̃} (9)

Nesting: h < h′ implies U(h, p̃) ⊆ U(h′, p̃)(10)

Contraction states that, in the absence of uncertainty,
only a single function—our estimate—applies, so the
uncertainty set is a singleton. Nesting is the prop-
erty that the sets become more inclusive as the hori-
zon of uncertainty grows. An info-gap model is a
non-probabilistic quantification of uncertainty. It en-
tails no assumptions about probability distributions
or about worst cases.

For instance, consider a situation where evidence sup-
ports a symmetric pdf p̃(x) for |x| ≤ d, but no evi-
dence is available on the far tails, |x| > d, and fat



tails are suspected. A simple info-gap model for this
situation is:

U(h, p̃) =
{
p(x) ∈ P : p(x) = νp̃(x), |x| ≤ d

p(x) ≤ h

x2
, |x| > d

}
, h ≥ 0 (11)

where P is the set of non-negative and normalized
pdfs.

The generic properties of an info-gap model are
eqs.(9) and (10), for which eq.(11) is an example.
An info-gap model can be a Lévy neighborhood or
a contamination neighbor, as treated by Huber [3],
but need not be as illustrated by eq.(11) and in [1]
and [4].

2.2 Info-Gap Robustness

The unknown joint pdf of x1 and x2 is p(x1, x2) where
we will assume that the variables x1 and x2 are ex-
changeable: p(x1, x2) = p(x2, x1). x1 and x2 are also
exchangeable in the estimated joint pdf, p̃(x1, x2).
U(h, p̃) is an info-gap model for uncertainty in p(x).

Let Ps(p, q) denote the overall probability of success,
regardless of the realizations of x1 and x2, based on
the 1-test algorithm with decision pdf q(y):

Ps(p, q) = 2

∫ ∞

−∞

∫ ∞

x2

Ps(x1, x2, q)p(x1, x2) dx1 dx2

(12)
In the double integral itself (without the factor 2) we
assume that x1 is greater than x2. Multiplying by 2
accounts for the other possibility.

We aspire to choose q(y) so that Ps(p, q) is no less
than a “critical value”, Pc. We know from theorem 1
and eq.(12) that Ps(p, q) exceeds 0.5; we might aspire
to exceed 0.6 or 0.7. The robustness of any choice
of q(y), given aspiration Pc, is the greatest horizon
of uncertainty in the true distribution of x1 and x2,
up to which all distributions result in probability of
success no less than Pc. Large robustness implies that
our estimate, p̃(x1, x2), can err greatly and the 1-test
algorithm with q(y) will still achieve a probability of
success no less than Pc. Small robustness implies high
vulnerability to error in the estimate. Clearly, the
robustness function ĥ(q, Pc) establishes preferences on
the decision pdfs q(y).

Mathematically, we define the robustness of a decision
pdf, q(y), as the greatest horizon of uncertainty, h, up
to which the probability of success is no less than the
critical value, Pc, for all possible pdf’s at that horizon

of uncertainty:

ĥ(q, Pc) = max

{
h :

(
min

p∈U(h,p̃)

Ps(p, q)

)
≥ Pc

}

(13)

The robustness, ĥ(q, Pc), is the least upper bound of
the set of h values which satisfice the probability of
success at its critical value. We define the robustness
to equal zero if the set of h values in eq.(13) is empty.

The info-gap robustness in eq.(13) is different in sev-
eral respects from the concepts of robustness in ro-
bust statistics ([3], section 1.4). First of all, the info-
gap model need not represent uncertainty with the
neighborhoods usually treated in robust statistics, as
mentioned at the end of section 2.1 and illustrated in
eq.(11). Eq.(13) does not consider the bias or variance
of a statistic, nor the asymptotic (large sample) prop-
erties of any statistic, nor does it assume that the
statistic is consistent in the sense of converging (in
probability) to an asymptotic value. For further dis-
cussion of the relation between robust statistics and
info-gap robustness see [5].

2.3 Simple Example

We now examine a very simple special case. We know
that x1 and x2 are chosen independently from an ex-
ponential distribution, p(x) = λe−λx, x ≥ 0. Our best

guess of the coefficient is λ̃ but this guess is very un-
certain. We use a fractional-error info-gap model for
uncertainty in the exponential coefficient of the pdf
by which the xi are chosen:

U(h, p̃) =
{
p(x) = λe−λx : (1− h)

+

λ̃ ≤ λ ≤ (1 + h)λ̃
}

h ≥ 0 (14)

where x
+

= x if x ≥ 0 and equals zero otherwise.
Furthermore, assume that the pdf used for deciding
is also exponential: q(y) = γe−γy. We will derive the
robustness function (actually, its inverse) and study
the choice of γ.

Let Ps(λ, γ) denote the overall probability of success,
eq.(12), when the true distribution is exponential with
coefficient λ and the decision pdf is exponential with
coefficient γ. One finds:

Ps(λ, γ) =
1

2
+

λγ

(λ + γ)(2λ+ γ)
(15)

=
1

2
+

ρ

(1 + ρ)(1 + 2ρ)
, ρ =

λ

γ
(16)

Differentiating we find:

∂Ps(λ, γ)

∂λ
=

γ(γ2 − 2λ2)

(λ + γ)2(2λ+ γ)2
(17)



Ps(λ, γ) vs. λ is a unimodal function with a maximum
at λ = γ/

√
2, as illustrated in fig. 2.
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Figure 2: Ps(ρ) defined in eq.(16).

Let µ(h, γ) denote the inner minimum in the definition
of the robustness, eq.(13), which is the minimum of
Ps(λ, γ) as λ varies up to horizon of uncertainty h.

µ(h, γ) is the inverse of ĥ(q, Pc). That is:

µ(h, γ) = Pc implies ĥ(q, Pc) = h (18)

A plot of µ(h, γ) vs. h is the same as a plot of Pc vs.

ĥ(q, Pc).

The minimum of Ps(λ, γ), at horizon of uncertainty
h, occurs when λ takes one or the other of its extreme
values, which are:

λ1(h) = (1 + h)λ̃ (19)

λ2(h) = (1 − h)
+

λ̃ (20)

Let us define the following two functions:

µ1(h, γ) = Ps[(1 + h)λ̃, γ] (21)

µ2(h, γ) = Ps[(1− h)
+

λ̃, γ] (22)

The inner minimum in the definition of the robustness
is the lesser of these two functions:

µ(h, γ) = min
i

µi(h, γ) (23)

The nominal optimal choice of γ is the value which
maximizes the estimated function Ps(λ̃, γ):

γ? = argmax
γ

Ps(λ̃, γ) (24)

We find γ? by differentiating Ps(λ̃, γ):

∂Ps(λ̃, γ)

∂γ
=

λ̃(2λ̃
2 − γ2)

(λ̃+ γ)2(2λ̃+ γ)2
(25)

Thus we see that the nominal optimal choice of γ is:

γ? = λ̃
√
2 (26)
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Figure 3: 3 robustness curves.

Note that the nominal optimal decision pdf, q(y|γ?),

differs from the estimated generating pdf, p̃(x|λ̃), even
if the estimate is correct.

Figs. 3–5 show robustness curves, ĥ(q, Pc) vs Pc, for
different choices of γ, which determines the decision
pdf, q(y). The estimated value of λ, the coefficient of

the estimated distribution of xi, is λ̃ = 1 in all cases.

The curves all converge, at the upper left, at ĥ = 1
when Pc = 1/2. We understand this from eq.(15),
where Ps = 1/2 when λ = 0.

In fig. 3 we examine values of γ for which µ(h, γ) in
eq.(23) takes only one functional form—µ1(h, γ)—for
all horizons of uncertainty, so no kink occurs in the
curve. The peak of Ps(λ, γ) vs. λ (see fig. 2 or eq.(17))
occurs when λ = γ/

√
2. When γ =

√
2 (solid black

curve) then, since λ̃ = 1, the value of µ(0, γ) occurs
at the peak of Ps(λ, γ) vs. λ. As h increases, the
value of µ(h, γ) moves left, down the steep positive
slope illustrated in fig. 2. In the other curves of fig. 3,
λ̃ < γ/

√
2 so the value of µ(0, γ) occurs on the steep

positive slope of Ps(λ, γ) vs λ and, as h increases, the
value of µ(h, γ) moves left, down the steep positive
slope.

From eq.(26) we see that γ =
√
2 is the nominal op-

timal choice since λ̃ = 1. Fig. 3 indicates that this
choice is robust-dominant among the values of γ which
are shown, and it is clear that this will hold for any
value of γ for which λ̃ ≤ γ/

√
2.

Fig. 4 is different from fig. 3: each robustness curve in
fig. 4 displays a kink when µ(h, γ) switches from one

solution to the other as specified in eq.(23). λ̃ > γ/
√
2

in both cases, so µ(0, γ) occurs on the gentle negative-
slope portion of Ps(λ, γ) vs. λ. Thus, for small h,
µ(h, γ) moves to the right down the gentle slope.

However, at larger h, the value of (1 − h)
+

λ̃ occurs
on the steep positive slope to the left of the peak, and
now µ(h, γ) switches and moves left down the steep
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Figure 4: 2 robustness curves.
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Figure 5: Figs. 3 and 4 combined.

slope. This explains the kink in the robustness curves.

Fig. 5 combines the curves of figs. 3 and 4. What is
of particular interest is the intersection between the
robustness curves. For instance, the curve for γ = 1
intersects the curve for γ =

√
2 at critical probability

Pc = 0.65. For greater critical probability, γ =
√
2 is

more robust (up to Pc = 0.67 at which its robustness
vanishes). For lower probability, γ = 1 is more ro-
bust. This intersection between robustness curves en-
tails the possibility of reversal of preferences between
the corresponding choices of γ (which determines the
decision pdf, q(y)).

3 Three Properties

We now discuss three generic properties of info-gap
robustness curves—trade off, zeroing, and preference
reversal—which are illustrated in the example.

Trade off between robustness and perfor-

mance. Robustness curves, such as in figs. 3–5, are
always monotonic, which expresses a trade off between
robustness and performance: good performance en-
tails low robustness against uncertainty. In our exam-
ple, aspiring to high probability of success, Pc, entails
low robustness against uncertainty in the generating

pdf. This trade off is universal and results from the
nesting property of info-gap models, eq.(10). The ro-

bustness function, ĥ(q, Pc), quantifies this trade off.

Zeroing of the robustness curve. The robust-
ness, ĥ(q, Pc), will equal zero for some critical value
Pc. This value is precisely the estimated performance.
Using the notation of our example, the zeroing prop-
erty is:

ĥ(q, Pc) = 0 if Pc = Ps(p̃, q) (27)

This means that the robustness is zero when aspiring
to a probability of success which equals the estimated
probability of success. Estimated outcomes have no
robustness against errors in the models that underlie
the estimate. Combining this with the trade off prop-
erty we conclude that only outcomes which are worse
than the estimated outcome have positive robustness.
This has an important implication for decision under
uncertainty. Estimated outcomes are not a good basis
for choosing between options because estimated out-
comes have no robustness to error in the models and
data underlying the estimates.

Preference reversal between options. This paper
is based on the idea that more robustness against un-
certainty is better than less robustness. This provides
a prioritization of options—decision pdf’s q(y) in our
example—as explained following eq.(12). Figs. 4 and
5 show several examples of intersection between ro-
bustness curves for different choices of q(y). For in-
stance, fig. 5 shows crossing between the robustness
curves for the nominal optimum (γ =

√
2) and a dif-

ferent option (γ = 1). The former option is preferred
if one requires Pc > 0.65, while the latter option is
preferred if lower probability of success is acceptable.
In short, the crossing of robustness curves entails the
possibility of reversal of preference between the cor-
responding options.

4 Extensions of the 1-Test Algorithm

Theorem 1 and the associated decision algorithm re-
late to selecting a single system from two candidates
based on testing only one system. We now consider
three candidate systems, where either one or two sys-
tems are tested. When testing one system our aim is
to select the best of the three systems. When testing
two systems our aim is to select the two best sys-
tems. We prove two extensions of theorem 1, relating
to these two cases, and we propose an hypothesis for
more than 3 systems.



4.1 Two Tests, 3 Systems

Consider three systems, each characterized by a sin-
gle real number, xi, and assume these numbers are
different. Without loss of generality we denote these
numbers:

x1 < x2 < x3 (28)

Two of the systems are tested to reveal their at-
tributes, xi, where each system has the same prob-
ability of being tested. The revealed attributes are:

r1 < r2 (29)

Let s denote the third, unrevealed, number.

Our goal is to select the two best systems, whose at-
tributes are larger than of the third system. We do
not need to identify the better of the two best; only
to exclude the worst system.

The 2-test 3-system algorithm is as follows. Let
q(y) be a non-atomic pdf which is positive on an in-
terval containing x1, x2 and x3. The interval may
be finite, half-finite, or infinite. Select two systems
according to the following decision rule:

1. Draw a random number, y, distributed according
to q(y).

2. If y < r1, choose the two tested systems.

3. If r1 ≤ y ≤ r2, choose the systems corresponding
to r2 and s.

4. If r2 < y, choose the systems corresponding to
r2 and s.

The probability of blindly choosing the two best sys-
tems is 1/3. The following theorem asserts that the
above decision algorithm successfully chooses the two
best systems with probability strictly exceeding 1/3.

Theorem 2 The probability of success of the 2-test
3-system algorithm exceeds 1/3.

Given:

• The three numbers, x1, x2 and x3, are different.

• q(y) is a non-atomic pdf which is positive on an
interval containing x1, x2 and x3.

• Each system has equal probability of being selected
for testing.

Then:

Ps(x1, x2, x3, q) >
1

3
(30)

Proof of theorem 2. The three numbers are differ-
ent, so they can be denoted as in eq.(28). The two
revealed numbers are therefore also different and de-
noted as in eq.(29). Let R = {r1, r2} denote the set of
revealed values. Let s denote the third, unrevealed,

number. Let Q(·) denote the cumulative probability
distribution of q(·). Since the tested systems are se-
lected with equal probability we can assert:

Prob(s = x1) = Prob(s = x2) = Prob(s = x3) =
1

3
(31)

The decision algorithm succeeds at step 2 if R =
{x2, x3} whose probability is 1/3.

The decision algorithm succeeds at step 3 if R =
{x1, x2} or if R = {x1, x3}, each of whose probabili-
ties is 1/3.

The decision algorithm succeeds at step 4 if R =
{x1, x2} or if R = {x1, x3}, each of whose probabili-
ties is 1/3.

Putting this together we can write the total probabil-
ity of success of the decision algorithm as:

Ps(x1, x2, x3, q) =
1

3

∫ x2

−∞

q(y) dy

︸ ︷︷ ︸
step 2

(32)

+
1

3

∫ x2

x1

q(y) dy +
1

3

∫ x3

x1

q(y) dy

︸ ︷︷ ︸
step 3

+
1

3

∫ ∞

x2

q(y) dy +
1

3

∫ ∞

x3

q(y) dy

︸ ︷︷ ︸
step 4

=
1

3
Q(x2)
︸ ︷︷ ︸
step 2

(33)

+
1

3
[Q(x2)−Q(x1)] +

1

3
[Q(x3)−Q(x1)]

︸ ︷︷ ︸
step 3

+
1

3
[1−Q(x2)] +

1

3
[1−Q(x3)]

︸ ︷︷ ︸
step 4

=
2

3
− 1

3
Q(x1)︸ ︷︷ ︸

<1

+
1

3
[Q(x2)−Q(x1)︸ ︷︷ ︸

>0

] >
1

3

Q(x1) < 1 and Q(x2) > Q(x1) because x1 < x2 and
q(y) is positive on an interval containing x1, x2 and
x3. This completes the proof.

4.2 One Test, 3 Systems

Consider three systems, each characterized by a sin-
gle real number, xi, and assume these numbers are
different. Without loss of generality we denote these
numbers as in eq.(28). One of the systems is tested to
reveal its attribute, r, where each system has the same
probability of being tested. t denote the unrevealed
numbers.



Our goal is to select the best system, whose attribute
is larger than of the other two systems.

The 1-test 3-system algorithm is as follows. Let
q(y) be a non-atomic pdf which is positive on an in-
terval containing x1, x2 and x3. The interval may be
finite, half-finite, or infinite. Select a system accord-
ing to the following decision rule:

1. Draw a random number, y, distributed according
to q(y).

2. If y ≤ r, choose the tested system.

3. If y > r, choose between the untested systems
with equal probability.

The probability of blindly choosing the best system is
1/3. The following theorem asserts that the above de-
cision algorithm successfully chooses the best system
with probability strictly exceeding 1/3.

Theorem 3 The probability of success of the 3-
system 1-test algorithm exceeds 1/3.

Given:

• The three numbers, x1, x2 and x3, are different.

• q(y) is a non-atomic pdf which is positive on an
interval containing x1, x2 and x3.

• Each system has equal probability of being selected
for testing.

Then:

Ps(x1, x2, x3, q) >
1

3
(34)

Proof of theorem 3. The three numbers are differ-
ent, so they can be denoted as in eq.(28). Let r denote
the revealed value. Let s and t denote the unrevealed
numbers. Let Q(·) denote the cumulative probability
distribution of q(·). We can assert:

Prob(r = x1) = Prob(r = x2) = Prob(r = x3) = 1/3
(35)

The decision algorithm succeeds at step 2 if r = x3

(with probability 1/3).

The decision algorithm succeeds at step 3 if the choice
between s and t is correct (with probability 0.5), and
if either r = x1 or r = x2 (each with probability is
1/3).

Putting this together we can write the total probabil-
ity of success of the decision algorithm as:

Ps(x1, x2, x3, q) =
1

3

∫ x3

−∞

q(y) dy

︸ ︷︷ ︸
step 2

(36)

+
1

2

1

3

[∫ ∞

x1

q(y) dy +

∫ ∞

x2

q(y) dy

]

︸ ︷︷ ︸
step 3

=
1

3
Q(x3)
︸ ︷︷ ︸
step 2

+
1

6
[(1−Q(x1)) + (1−Q(x2))]

︸ ︷︷ ︸
step 3

(37)

=
1

3
+

1

6
[Q(x3)−Q(x1)︸ ︷︷ ︸

>0

] +
1

6
[Q(x3)−Q(x2)︸ ︷︷ ︸

>0

] (38)

>
1

3
(39)

which completes the proof.

4.3 m Tests, n Systems

Consider n systems, each characterized by a single
real number, xi, and assume these numbers are dif-
ferent. Without loss of generality we denote these
numbers:

x1 < x2 < · · · < xn (40)

m of the systems are tested to reveal their attributes,
xi, where each system has the same probability of
being tested. The revealed attributes are:

r1 < r2 < · · · < rm (41)

Let R = {r1, . . . , rm} denote the set of revealed
values. Let Rj denote the set R after removing
the j smallest elements: Rj = {rj+1, . . . , rm}, for
j = 0, . . . , m. Thus R0 = R and Rm = ∅. Define
r0 = −∞ and rm+1 = ∞.

Our goal is to select the m best systems, whose at-
tributes are larger than all the remaining systems. We
do not need to identify the values of these m best sys-
tems; only to exclude the n−m worst systems.

The m-test n-system algorithm takes a slightly differ-
ent form depending on whether or not the number of
tested systems, m, is less than the number of untested
systems, n −m. If m ≤ n −m then the best m sys-
tems may be entirely in the untested set. Ifm > n−m
then at least some tested systems are among the best
m systems. We specify these two realizations of the
decision algorithm separately.

Let q(y) be a non-atomic pdf which is positive on an
interval containing x1, x2 and x3. The interval may
be finite, half-finite, or infinite.

If m ≤ n−m, the m-test n-system algorithm is as
follows. Select m systems according to the following
decision rule:

1. Draw a random number, y, distributed according
to q(y).



2. For j = 0, . . . , m, if rj ≤ y < rj+1, choose
the systems corresponding to Rj and choose j
untested systems equi-probably from among all
untested systems.

If m > n−m, the m-test n-system algorithm is as
follows. Select m systems according to the following
decision rule:

1. Draw a random number, y, distributed according
to q(y).

2. For j = 0, . . . , n − m, if rj ≤ y < rj+1, choose
the systems corresponding to Rj and choose j
untested systems equi-probably from among all
untested systems.

3. For j = n − m + 1, . . . , m, if rj ≤ y < rj+1,
choose the systems corresponding to Rn−m and
choose all n−m untested systems.

The number of distinct subsets of m from among the

n systems is the binomial coefficient

(
n
m

)
, which we

denote γnm. Only one of these subsets contains the m
best systems. Thus the probability of blindly choosing
the m best systems is 1/γnm. We hypothesize that
one could prove, in analogy to theorems 1–3, that the
above decision algorithm chooses the m best systems
with probability strictly exceeding 1/γnm.

5 Further Questions

The 1- and 2-test algorithms can probably be further
generalized in various ways. Likewise, the info-gap
analysis can be realized in many different forms, espe-
cially by using different info-gap models to represent
different types of prior information about the uncer-
tain generating pdf. Many questions remain to be
explored. We mention a few possible extensions of
our results.

(1) In some situations the systems are evaluated by
multiple criteria, not by only one attribute as we
have done. (2) One might consider adaptive testing,
wherein intermediate results indicate whether or not
to continue testing. (3) One would like to know what
is the best possible probability of success.
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