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Abstract


The prediction of the behavior and reliability of engi-


neering structures and systems is often plagued by uncer-


tainty and imprecision caused by sparse data, poor mea-


surements and linguistic information. Accounting for 


such limitations complicates the mathematical modeling 


required to obtain realistic results in engineering analys-


es. The framework of imprecise probabilities provides a 


mathematical basis to deal with these problems which 


involve both probabilistic and non-probabilistic sources 


of uncertainty. A common feature of the various concepts 


of imprecise probabilities is the consideration of an entire 


set of probabilistic models in one analysis. But there are 


differences between the concepts in the mathematical 


description of this set and in the theoretical connection to 


the probabilistic models involved. This study is focused 


on fuzzy probabilities, which combine a probabilistic 


characterization of variability with a fuzzy characteriza-


tion of imprecision. We discuss how fuzzy modeling can 


allow a more nuanced approach than interval-based con-


cepts. The application in engineering is demonstrated by 


means of two examples. 
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1   Introduction 


The analysis and reliability assessment of engineering 


structures and systems involves uncertainty and impreci-


sion in parameters and models of different type.  In order 


to derive predictions regarding structural behavior and 


reliability, it is crucial to represent the uncertainty and 


imprecision appropriately according to the underlying 


real-world information which is available. To capture 


variation of structural parameters, established probabilis-


tic models and powerful simulation techniques are avail-


able for engineers, which are widely applicable to real-


world problems; for example, see [24]. The required 


probabilistic modeling can be realized via classical ma-


thematical statistics if data of a suitable quality are avail-


able to a sufficient extent. 


 


In civil engineering practice, however, the available data 


are frequently quite limited and of poor quality. These 


limitations create epistemic uncertainty, which can some-


times be substantial. It is frequently argued that expert 


knowledge can compensate for the limitations through 


the use of Bayesian methods based on subjective proba-


bilities.  If a subjective perception regarding a probabilis-


tic model exists and some data for a model update can be 


made available, a Bayesian approach can be very power-


ful, and meaningful results with maximal information 


content can be derived.  Bayesian approaches have at-


tracted increasing attention in the recent past and consi-


derable advancements have been reported for the solution 


of various engineering problems [7, 15, 23].  An impor-


tant feature of Bayesian updating is that the subjective 


influence in the model assumption decays quickly with 


growing amount of data.  It is then reasonable practice to 


estimate probabilistic model parameters based on the 


posterior distribution, for example, as the expected value 


thereof. 


 


When less information and experience are available, 


greater difficulties will be faced.  If the available infor-


mation is very scarce or is of an imprecise nature rather 


than of a stochastic nature, a subjective probabilistic 


model description may be quite arbitrary.  For example, a 


distribution parameter may be known merely in the form 


of bounds. Any prior distribution which is limited to 







these bounds would then be an option for modeling.  But 


the selection of a particular model would introduce un-


warranted information that cannot be justified sufficient-


ly.  Even the assumption of a uniform distribution, which 


is commonly used in those cases, ascribes more informa-


tion than is actually given by the bounds.  This situation 


may become critical if no or only very limited data are 


available for a model update. The initial subjectivity is 


then dominant in the posterior distribution and in the 


final result. If these results, such as failure probabilities, 


determine critical decisions, one may wish to consider 


the problem from the following angle. 


 


If several probabilistic models are plausible for the de-


scription of a problem, and no information is available to 


assess the suitability of the individual models or to relate 


their suitability with respect to one another, then it may 


be of interest to identify the worst case for the modeling 


rather than to average over all plausible model options 


with arbitrary weighting. The probabilistic analysis is 


carried out conditional on each of many particular proba-


bilistic models out of the set of plausible models.  In 


reliability assessment, this implies the calculation of an 


upper bound for the failure probability as the worst case.  


This perspective can be extended to explore the sensitivi-


ty of results with respect to the variety of plausible mod-


els, that is, with respect to a subjective model choice. A 


mathematical framework for an analysis of this type has 


been established with imprecise probabilities; see [28].  


Applications to reliability analysis [17, 22, 26] and to 


sensitivity analysis [9, 13] have been reported. This intui-


tive view, however, is by far not the entire motivation for 


imprecise probabilities [16].  Imprecise probabilities are 


not limited to a consideration of imprecise distribution 


parameters. They are capable of dealing with imprecise 


conditions and dependencies between random variables 


and with imprecise structural parameters and model 


descriptions. Respective discussions can be reviewed, for 


example, in [8, 14]. Multivariate models can be con-


structed [11]. Imprecise probabilities also allow statistic-


al estimations and tests with imprecise sample elements. 


Results from robust statistics in form of solution domains 


of statistical estimators can be considered directly and 


appropriately [1]. 


 


In this paper, the implementation of intervals and fuzzy 


sets as parameters of probabilistic models is discussed in 


the context of proposed concepts of imprecise probabili-


ties. Structural reliability analysis is employed to illu-


strate the effects in examples. 


 


2   Imprecise Probabilistic Model Parame-


ters 


In engineering analyses, parameters of probabilistic 


models are frequently limited in precision and are only 


known in a coarse manner. This situation can be ap-


proached with different mathematical concepts. First, the 


parameter can be considered as uncertain with random 


characteristics, which complies with the Bayesian ap-


proach. Subjective probability distributions for the para-


meters are updated by means of objective information in 


form of data. The result is a mix of objective and subjec-


tive information – both expressed with probability. 


Second, the parameter can be considered as imprecise but 


bounded within a certain domain, where the domain is 


described as a set. In this manner, only the limitation to 


some domain and no further specific characteristics are 


ascribed to the parameter, which introduces significantly 


less information in comparison with a distribution func-


tion as used in the Bayesian approach. Imprecision in the 


form of a set for a parameter does not migrate into prob-


abilities, but it is reflected in the result as a set of proba-


bilities which contains the true probability. Intervals and 


fuzzy sets can thus be considered as models for parame-


ters of probability distributions. 


 


An interval is an appropriate model in cases where only a 


possible range between crisp bounds  xl  and  xr  is known 


for the parameter  x, and no additional information con-


cerning value frequencies, preference, etc. between inter-


val bounds is available nor any clues on how to specify 


such information. Interval modeling of a parameter of a 


probabilistic model connotes the consideration of a set of 


probabilistic models, which are captured by the set of 


parameter values 


 


             (1) 


 


This modeling corresponds to the p-box approach [10] 


and to the theory of interval probabilities [28, 29]. Events  


Ei  are assessed with a range of probability, 


! " ! "# $ # $0 1
l i r i


P E ,P E ,% , which is directly used for the 


definition of interval probability, denoted as IP, as fol-


lows, 


 


 


         (2) 


 


 


In Eq. (2), ! "&P  is the power set on the set & of ele-


mentary events '. This definition complies with tradi-


tional probability theory. Kolmogorov's axioms and the 


generation scheme of events are retained as defined in 


traditional probability theory, see also [30]. Traditional 


mathematical statistics are applicable for quantification 


purposes. In reliability analysis with interval probabili-


ties, the parameter interval  XI  is mapped to an interval 


of the failure probability, 


 


        (3) 


 


Scrutinizing the modeling of parameters as intervals 


shows that an interval is a quite crude expression of im-


precision. The specification of an interval for a parameter 


implies that, although a number’s value is not known 
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exactly, exact bounds on the number can be provided. 


This may be criticized because the specification of pre-


cise numbers is just transferred to the bounds. Fuzzy set 


theory provides a suitable basis for relaxing the need for 


precise values or bounds. It allows the specification of a 


smooth transition for elements from belonging to a set to 


not belonging to a set. Fuzzy numbers are a generaliza-


tion and refinement of intervals for representing impre-


cise parameters.  The essence of an approach using fuzzy 


numbers that distinguishes it from more traditional ap-


proaches is that it does not require the analyst to circum-


scribe the imprecision all in one fell swoop with finite 


characterizations having known bounds.  The analyst can 


now express the available information in the form of a 


series of plausible intervals, the bounds of which may 


grow, including the case of infinite limits. This allows a 


more nuanced approach compared to interval modeling. 


 


Fuzzy sets provide an extension to interval modeling that 


considers variants of interval models, in a nested fashion, 


in one analysis.  A fuzzy set X!  of parameter values can 


be represented as a set of intervals  XI, 


 


 


 


        (4) 


 


 


 


This is utilized for an approximation of X!  via a series of 


discrete values ! $0,1i. - , which is referred to as .-


discretization; see Figure 1 [31].  In Eq. (4),  X.  denotes 


an .-level set of the fuzzy set X! , and  /(.)  is the mem-


bership function.  This modeling applied to parameters of 


a probabilistic model corresponds to the theory of fuzzy 


random variables and to fuzzy probability theory accord-


ing to [4, 18]. For further information on related con-


cepts, see [6, 12, 19]. The definition of a fuzzy random 


variable refers to imprecise observations as outcome of a 


random experiment.  A fuzzy random variable Y!  is the 


mapping 
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with ! "YF  being the set of all fuzzy sets on the funda-


mental set Y, whereby the standard case is Y = Rn.  The 


pre-images of the imprecise events described by ! "YF  


are elements of a traditional probability space # $, , P& S .  


This complies with traditional probability theory and 


allows statistics with imprecise data [2, 18, 27]. As a 


consequence of Eq. (5), parameters of probabilistic mod-


els, including descriptions of the dependencies and dis-


tribution type, and probabilities are obtained as fuzzy 


sets. This builds the relationship to the p-box approach 


and to the theory of interval probabilities. A representa-


tion of a fuzzy probability distribution function of a 


fuzzy random variable Y!  with aid of .-discretization 


leads to interval probabilities ! " ! "# $,
l r


F y F y
. .


 for each 


.-level as one plausible model variant, 
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with 
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As depicted in Figure 1, in a reliability analysis, the 


fuzzy set X!  of parameter values is mapped to a fuzzy set 


of the failure probability, 
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Figure 1:  Relationship between fuzzy parameters and 


failure probability. 


 


The membership function serves only instrumentally to 


summarize various plausible interval models in one em-


bracing scheme. The interpretation of the membership 


value  /  as epistemic possibility, which is sometimes 


proposed, may be useful for ranking purposes, but not for 


making critical decisions. The importance of fuzzy mod-


eling lies in the simultaneous consideration of various 


magnitudes of imprecision at once in the same analysis. 


 


The features of a fuzzy probabilistic analysis can be 


utilized to identify sensitivities of the failure probability 


with respect to the imprecision in the probabilistic model 


specification; see Figure 1. Sensitivities of  Pf  are indi-


cated when the interval size of  Pf.  grows strongly with a 


moderate increase of the interval size of  X.  of the para-


meters. If this is the case, the membership function of  


f
P!  shows outreaching or long and flat tails. An engineer-


ing consequence would be to pay particular attention to 


those model options  X., which cause large intervals  Pf.  


and to further investigate to verify the reasoning for these 


options and to possibly exclude these critical cases.  


 


A fuzzy probabilistic analysis also provides interesting 


features for design purposes. The analysis can be per-


formed with coarse specifications for design parameters 


and for probabilistic model parameters. From the results 
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of this analysis, acceptable intervals for both design 


parameters and probabilistic model parameters can be 


determined directly without a repetition of the analysis; 


see Figure 1. Indications are provided in a quantitative 


manner to collect additional specific information or to 


apply certain design measures to reduce the input impre-


cision to an acceptable magnitude. This implies a limita-


tion of imprecision to only those acceptable magnitudes 


and so also caters for an optimum economic effort. For 


example, a minimum sample size or a minimum mea-


surement quality associated with the acceptable magni-


tude of imprecision can be directly identified. Further, 


revealed sensitivities may be taken as a trigger to change 


the design of the system under consideration to make it 


more robust. A related method is described in [5] for 


designing robust structures in a pure fuzzy environment. 


These methods can also be used for the analysis of aged 


and damaged structures to generate a rough first picture 


of the structural integrity and to indicate further detailed 


investigations to an economically reasonable ex-


tent9expressed in form of an acceptable magnitude of 


input imprecision according to some .-level. 


 


3   Examples 


3.1  Concept Demonstration: Reinforced Concrete 


Frame 


The principle of the fuzzy probabilistic reliability analy-


sis is illustrated by means of the reinforced concrete 


frame from [22] shown in Figure 2. 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


Figure 2:  Reinforced concrete frame, structural model, 


and loading. 


 


The structure is loaded by its dead weight, a small hori-


zontal load  PH, and the vertical loads  PV0  and  p0  which   


are increased with the factor  !  until global structural 


failure is reached. For the purpose of demonstration, only 


the load factor  !  is introduced as a random variable with 


an extreme value distribution of Ex-Max Type I (Gum-


bel) with mean m:
!  and standard deviation :;! . Impreci-


sion of the probabilistic model is described with triangu-


lar fuzzy numbers 5.7, 5.9, 6.0m
:
(!  and 


0.08, 0.11, 0.12
:


; (! . In addition, the rotational stiff-


ness of the springs at the column bases is modeled as a 


triangular fuzzy number 5, 9,13k< (
! MNm/rad to take 


account of the only vaguely known soil properties. These 


fuzzy parameters are considered as given for the purpose 


of this paper to highlight certain advantages of fuzzy 


probabilistic approaches in structural reliability assess-


ment rather than to demonstrate the procedure for a spe-


cific practical case. In practical applications these fuzzy 


parameters need to be determined for the specific case. 


Although a general rule or algorithm cannot be formu-


lated for this purpose, expert knowledge and inspection 


results are frequently available, which can be used to-


gether with statistical methods to determine bounds for 


the support of these parameters in a conservative manner. 


These semi-heuristic approaches can then be extended to 


higher .-levels in order to derive further nested intervals 


with an engineering meaning, e.g., to which the parame-


ter imprecision can be reduced with certain technical 


efforts. Some suggestions to derive fuzzy parameters of 


probability distributions based on statistical data with 


typical characteristics as in civil engineering practice are 


discussed in [3]. It should be noted that the membership 


values are only instrumental in this approach with no 


specific meaning; they enable the simultaneous consider-


ation of a variety of intervals of different size at once in 


the same analysis; see Section 2. 


 


 


 


 


 


 


 


 


 


 


 


 


 


Figure 3:  Fuzzy reliability index and evaluation against 


safety requirement. 


 


Based on this input information, the fuzzy reliability 


index =!  shown in Figure 3 is calculated. The result 


spreads over a large range of possible values for  ". The 


interval bounds for each .-level are determined with the 


global optimization approach from [21], which is based 


on a modified evolution strategy. This provides advan-


tages over a perturbation method or sensitivity investiga-


tion in view of result accuracy as the dependency be-


tween the parameters and = can be quite nonlinear, and 


the intervals obtained for = are quite large. The shaded 


part of =!  does not comply with the safety requirements. 


This means that a sufficient structural reliability is not 


ensured when the parameters are limited to the plausible 
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ranges for  . = 0. In a traditional reliability analysis, 


using crisp assumptions for the parameters out of their 


plausible range such as the values associated with the 


membership  µ = 1, this critical situation is not revealed. 


So far, the results from p-box approach or from interval 


probabilities would lead to the same conclusions. As an 


additional feature of fuzzy probabilities, it can be ob-


served that the left tail of the membership function of =!  


slightly tends to flatten towards small values. This indi-


cates a slight sensitivity of  "  with respect to imprecision 


of the fuzzy input when this grows in magnitude. So one 


may wish to reduce the input imprecision to a magnitude 


which is associated with the steeper part of the member-


ship function of  ". In Figure 3, the part  µ(") @ 0.4  is a 


reasonable choice in this regard. Further, the result ".=0.4 


= [3.935, 6.592] for  µ(") @ 0.4 = .  (according to the 


definition of .-level sets) satisfies the safety requirement  


".=0.4 @ 3.8. That is, a reduction of the imprecision of the 


fuzzy input parameters to the magnitude on .-level  . = 


0.4  would lead to an acceptable reliability of the struc-


ture despite the remaining imprecision in the input. For 


example, a collection of additional information can be 


pursued to achieve the requirements 


A k< - [6.6, 11.4] MNm/rad = k<,.=0.4, 


A # $
, 0.4


5.78,5.96m m
: : . (
- ( , 


A # $
, 0.4


0.092, 0.116
: : .


; ;
(


- ( . 


If this cannot be achieved for one or more parameters, 


the fuzzy analysis can be repeated with intervals for the 


parameters with non-reducible imprecision and with 


fuzzy sets for the parameters with reducible imprecision 


to separate the effects. The evaluation of the results then 


leads to a solution with proposed reduction of the impre-


cision only of those parameters for which this is possible. 


In this manner, it is also possible to explore sensitivities 


of the result  "  with respect to the imprecision of certain 


groups of input parameters or of individual input parame-


ters. The repetition of the fuzzy analysis for these pur-


poses can be avoided largely when a global optimization 


technique is used for the fuzzy analysis. This type of 


fuzzy analysis leads to a set of points distributed over the 


value ranges of the fuzzy input parameters and associated 


with results = =- ! . For each construction of member-


ship functions for the fuzzy input parameters, it is then 


immediately known which points belong to which .-


level so that a discrete approximation of a result can be 


obtained directly without a repeated analysis. Repetition 


of the analysis is then only required for a detailed verifi-


cation. 


 


3.2  Practical Application: Offshore Structures 


Reliability analysis of existing offshore structures in 


seawater conditions requires realistic models for corro-


sion. Due to scarce and imprecise information, however, 


the model parameters cannot be specified precisely and 


are merely known in form of bounds. This situation can 


be approached appropriately with concepts of imprecise 


probabilities. 


 


3.2.1  Corrosion Model 


A probabilistic model for mild steel corrosion based on 


results from various coupon tests and other observations 


is proposed in [20].  This model describes the material 


loss due to corrosion as a function of time; see Figure 4.  


 


 


 


 


 


 


 


 


 


 


 


 


 


 


Figure 4:  Corrosion model with mean value function  


f(t,E) after [20]. 


 


Uncertainties in the corrosion process are considered 


with a probabilistic model for the corrosion depth c(t,E), 


measured in mm, as 


 


         (10) 


 


with 


A ( , )f t E  9 mean-value function, 


A ( , )b t E  9 bias function, 


A ( , )t EB  9 zero-mean uncertainty function, 


A E  9 vector of environmental 


   (and material) parameters. 


 


The specification of the mean-value function  f(t,E)  


requires calibration of the parameters shown in Figure 4. 


These parameters can be determined as a function F(T) 


of the average seawater temperature T  (contained in E),  


 


                 (11) 


 


see [20]. The variability of  c(t,E)  is modeled with the 


zero-mean uncertainty function  B(t,E)  (in Eq. (10)) in 


the form of Gaussian white noise;  B(t,E)  is assumed 


with zero mean and a standard deviation given by 


 


        (12) 


 
 


The bias function  b(t,E)  in Eq. (10) reflects the differ-


ence of the mean value predicted by the corrosion model 
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and the mean values of corrosion loss derived from data.  


It is a function of the exposure time.  Examples for bias 


functions based on statistical evaluations are provided in 


[20], see Figure 5,  as functions of the non-dimensional 


time coordinate  t/ta  with  ta  as shown in Figure 4.  


 


 


 


 


 


 


 


 


 


 


 


Figure 5:  Bias function b(t,E), dimensionless, after [20]. 


 


Before the anaerobic phases (up to the end of phase 2), 


the bias function lies in the range between 0.9 and 1.1.  


In the anaerobic phases (phases 3 and 4), the spread 


between the possible graphs becomes even more distinc-


tive.  A dependency between the temperature  T  and bias 


function  b(t,E)  cannot be retrieved based on this infor-


mation only. A condensation of the spread into a deter-


ministic bias function would disregard information.  On 


the other hand, the available information on the spread is 


quite sparse for the specification of a probabilistic model 


with sufficient confidence.  A Bayesian approach would 


require some data for model update.  If this is not availa-


ble, as can be assumed for this type of data for a specific 


location, the model would remain subjective. Thus, one 


may wish to identify the worst case for the bias function  


b(t,E)  for the analysis based on the range of available 


information.  But a simple conclusion such as “the upper 


bound of the bias function leads to the most critical struc-


tural behavior” may not apply.  Due to the variety of 


members in a structural system even a uniform thickness 


reduction can lead to changes in kinematic failure modes.  


This motivates a search for the worst case under consid-


eration of a plausible range for the bias function  b(t,E).  


 


In the subsequent two examples, the uncertainty of the 


bias function  b(t,E)  is accounted for with different mod-


els, and the effects on the results of a corresponding 


reliability analysis are investigated. 


 


3.2.2  Steel Plate 


For demonstration purposes, an example of a simple steel 


plate is taken from [20], and a reliability assessment is 


carried out under uncertain corrosion impact.  The effects 


of different models for the uncertainty of the bias func-


tion  b(t,E)  are investigated with respect to the failure 


probability  Pf. The analysis is limited to the aerobic 


corrosion phase. It is assumed that the steel plate is ex-


posed to seawater with a temperature of  T = 15DC over a 


period of 2.5 years. 


 


Let  d  and  h  denote the thickness and nominal width of 


the uniform plate, respectively. A load is applied to cause 


a constant uniaxial tensile force  Q  in the plate. The 


force  Q  follows a normal distribution with parameters 


given in Table 1.  It is applied at  t = 2.5 years. 


 


Variable Mean Standard deviation 


Q 200 kN 23 kN 


Sy 300 MPa 10 MPa 


d 4 mm 0 


h 250 mm 0  


 
Table 1:  Example data summary. 


 


The resistance  R(t)  of the plate is expressed in terms of 


the yield stress  Sy , and the cross sectional area is re-


duced by the corrosion loss  c(t,E)  on both surfaces of 


the plate.  That is, 


 


       (13) 


 


The yield stress  Sy  is modeled as normally distributed. 


The performance function is 


      


      (14) 


 


The corrosion model is specified according to [20], 


which leads to a mean value  f(.) = 0.3 mm and to a stan-


dard deviation  ;B = 0.0126 mm for the considered t = 2.5 


years. 


 


The failure probability  Pf   is first computed with a de-


terministic value for the bias function, bdet(.) = 1.0. Direct 


Monte Carlo simulation (MCS) with a sample size of  


NPf = 105  leads to  Pf,det = 0.0126. 


 


The bias factor  b(.)  is considered as merely known lying 


in the range between 0.9 and 1.1, which represents model 


uncertainty. This complies with the information provided 


in Figure 5. For a purely probabilistic analysis, this range 


is taken into account with the aid of bounded random 


quantities. A common probabilistic model used for those 


purposes in engineering is the Beta distribution with its 


probability density function (pdf) 


 


 


      (15) 


 


 


where B(q, r) is the Beta function, and the parameters  a  


and  b  are the minimum and maximum value of the 


random variable  X, respectively, with  a " x " b. This 


model can be adjusted quite arbitrarily by means of the 


distribution parameters. As the available information for 


the modeling of the bias  b(.) is quite scarce, possible 


variants for the distribution function for  b(.)  are consi-


dered. The following cases of parameter adjustments are 


investigated:  Case (I): q = r = 1, Case (II): q = r = 2, and 
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Case (III): q = r = 3; see Figure 6. Case (I) represents a 


uniform distribution, which is frequently used when no 


information about the distribution is available. 


 


 


 


 


 


 


 


 


 


 


 


 


 


Figure 6:  Variants for the  pdf  of the beta distribution. 


 


The results of the subsequent reliability analysis provide 


extended information in comparison to the deterministic 


value  Pf,det. To show the effects of the subjective distri-


bution assumption on the result for  Pf , a distribution for  


Pf  is determined as dependent on the distribution of  b(.).  


An MCS is carried out for each sampling point  b(.)  to 


obtain a corresponding value of Pf(b), and the empirical 


distribution for  Pf  is constructed based on a sample size 


of  Nb = 2000.  The sample size for the determination of  


Pf  for a given  b(.)  is fixed at  NPf = 105.  The resulting 


plot of the distributions for the failure probability  Pf   in 


Figure 7 shows the differences between the cases consi-


dered. Since all cases represent possible models, their 


differences will be manifested through the distribution of  


Pf  and their corresponding expectations  E[Pf]  estimated 


in Figure 7. 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


Figure 7:  Failure probability, pdf’s, means and upper 


bounds. 


 


The modeling of  b(.)  as a random variable involved data 


for various conditions and presumed variation of  b(.), 


which is reasonable for an analysis in a general context.  


For an analysis for a specific location, for which no data 


are available, one may wish to follow another approach.  


The bias function  b(.)  may then be considered as given 


but unknown instead of showing variation.  From this 


point of view, it is reasonable to determine the upper 


bound of  Pf .  With the stochastic parameter model, the 


upper bound for  Pf  can easily be retrieved from the 


sampling results shown in Figure 7, when the sampling is 


done conditional on  b(.).  The results for the upper 


bounds in the considered cases are: 


A Case (I):  ! " ! "! "
,


. 0.0199
u


f I
P b ( , 


A Case (II): ! " ! "! "
,


. 0.0198
u


f II
P b ( , 


A Case (III): ! " ! "! "
,


. 0.0196
u


f III
P b ( . 


The differences between these results for all three cases 


are quite small.  The absolute values, however, are 


smaller than the true upper bound ! "! "
,


. 0.02082
u


f true
P b ( . 


An improvement can be obtained by increasing the sam-


ple size  Nb  for  b(.). But a reasonable precision of 


! "! ".
u


f
P b  demands a quite high numerical effort; the 


total number of evaluations of the limit state function is  


Nb ? NPf .  This is hardly feasible for real structures, even 


when sophisticated sampling schemes are implemented.  


 


Certainly, in a number of practical cases, including this 


simple example, the worst case for the imprecise parame-


ter can be recognized in advance, so that the upper bound 


of  Pf  can be found easily.  However, in a general case 


when the dependency between imprecise model parame-


ters and  Pf  is non-monotonic, the solution is quite te-


dious. 


 


A suitable approach to solve this problem is available 


with concepts of imprecise probabilities. The bias func-


tion is now modeled as an interval, bI = [0.9,1.1].  An 


interval analysis is performed to map  bI  to an interval 


for the failure probability ! "! " ! "! "# $. , .
l u


f I f f
P P b P b( , 


see Eq. (3).  The associated result is shown in Figure 7.  


This analysis is realized with the global optimization 


algorithm from [21].  Instead of sampling  b(.), a search 


algorithm is used to directly head for the interval bounds 


! "! ".
l


f
P b   and ! "! ".


u


f
P b .  Still, for each selected value 


! ".
I


b b-   an MCS needs to be carried out.  The required 


number  Nb  of these simulations, however, is now signif-


icantly smaller; the exact result of the upper bound 


! "! ".
u


f
P b  is approached much faster.  With standard 


adjustments for the search algorithm, only  Nb = 45 val-


ues of ! "! ".
f


P b   were calculated to find the true result 


! "! "
,


. 0.02082
u


f true
P b ( . This effort can be reduced further 


with an improved adjustment in the parameters of the 


search algorithm. The effort increases almost linearly 


with the number of interval input variables. 


 


This analysis can be extended further by implementing a 


fuzzy probabilistic concept. This enables modeling of the  


bias function  b(.)  with the aid of fuzzy sets so that a set 


of different intervals for  b(.)  can be considered simulta-


neously.  A rational approach is to assign a membership 


0 


0.5 


1 


1.5 


2 


0.9 1.1


probability density 


b 


q=r=1


q=r=2


q=r=3


Beta (Case I) 


Estimates 


for E[Pf] 


0.0131 0.0128 


0.0129 


Beta (Case II) 
Beta (Case III) 


Interval 


0.007    0.009    0.011     0.013     0.015     0.017    0.019    0.021 







value  µ(b(.)) = 1.0  to the deterministic value  bdet(.) = 


1.0. A reasonable interval ! " ! " ! "# $
0 0 0


. . , .
l u


I
b b b(  may 


then be specified, which is even larger than the one con-


cluded from available information, in order to reveal 


effects in case that  b(.)  takes on exceptional values.  


The associated membership values are assigned as 


! "! " ! "! "
0 0


. . 0.0
l u


b b/ /( ( . In the example, 


bI0 = [0.8,1.2]  is selected. If no further specifications for 


membership values are made, this leads to the fuzzy 


triangular number ! ". 0.8,1.0,1.2b (!  as shown in Fig-


ure 8.  Of course, the interval concluded from available 


information should be included in the fuzzy modeling.  


This is provided in form of the #-level set 


! " ! " # $. . 0.9,1.1
I I


b b
.


( (  for  # = µ(b(.)) = 0.5; see Figure 


8.  The associated analysis is performed with global 


optimization according to [21] as a repetition of the in-


terval analysis for various membership levels with ex-


ploitation of the nested configuration of the intervals.  A 


fuzzy failure probability 
f


P!  is obtained as shown in Fig-


ure 8. 


 


 


 


 


 


 


 


 


 


 


 


Figure 8:  Fuzzy bias factor ! ".b!  and fuzzy failure prob-


ability 
f


P! ; interval modeling and results from Figure 7 


are included for  µ = # = 0.5. 


 


A total of  Nb = 208  calculations of ! "! ".
f


P b  were 


necessary to obtain this result. The number Nb in the 


fuzzy analysis is not a multiple of Nb from interval analy-


sis according to the number of .-levels. Random ele-


ments in the optimization procedure weaken this conclu-


sion to the statistical mean of Nb. The search domains for 


different .-levels are of a different and so require a dif-


ferent Nb. Further, the numerical procedure from [21] 


exploits the nested configuration of the interval to re-use 


all previously evaluated points inside the search domain, 


which leads to a significant gain in numerical efficiency 


for a larger number of .-levels. In the example, the sig-


nificant increase of the support of the parameters in the 


fuzzy analysis compared to the interval possesses the 


governing effect, which leads to increase of Nb by a fac-


tor larger than two. But this is still a much smaller num-


ber  Nb  compared to a stochastic sampling of  b(.).  


Compared to interval analysis, the numerical effort is 


higher.  But the result 
f


P!   is much richer in information 


compared to  PfI. The fuzzy analysis contains the above 


interval analysis on the level # = 0.5; see Figure 8. In 


addition, a series of intervals with decreasing and in-


creasing size are analyzed, which provides information 


regarding sensitivities of  PfI  with respect to the interval 


size of  bI(.)  as discussed in Sections 2 and 3.1. Again, 


the membership values are not of interest, they just serve 


as a tool in the modeling.  Dependencies between the size 


of  bI(.)  and the size of  PfI  become directly visible in 


the results.  In the example, no particular sensitivities are 


obvious. 


 


3.2.3  Offshore Platform 


Deterioration of structural strength is a major factor in 


the safety assessment of offshore structures.  The protec-


tive paints and cathodic protection may be ineffective 


after some years.  Typically, when analyzing structural 


strength or structural capacity, only “uniform” corrosion 


is considered [20]. These issues can be addressed in an 


investigation as demonstrated in Section 3.2.2 applied to 


real structures. In the following example, a fixed offshore 


platform is analyzed, which is exposed to seawater with a 


temperature of  T = 15DC over a period of 5 years. All the 


tubular structural members beneath the seawater surface 


are assumed to have the same average reduction in thick-


ness due to corrosion only on the outer side. 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


Figure 9:  Structural model of the fixed jacket platform. 


 


As an example structure, a fixed jacket platform located 


in the North Sea is taken from [25]. The jacket is de-


signed for a water depth of approximately 110 m.  The 8-


leg jacket is arranged in a two by four rectangular grid. 


The overall dimensions are 27 m × 54 m at the top eleva-


tion and 56 m × 70 m at the mudline. The total height is 


142 m. Horizontal bracings are installed at 5 levels. The 


jacket foundation consists of four corner clusters with 


eight skirt piles in each group and no leg piles are used. 


The longitudinal jacket frames are diagonal-braced, with  


X-braces between central and corner legs at the bottom 


bay.  Transverse frames are  K-braced, with the bottom  


K  inverted to form a double  X  as shown in Figure 9. 
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The reliability analysis of a jacket structure involves the 


performance function, 


 


G = Ultimate Resistance 


            9 Environmental Loads.    (16) 


 


The ultimate resistance is determined through a pushover 


analysis of the platform.  It is equal to the environmental 


design loads multiplied by the Reserve Strength Ratio 


(RSR).  For this example, the environmental design loads 


are a 100-year wave together with a 10-year current. This 


is associated with a Gumbel distribution, which is im-


plemented as a probabilistic load model in the analysis. 


For the structural resistance, uncertainty is considered in 


the yield strength of the steel and in the thickness reduc-


tion of the members due to marine corrosion. The yield 


strength of the steel ASTM-A7 is described with a log-


normal distribution. Based on the probabilistic corrosion 


model discussed in Section 3.2.2, the environmental 


condition with  T = 15DC  and  t = 5  years leads to the 


mean value  f(.) = 0.48 mm and the standard deviation  


;B = 0.08 mm.  The bias factor  b(t,T)  lies in the range 


between 0.8 and 1.6 based on Figure 5. Implementation 


of these models in a structural analysis leads to the ap-


proximate performance function 


 


 


       (17) 


 


 


with 


 


       (18) 


 


For the reliability analysis, the variables in Eq. (17) are 


described by their respective probabilistic models. These 


random variables are summarized in Table 2. The proba-


bility of failure is calculated as ! "0
f


P P G( ,  via MSC.  


In order to calculate  Pf  effciently, importance sampling 


is utilized. A sample size of  NPf  = 5000  is used for the 


reliability analysis. Variants for modeling of  b(.)  are 


investigated, and the results are summarized in Figure 


10. Again, the interval concept shows some advantage 


when the bounds on the failure probability have to be 


found.  The total number of calculations  Nb   of  Pf  us-


ing the interval concepts is 114. The accuracy of the 


upper bound on  Pf  is higher, compared to the sampling 


of  b(.). 


 


Varia- Distri-           Parameters 


ble bution  


Fy Log. Normal    µ = 40 psi         c.o.v. = 0.087 


H Gumbel          .H = 21.0 m       "H = 1.63 m 


c(.) Normal          µ = 0.48 mm      ;B = 0.08 mm 


Table 2.  Random variables for the reliability 


analysis. 


 


 


 


 


 


 


 


 


 
Figure 10:  Failure probability; distributions, upper bounds and 


interval solution. 
 


In the example, the differences in the upper bound on the 


failure probability are small. However, in other cases, 


and if more imprecision is involved in the problem, the 


discussed effects may become quite significant. It is 


obvious that the imprecision in the bias function  b(.)  
and thus, the imprecision of  Pf   grow dramatically with 


the exposure time, as can be seen in Figure 5. Further, in 


the example, only the annual failure probability is calcu-


lated. In a consideration of the failure probability for the 


entire lifetime of the structure, the imprecision in the 


annual failure probabilities will be accumulated accor-


dingly. A consideration of this imprecision in a reliability 


analysis for the entire lifetime of an offshore structure is 


thus of great interest. 


 


4   Summary and Conclusions 


Different approaches were applied to describe impreci-


sion in probabilistic models for a reliability analysis of 


engineering structures. The features of the models were 


compared with a pure probabilistic solution and with one 


another by means of academic and practical examples. 


The influence of the modeling on the prediction of struc-


tural reliability was examined.  It was found that con-


cepts of imprecise probabilities and, in particular, fuzzy 


probabilities, have certain advantages when bounds on 


the failure probability are of interest.  These advantages 


concern the precision and the numerical effort in the 


calculation of these bounds and, in the case of fuzzy 


probabilities, some extended insight into sensitivities of 


the computational results with respect to the imprecision 


of the probabilistic input. Applicability in practice was 


demonstrated by means of a reliability analysis for a real 


offshore platform. 
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