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Abstract

The prediction of the behavior and reliability of engi-

neering structures and systems is often plagued by uncer-

tainty and imprecision caused by sparse data, poor mea-

surements and linguistic information. Accounting for 

such limitations complicates the mathematical modeling 

required to obtain realistic results in engineering analys-

es. The framework of imprecise probabilities provides a 

mathematical basis to deal with these problems which 

involve both probabilistic and non-probabilistic sources 

of uncertainty. A common feature of the various concepts 

of imprecise probabilities is the consideration of an entire 

set of probabilistic models in one analysis. But there are 

differences between the concepts in the mathematical 

description of this set and in the theoretical connection to 

the probabilistic models involved. This study is focused 

on fuzzy probabilities, which combine a probabilistic 

characterization of variability with a fuzzy characteriza-

tion of imprecision. We discuss how fuzzy modeling can 

allow a more nuanced approach than interval-based con-

cepts. The application in engineering is demonstrated by 

means of two examples. 

 

Keywords. Fuzzy Probabilities, Imprecise Probabilities, 

Failure Probability, Reliability Analysis. 

  

1   Introduction 

The analysis and reliability assessment of engineering 

structures and systems involves uncertainty and impreci-

sion in parameters and models of different type.  In order 

to derive predictions regarding structural behavior and 

reliability, it is crucial to represent the uncertainty and 

imprecision appropriately according to the underlying 

real-world information which is available. To capture 

variation of structural parameters, established probabilis-

tic models and powerful simulation techniques are avail-

able for engineers, which are widely applicable to real-

world problems; for example, see [24]. The required 

probabilistic modeling can be realized via classical ma-

thematical statistics if data of a suitable quality are avail-

able to a sufficient extent. 

 

In civil engineering practice, however, the available data 

are frequently quite limited and of poor quality. These 

limitations create epistemic uncertainty, which can some-

times be substantial. It is frequently argued that expert 

knowledge can compensate for the limitations through 

the use of Bayesian methods based on subjective proba-

bilities.  If a subjective perception regarding a probabilis-

tic model exists and some data for a model update can be 

made available, a Bayesian approach can be very power-

ful, and meaningful results with maximal information 

content can be derived.  Bayesian approaches have at-

tracted increasing attention in the recent past and consi-

derable advancements have been reported for the solution 

of various engineering problems [7, 15, 23].  An impor-

tant feature of Bayesian updating is that the subjective 

influence in the model assumption decays quickly with 

growing amount of data.  It is then reasonable practice to 

estimate probabilistic model parameters based on the 

posterior distribution, for example, as the expected value 

thereof. 

 

When less information and experience are available, 

greater difficulties will be faced.  If the available infor-

mation is very scarce or is of an imprecise nature rather 

than of a stochastic nature, a subjective probabilistic 

model description may be quite arbitrary.  For example, a 

distribution parameter may be known merely in the form 

of bounds. Any prior distribution which is limited to 



these bounds would then be an option for modeling.  But 

the selection of a particular model would introduce un-

warranted information that cannot be justified sufficient-

ly.  Even the assumption of a uniform distribution, which 

is commonly used in those cases, ascribes more informa-

tion than is actually given by the bounds.  This situation 

may become critical if no or only very limited data are 

available for a model update. The initial subjectivity is 

then dominant in the posterior distribution and in the 

final result. If these results, such as failure probabilities, 

determine critical decisions, one may wish to consider 

the problem from the following angle. 

 

If several probabilistic models are plausible for the de-

scription of a problem, and no information is available to 

assess the suitability of the individual models or to relate 

their suitability with respect to one another, then it may 

be of interest to identify the worst case for the modeling 

rather than to average over all plausible model options 

with arbitrary weighting. The probabilistic analysis is 

carried out conditional on each of many particular proba-

bilistic models out of the set of plausible models.  In 

reliability assessment, this implies the calculation of an 

upper bound for the failure probability as the worst case.  

This perspective can be extended to explore the sensitivi-

ty of results with respect to the variety of plausible mod-

els, that is, with respect to a subjective model choice. A 

mathematical framework for an analysis of this type has 

been established with imprecise probabilities; see [28].  

Applications to reliability analysis [17, 22, 26] and to 

sensitivity analysis [9, 13] have been reported. This intui-

tive view, however, is by far not the entire motivation for 

imprecise probabilities [16].  Imprecise probabilities are 

not limited to a consideration of imprecise distribution 

parameters. They are capable of dealing with imprecise 

conditions and dependencies between random variables 

and with imprecise structural parameters and model 

descriptions. Respective discussions can be reviewed, for 

example, in [8, 14]. Multivariate models can be con-

structed [11]. Imprecise probabilities also allow statistic-

al estimations and tests with imprecise sample elements. 

Results from robust statistics in form of solution domains 

of statistical estimators can be considered directly and 

appropriately [1]. 

 

In this paper, the implementation of intervals and fuzzy 

sets as parameters of probabilistic models is discussed in 

the context of proposed concepts of imprecise probabili-

ties. Structural reliability analysis is employed to illu-

strate the effects in examples. 

 

2   Imprecise Probabilistic Model Parame-

ters 

In engineering analyses, parameters of probabilistic 

models are frequently limited in precision and are only 

known in a coarse manner. This situation can be ap-

proached with different mathematical concepts. First, the 

parameter can be considered as uncertain with random 

characteristics, which complies with the Bayesian ap-

proach. Subjective probability distributions for the para-

meters are updated by means of objective information in 

form of data. The result is a mix of objective and subjec-

tive information – both expressed with probability. 

Second, the parameter can be considered as imprecise but 

bounded within a certain domain, where the domain is 

described as a set. In this manner, only the limitation to 

some domain and no further specific characteristics are 

ascribed to the parameter, which introduces significantly 

less information in comparison with a distribution func-

tion as used in the Bayesian approach. Imprecision in the 

form of a set for a parameter does not migrate into prob-

abilities, but it is reflected in the result as a set of proba-

bilities which contains the true probability. Intervals and 

fuzzy sets can thus be considered as models for parame-

ters of probability distributions. 

 

An interval is an appropriate model in cases where only a 

possible range between crisp bounds  xl  and  xr  is known 

for the parameter  x, and no additional information con-

cerning value frequencies, preference, etc. between inter-

val bounds is available nor any clues on how to specify 

such information. Interval modeling of a parameter of a 

probabilistic model connotes the consideration of a set of 

probabilistic models, which are captured by the set of 

parameter values 

 

             (1) 

 

This modeling corresponds to the p-box approach [10] 

and to the theory of interval probabilities [28, 29]. Events  

Ei  are assessed with a range of probability, 

! " ! "# $ # $0 1
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P E ,P E ,% , which is directly used for the 

definition of interval probability, denoted as IP, as fol-

lows, 

 

 

         (2) 

 

 

In Eq. (2), ! "&P  is the power set on the set & of ele-

mentary events '. This definition complies with tradi-

tional probability theory. Kolmogorov's axioms and the 

generation scheme of events are retained as defined in 

traditional probability theory, see also [30]. Traditional 

mathematical statistics are applicable for quantification 

purposes. In reliability analysis with interval probabili-

ties, the parameter interval  XI  is mapped to an interval 

of the failure probability, 

 

        (3) 

 

Scrutinizing the modeling of parameters as intervals 

shows that an interval is a quite crude expression of im-

precision. The specification of an interval for a parameter 

implies that, although a number’s value is not known 

# $I l rX .x ,x(

! " # $) *
    

0 1  .: 

IP : E I with

E , I a,b a b

&

&

+

( & ( , , ,P

# $) *,  .
I f I f f f l f r

X P P P P P+ ( -



exactly, exact bounds on the number can be provided. 

This may be criticized because the specification of pre-

cise numbers is just transferred to the bounds. Fuzzy set 

theory provides a suitable basis for relaxing the need for 

precise values or bounds. It allows the specification of a 

smooth transition for elements from belonging to a set to 

not belonging to a set. Fuzzy numbers are a generaliza-

tion and refinement of intervals for representing impre-

cise parameters.  The essence of an approach using fuzzy 

numbers that distinguishes it from more traditional ap-

proaches is that it does not require the analyst to circum-

scribe the imprecision all in one fell swoop with finite 

characterizations having known bounds.  The analyst can 

now express the available information in the form of a 

series of plausible intervals, the bounds of which may 

grow, including the case of infinite limits. This allows a 

more nuanced approach compared to interval modeling. 

 

Fuzzy sets provide an extension to interval modeling that 

considers variants of interval models, in a nested fashion, 

in one analysis.  A fuzzy set X!  of parameter values can 

be represented as a set of intervals  XI, 

 

 

 

        (4) 

 

 

 

This is utilized for an approximation of X!  via a series of 

discrete values ! $0,1i. - , which is referred to as .-

discretization; see Figure 1 [31].  In Eq. (4),  X.  denotes 

an .-level set of the fuzzy set X! , and  /(.)  is the mem-

bership function.  This modeling applied to parameters of 

a probabilistic model corresponds to the theory of fuzzy 

random variables and to fuzzy probability theory accord-

ing to [4, 18]. For further information on related con-

cepts, see [6, 12, 19]. The definition of a fuzzy random 

variable refers to imprecise observations as outcome of a 

random experiment.  A fuzzy random variable Y!  is the 

mapping 
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with ! "YF  being the set of all fuzzy sets on the funda-

mental set Y, whereby the standard case is Y = Rn.  The 

pre-images of the imprecise events described by ! "YF  

are elements of a traditional probability space # $, , P& S .  

This complies with traditional probability theory and 

allows statistics with imprecise data [2, 18, 27]. As a 

consequence of Eq. (5), parameters of probabilistic mod-

els, including descriptions of the dependencies and dis-

tribution type, and probabilities are obtained as fuzzy 

sets. This builds the relationship to the p-box approach 

and to the theory of interval probabilities. A representa-

tion of a fuzzy probability distribution function of a 

fuzzy random variable Y!  with aid of .-discretization 

leads to interval probabilities ! " ! "# $,
l r

F y F y
. .

 for each 

.-level as one plausible model variant, 
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with 
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As depicted in Figure 1, in a reliability analysis, the 

fuzzy set X!  of parameter values is mapped to a fuzzy set 

of the failure probability, 

 

        (9) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  Relationship between fuzzy parameters and 

failure probability. 

 

The membership function serves only instrumentally to 

summarize various plausible interval models in one em-

bracing scheme. The interpretation of the membership 

value  /  as epistemic possibility, which is sometimes 

proposed, may be useful for ranking purposes, but not for 

making critical decisions. The importance of fuzzy mod-

eling lies in the simultaneous consideration of various 

magnitudes of imprecision at once in the same analysis. 

 

The features of a fuzzy probabilistic analysis can be 

utilized to identify sensitivities of the failure probability 

with respect to the imprecision in the probabilistic model 

specification; see Figure 1. Sensitivities of  Pf  are indi-

cated when the interval size of  Pf.  grows strongly with a 

moderate increase of the interval size of  X.  of the para-

meters. If this is the case, the membership function of  

f
P!  shows outreaching or long and flat tails. An engineer-

ing consequence would be to pay particular attention to 

those model options  X., which cause large intervals  Pf.  

and to further investigate to verify the reasoning for these 

options and to possibly exclude these critical cases.  

 

A fuzzy probabilistic analysis also provides interesting 

features for design purposes. The analysis can be per-

formed with coarse specifications for design parameters 

and for probabilistic model parameters. From the results 
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Eq. (9) 
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of this analysis, acceptable intervals for both design 

parameters and probabilistic model parameters can be 

determined directly without a repetition of the analysis; 

see Figure 1. Indications are provided in a quantitative 

manner to collect additional specific information or to 

apply certain design measures to reduce the input impre-

cision to an acceptable magnitude. This implies a limita-

tion of imprecision to only those acceptable magnitudes 

and so also caters for an optimum economic effort. For 

example, a minimum sample size or a minimum mea-

surement quality associated with the acceptable magni-

tude of imprecision can be directly identified. Further, 

revealed sensitivities may be taken as a trigger to change 

the design of the system under consideration to make it 

more robust. A related method is described in [5] for 

designing robust structures in a pure fuzzy environment. 

These methods can also be used for the analysis of aged 

and damaged structures to generate a rough first picture 

of the structural integrity and to indicate further detailed 

investigations to an economically reasonable ex-

tent9expressed in form of an acceptable magnitude of 

input imprecision according to some .-level. 

 

3   Examples 

3.1  Concept Demonstration: Reinforced Concrete 

Frame 

The principle of the fuzzy probabilistic reliability analy-

sis is illustrated by means of the reinforced concrete 

frame from [22] shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:  Reinforced concrete frame, structural model, 

and loading. 

 

The structure is loaded by its dead weight, a small hori-

zontal load  PH, and the vertical loads  PV0  and  p0  which   

are increased with the factor  !  until global structural 

failure is reached. For the purpose of demonstration, only 

the load factor  !  is introduced as a random variable with 

an extreme value distribution of Ex-Max Type I (Gum-

bel) with mean m:
!  and standard deviation :;! . Impreci-

sion of the probabilistic model is described with triangu-

lar fuzzy numbers 5.7, 5.9, 6.0m
:
(!  and 

0.08, 0.11, 0.12
:

; (! . In addition, the rotational stiff-

ness of the springs at the column bases is modeled as a 

triangular fuzzy number 5, 9,13k< (
! MNm/rad to take 

account of the only vaguely known soil properties. These 

fuzzy parameters are considered as given for the purpose 

of this paper to highlight certain advantages of fuzzy 

probabilistic approaches in structural reliability assess-

ment rather than to demonstrate the procedure for a spe-

cific practical case. In practical applications these fuzzy 

parameters need to be determined for the specific case. 

Although a general rule or algorithm cannot be formu-

lated for this purpose, expert knowledge and inspection 

results are frequently available, which can be used to-

gether with statistical methods to determine bounds for 

the support of these parameters in a conservative manner. 

These semi-heuristic approaches can then be extended to 

higher .-levels in order to derive further nested intervals 

with an engineering meaning, e.g., to which the parame-

ter imprecision can be reduced with certain technical 

efforts. Some suggestions to derive fuzzy parameters of 

probability distributions based on statistical data with 

typical characteristics as in civil engineering practice are 

discussed in [3]. It should be noted that the membership 

values are only instrumental in this approach with no 

specific meaning; they enable the simultaneous consider-

ation of a variety of intervals of different size at once in 

the same analysis; see Section 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3:  Fuzzy reliability index and evaluation against 

safety requirement. 

 

Based on this input information, the fuzzy reliability 

index =!  shown in Figure 3 is calculated. The result 

spreads over a large range of possible values for  ". The 

interval bounds for each .-level are determined with the 

global optimization approach from [21], which is based 

on a modified evolution strategy. This provides advan-

tages over a perturbation method or sensitivity investiga-

tion in view of result accuracy as the dependency be-

tween the parameters and = can be quite nonlinear, and 

the intervals obtained for = are quite large. The shaded 

part of =!  does not comply with the safety requirements. 

This means that a sufficient structural reliability is not 

ensured when the parameters are limited to the plausible 
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ranges for  . = 0. In a traditional reliability analysis, 

using crisp assumptions for the parameters out of their 

plausible range such as the values associated with the 

membership  µ = 1, this critical situation is not revealed. 

So far, the results from p-box approach or from interval 

probabilities would lead to the same conclusions. As an 

additional feature of fuzzy probabilities, it can be ob-

served that the left tail of the membership function of =!  

slightly tends to flatten towards small values. This indi-

cates a slight sensitivity of  "  with respect to imprecision 

of the fuzzy input when this grows in magnitude. So one 

may wish to reduce the input imprecision to a magnitude 

which is associated with the steeper part of the member-

ship function of  ". In Figure 3, the part  µ(") @ 0.4  is a 

reasonable choice in this regard. Further, the result ".=0.4 

= [3.935, 6.592] for  µ(") @ 0.4 = .  (according to the 

definition of .-level sets) satisfies the safety requirement  

".=0.4 @ 3.8. That is, a reduction of the imprecision of the 

fuzzy input parameters to the magnitude on .-level  . = 

0.4  would lead to an acceptable reliability of the struc-

ture despite the remaining imprecision in the input. For 

example, a collection of additional information can be 

pursued to achieve the requirements 

A k< - [6.6, 11.4] MNm/rad = k<,.=0.4, 

A # $
, 0.4

5.78,5.96m m
: : . (
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A # $
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: : .
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If this cannot be achieved for one or more parameters, 

the fuzzy analysis can be repeated with intervals for the 

parameters with non-reducible imprecision and with 

fuzzy sets for the parameters with reducible imprecision 

to separate the effects. The evaluation of the results then 

leads to a solution with proposed reduction of the impre-

cision only of those parameters for which this is possible. 

In this manner, it is also possible to explore sensitivities 

of the result  "  with respect to the imprecision of certain 

groups of input parameters or of individual input parame-

ters. The repetition of the fuzzy analysis for these pur-

poses can be avoided largely when a global optimization 

technique is used for the fuzzy analysis. This type of 

fuzzy analysis leads to a set of points distributed over the 

value ranges of the fuzzy input parameters and associated 

with results = =- ! . For each construction of member-

ship functions for the fuzzy input parameters, it is then 

immediately known which points belong to which .-

level so that a discrete approximation of a result can be 

obtained directly without a repeated analysis. Repetition 

of the analysis is then only required for a detailed verifi-

cation. 

 

3.2  Practical Application: Offshore Structures 

Reliability analysis of existing offshore structures in 

seawater conditions requires realistic models for corro-

sion. Due to scarce and imprecise information, however, 

the model parameters cannot be specified precisely and 

are merely known in form of bounds. This situation can 

be approached appropriately with concepts of imprecise 

probabilities. 

 

3.2.1  Corrosion Model 

A probabilistic model for mild steel corrosion based on 

results from various coupon tests and other observations 

is proposed in [20].  This model describes the material 

loss due to corrosion as a function of time; see Figure 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4:  Corrosion model with mean value function  

f(t,E) after [20]. 

 

Uncertainties in the corrosion process are considered 

with a probabilistic model for the corrosion depth c(t,E), 

measured in mm, as 

 

         (10) 

 

with 

A ( , )f t E  9 mean-value function, 

A ( , )b t E  9 bias function, 

A ( , )t EB  9 zero-mean uncertainty function, 

A E  9 vector of environmental 

   (and material) parameters. 

 

The specification of the mean-value function  f(t,E)  

requires calibration of the parameters shown in Figure 4. 

These parameters can be determined as a function F(T) 

of the average seawater temperature T  (contained in E),  

 

                 (11) 

 

see [20]. The variability of  c(t,E)  is modeled with the 

zero-mean uncertainty function  B(t,E)  (in Eq. (10)) in 

the form of Gaussian white noise;  B(t,E)  is assumed 

with zero mean and a standard deviation given by 

 

        (12) 

 
 

The bias function  b(t,E)  in Eq. (10) reflects the differ-

ence of the mean value predicted by the corrosion model 
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and the mean values of corrosion loss derived from data.  

It is a function of the exposure time.  Examples for bias 

functions based on statistical evaluations are provided in 

[20], see Figure 5,  as functions of the non-dimensional 

time coordinate  t/ta  with  ta  as shown in Figure 4.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5:  Bias function b(t,E), dimensionless, after [20]. 

 

Before the anaerobic phases (up to the end of phase 2), 

the bias function lies in the range between 0.9 and 1.1.  

In the anaerobic phases (phases 3 and 4), the spread 

between the possible graphs becomes even more distinc-

tive.  A dependency between the temperature  T  and bias 

function  b(t,E)  cannot be retrieved based on this infor-

mation only. A condensation of the spread into a deter-

ministic bias function would disregard information.  On 

the other hand, the available information on the spread is 

quite sparse for the specification of a probabilistic model 

with sufficient confidence.  A Bayesian approach would 

require some data for model update.  If this is not availa-

ble, as can be assumed for this type of data for a specific 

location, the model would remain subjective. Thus, one 

may wish to identify the worst case for the bias function  

b(t,E)  for the analysis based on the range of available 

information.  But a simple conclusion such as “the upper 

bound of the bias function leads to the most critical struc-

tural behavior” may not apply.  Due to the variety of 

members in a structural system even a uniform thickness 

reduction can lead to changes in kinematic failure modes.  

This motivates a search for the worst case under consid-

eration of a plausible range for the bias function  b(t,E).  

 

In the subsequent two examples, the uncertainty of the 

bias function  b(t,E)  is accounted for with different mod-

els, and the effects on the results of a corresponding 

reliability analysis are investigated. 

 

3.2.2  Steel Plate 

For demonstration purposes, an example of a simple steel 

plate is taken from [20], and a reliability assessment is 

carried out under uncertain corrosion impact.  The effects 

of different models for the uncertainty of the bias func-

tion  b(t,E)  are investigated with respect to the failure 

probability  Pf. The analysis is limited to the aerobic 

corrosion phase. It is assumed that the steel plate is ex-

posed to seawater with a temperature of  T = 15DC over a 

period of 2.5 years. 

 

Let  d  and  h  denote the thickness and nominal width of 

the uniform plate, respectively. A load is applied to cause 

a constant uniaxial tensile force  Q  in the plate. The 

force  Q  follows a normal distribution with parameters 

given in Table 1.  It is applied at  t = 2.5 years. 

 

Variable Mean Standard deviation 

Q 200 kN 23 kN 

Sy 300 MPa 10 MPa 

d 4 mm 0 

h 250 mm 0  

 
Table 1:  Example data summary. 

 

The resistance  R(t)  of the plate is expressed in terms of 

the yield stress  Sy , and the cross sectional area is re-

duced by the corrosion loss  c(t,E)  on both surfaces of 

the plate.  That is, 

 

       (13) 

 

The yield stress  Sy  is modeled as normally distributed. 

The performance function is 

      

      (14) 

 

The corrosion model is specified according to [20], 

which leads to a mean value  f(.) = 0.3 mm and to a stan-

dard deviation  ;B = 0.0126 mm for the considered t = 2.5 

years. 

 

The failure probability  Pf   is first computed with a de-

terministic value for the bias function, bdet(.) = 1.0. Direct 

Monte Carlo simulation (MCS) with a sample size of  

NPf = 105  leads to  Pf,det = 0.0126. 

 

The bias factor  b(.)  is considered as merely known lying 

in the range between 0.9 and 1.1, which represents model 

uncertainty. This complies with the information provided 

in Figure 5. For a purely probabilistic analysis, this range 

is taken into account with the aid of bounded random 

quantities. A common probabilistic model used for those 

purposes in engineering is the Beta distribution with its 

probability density function (pdf) 

 

 

      (15) 

 

 

where B(q, r) is the Beta function, and the parameters  a  

and  b  are the minimum and maximum value of the 

random variable  X, respectively, with  a " x " b. This 

model can be adjusted quite arbitrarily by means of the 

distribution parameters. As the available information for 

the modeling of the bias  b(.) is quite scarce, possible 

variants for the distribution function for  b(.)  are consi-

dered. The following cases of parameter adjustments are 

investigated:  Case (I): q = r = 1, Case (II): q = r = 2, and 
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Case (III): q = r = 3; see Figure 6. Case (I) represents a 

uniform distribution, which is frequently used when no 

information about the distribution is available. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6:  Variants for the  pdf  of the beta distribution. 

 

The results of the subsequent reliability analysis provide 

extended information in comparison to the deterministic 

value  Pf,det. To show the effects of the subjective distri-

bution assumption on the result for  Pf , a distribution for  

Pf  is determined as dependent on the distribution of  b(.).  

An MCS is carried out for each sampling point  b(.)  to 

obtain a corresponding value of Pf(b), and the empirical 

distribution for  Pf  is constructed based on a sample size 

of  Nb = 2000.  The sample size for the determination of  

Pf  for a given  b(.)  is fixed at  NPf = 105.  The resulting 

plot of the distributions for the failure probability  Pf   in 

Figure 7 shows the differences between the cases consi-

dered. Since all cases represent possible models, their 

differences will be manifested through the distribution of  

Pf  and their corresponding expectations  E[Pf]  estimated 

in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7:  Failure probability, pdf’s, means and upper 

bounds. 

 

The modeling of  b(.)  as a random variable involved data 

for various conditions and presumed variation of  b(.), 

which is reasonable for an analysis in a general context.  

For an analysis for a specific location, for which no data 

are available, one may wish to follow another approach.  

The bias function  b(.)  may then be considered as given 

but unknown instead of showing variation.  From this 

point of view, it is reasonable to determine the upper 

bound of  Pf .  With the stochastic parameter model, the 

upper bound for  Pf  can easily be retrieved from the 

sampling results shown in Figure 7, when the sampling is 

done conditional on  b(.).  The results for the upper 

bounds in the considered cases are: 

A Case (I):  ! " ! "! "
,

. 0.0199
u

f I
P b ( , 

A Case (II): ! " ! "! "
,

. 0.0198
u

f II
P b ( , 

A Case (III): ! " ! "! "
,

. 0.0196
u

f III
P b ( . 

The differences between these results for all three cases 

are quite small.  The absolute values, however, are 

smaller than the true upper bound ! "! "
,

. 0.02082
u

f true
P b ( . 

An improvement can be obtained by increasing the sam-

ple size  Nb  for  b(.). But a reasonable precision of 

! "! ".
u

f
P b  demands a quite high numerical effort; the 

total number of evaluations of the limit state function is  

Nb ? NPf .  This is hardly feasible for real structures, even 

when sophisticated sampling schemes are implemented.  

 

Certainly, in a number of practical cases, including this 

simple example, the worst case for the imprecise parame-

ter can be recognized in advance, so that the upper bound 

of  Pf  can be found easily.  However, in a general case 

when the dependency between imprecise model parame-

ters and  Pf  is non-monotonic, the solution is quite te-

dious. 

 

A suitable approach to solve this problem is available 

with concepts of imprecise probabilities. The bias func-

tion is now modeled as an interval, bI = [0.9,1.1].  An 

interval analysis is performed to map  bI  to an interval 

for the failure probability ! "! " ! "! "# $. , .
l u

f I f f
P P b P b( , 

see Eq. (3).  The associated result is shown in Figure 7.  

This analysis is realized with the global optimization 

algorithm from [21].  Instead of sampling  b(.), a search 

algorithm is used to directly head for the interval bounds 

! "! ".
l

f
P b   and ! "! ".

u

f
P b .  Still, for each selected value 

! ".
I

b b-   an MCS needs to be carried out.  The required 

number  Nb  of these simulations, however, is now signif-

icantly smaller; the exact result of the upper bound 

! "! ".
u

f
P b  is approached much faster.  With standard 

adjustments for the search algorithm, only  Nb = 45 val-

ues of ! "! ".
f

P b   were calculated to find the true result 

! "! "
,

. 0.02082
u

f true
P b ( . This effort can be reduced further 

with an improved adjustment in the parameters of the 

search algorithm. The effort increases almost linearly 

with the number of interval input variables. 

 

This analysis can be extended further by implementing a 

fuzzy probabilistic concept. This enables modeling of the  

bias function  b(.)  with the aid of fuzzy sets so that a set 

of different intervals for  b(.)  can be considered simulta-

neously.  A rational approach is to assign a membership 

0 

0.5 

1 

1.5 

2 

0.9 1.1

probability density 

b 

q=r=1

q=r=2

q=r=3

Beta (Case I) 

Estimates 

for E[Pf] 

0.0131 0.0128 

0.0129 

Beta (Case II) 
Beta (Case III) 

Interval 

0.007    0.009    0.011     0.013     0.015     0.017    0.019    0.021 



value  µ(b(.)) = 1.0  to the deterministic value  bdet(.) = 

1.0. A reasonable interval ! " ! " ! "# $
0 0 0

. . , .
l u

I
b b b(  may 

then be specified, which is even larger than the one con-

cluded from available information, in order to reveal 

effects in case that  b(.)  takes on exceptional values.  

The associated membership values are assigned as 

! "! " ! "! "
0 0

. . 0.0
l u

b b/ /( ( . In the example, 

bI0 = [0.8,1.2]  is selected. If no further specifications for 

membership values are made, this leads to the fuzzy 

triangular number ! ". 0.8,1.0,1.2b (!  as shown in Fig-

ure 8.  Of course, the interval concluded from available 

information should be included in the fuzzy modeling.  

This is provided in form of the #-level set 

! " ! " # $. . 0.9,1.1
I I

b b
.

( (  for  # = µ(b(.)) = 0.5; see Figure 

8.  The associated analysis is performed with global 

optimization according to [21] as a repetition of the in-

terval analysis for various membership levels with ex-

ploitation of the nested configuration of the intervals.  A 

fuzzy failure probability 
f

P!  is obtained as shown in Fig-

ure 8. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8:  Fuzzy bias factor ! ".b!  and fuzzy failure prob-

ability 
f

P! ; interval modeling and results from Figure 7 

are included for  µ = # = 0.5. 

 

A total of  Nb = 208  calculations of ! "! ".
f

P b  were 

necessary to obtain this result. The number Nb in the 

fuzzy analysis is not a multiple of Nb from interval analy-

sis according to the number of .-levels. Random ele-

ments in the optimization procedure weaken this conclu-

sion to the statistical mean of Nb. The search domains for 

different .-levels are of a different and so require a dif-

ferent Nb. Further, the numerical procedure from [21] 

exploits the nested configuration of the interval to re-use 

all previously evaluated points inside the search domain, 

which leads to a significant gain in numerical efficiency 

for a larger number of .-levels. In the example, the sig-

nificant increase of the support of the parameters in the 

fuzzy analysis compared to the interval possesses the 

governing effect, which leads to increase of Nb by a fac-

tor larger than two. But this is still a much smaller num-

ber  Nb  compared to a stochastic sampling of  b(.).  

Compared to interval analysis, the numerical effort is 

higher.  But the result 
f

P!   is much richer in information 

compared to  PfI. The fuzzy analysis contains the above 

interval analysis on the level # = 0.5; see Figure 8. In 

addition, a series of intervals with decreasing and in-

creasing size are analyzed, which provides information 

regarding sensitivities of  PfI  with respect to the interval 

size of  bI(.)  as discussed in Sections 2 and 3.1. Again, 

the membership values are not of interest, they just serve 

as a tool in the modeling.  Dependencies between the size 

of  bI(.)  and the size of  PfI  become directly visible in 

the results.  In the example, no particular sensitivities are 

obvious. 

 

3.2.3  Offshore Platform 

Deterioration of structural strength is a major factor in 

the safety assessment of offshore structures.  The protec-

tive paints and cathodic protection may be ineffective 

after some years.  Typically, when analyzing structural 

strength or structural capacity, only “uniform” corrosion 

is considered [20]. These issues can be addressed in an 

investigation as demonstrated in Section 3.2.2 applied to 

real structures. In the following example, a fixed offshore 

platform is analyzed, which is exposed to seawater with a 

temperature of  T = 15DC over a period of 5 years. All the 

tubular structural members beneath the seawater surface 

are assumed to have the same average reduction in thick-

ness due to corrosion only on the outer side. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9:  Structural model of the fixed jacket platform. 

 

As an example structure, a fixed jacket platform located 

in the North Sea is taken from [25]. The jacket is de-

signed for a water depth of approximately 110 m.  The 8-

leg jacket is arranged in a two by four rectangular grid. 

The overall dimensions are 27 m × 54 m at the top eleva-

tion and 56 m × 70 m at the mudline. The total height is 

142 m. Horizontal bracings are installed at 5 levels. The 

jacket foundation consists of four corner clusters with 

eight skirt piles in each group and no leg piles are used. 

The longitudinal jacket frames are diagonal-braced, with  

X-braces between central and corner legs at the bottom 

bay.  Transverse frames are  K-braced, with the bottom  

K  inverted to form a double  X  as shown in Figure 9. 
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The reliability analysis of a jacket structure involves the 

performance function, 

 

G = Ultimate Resistance 

            9 Environmental Loads.    (16) 

 

The ultimate resistance is determined through a pushover 

analysis of the platform.  It is equal to the environmental 

design loads multiplied by the Reserve Strength Ratio 

(RSR).  For this example, the environmental design loads 

are a 100-year wave together with a 10-year current. This 

is associated with a Gumbel distribution, which is im-

plemented as a probabilistic load model in the analysis. 

For the structural resistance, uncertainty is considered in 

the yield strength of the steel and in the thickness reduc-

tion of the members due to marine corrosion. The yield 

strength of the steel ASTM-A7 is described with a log-

normal distribution. Based on the probabilistic corrosion 

model discussed in Section 3.2.2, the environmental 

condition with  T = 15DC  and  t = 5  years leads to the 

mean value  f(.) = 0.48 mm and the standard deviation  

;B = 0.08 mm.  The bias factor  b(t,T)  lies in the range 

between 0.8 and 1.6 based on Figure 5. Implementation 

of these models in a structural analysis leads to the ap-

proximate performance function 

 

 

       (17) 

 

 

with 

 

       (18) 

 

For the reliability analysis, the variables in Eq. (17) are 

described by their respective probabilistic models. These 

random variables are summarized in Table 2. The proba-

bility of failure is calculated as ! "0
f

P P G( ,  via MSC.  

In order to calculate  Pf  effciently, importance sampling 

is utilized. A sample size of  NPf  = 5000  is used for the 

reliability analysis. Variants for modeling of  b(.)  are 

investigated, and the results are summarized in Figure 

10. Again, the interval concept shows some advantage 

when the bounds on the failure probability have to be 

found.  The total number of calculations  Nb   of  Pf  us-

ing the interval concepts is 114. The accuracy of the 

upper bound on  Pf  is higher, compared to the sampling 

of  b(.). 

 

Varia- Distri-           Parameters 

ble bution  

Fy Log. Normal    µ = 40 psi         c.o.v. = 0.087 

H Gumbel          .H = 21.0 m       "H = 1.63 m 

c(.) Normal          µ = 0.48 mm      ;B = 0.08 mm 

Table 2.  Random variables for the reliability 

analysis. 

 

 

 

 

 

 

 

 

 
Figure 10:  Failure probability; distributions, upper bounds and 

interval solution. 
 

In the example, the differences in the upper bound on the 

failure probability are small. However, in other cases, 

and if more imprecision is involved in the problem, the 

discussed effects may become quite significant. It is 

obvious that the imprecision in the bias function  b(.)  
and thus, the imprecision of  Pf   grow dramatically with 

the exposure time, as can be seen in Figure 5. Further, in 

the example, only the annual failure probability is calcu-

lated. In a consideration of the failure probability for the 

entire lifetime of the structure, the imprecision in the 

annual failure probabilities will be accumulated accor-

dingly. A consideration of this imprecision in a reliability 

analysis for the entire lifetime of an offshore structure is 

thus of great interest. 

 

4   Summary and Conclusions 

Different approaches were applied to describe impreci-

sion in probabilistic models for a reliability analysis of 

engineering structures. The features of the models were 

compared with a pure probabilistic solution and with one 

another by means of academic and practical examples. 

The influence of the modeling on the prediction of struc-

tural reliability was examined.  It was found that con-

cepts of imprecise probabilities and, in particular, fuzzy 

probabilities, have certain advantages when bounds on 

the failure probability are of interest.  These advantages 

concern the precision and the numerical effort in the 

calculation of these bounds and, in the case of fuzzy 

probabilities, some extended insight into sensitivities of 

the computational results with respect to the imprecision 

of the probabilistic input. Applicability in practice was 

demonstrated by means of a reliability analysis for a real 

offshore platform. 
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