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Abstract

We present a new approach for constructing regres-
sion and classification models for interval-valued data.
The risk functional is considered under a set of prob-
ability distributions, resulting from the application of
a chosen inferential method to the data, such that
the bounding distributions of the set depend on the
regression and classification parameter. Two extreme
(‘pessimistic’ and ‘optimistic’) strategies of decision
making are presented. The method is applicable with
many inferential methods and risk functionals. The
general theory is presented together with the specific
optimisation problems for several scenarios, including
the extension of the support vector machine method
for interval-valued data.
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1 Introduction

A main goal of statistical machine learning is predic-
tion of an unobserved output value y based on an
observed input vector x, which requires estimation of
a predictor function f from training data consisting of
pairs (x, y). Two major topics in statistics which fit
into the statistical machine learning framework are re-
gression analysis and classification. In regression anal-
ysis, one typically aims at estimation of a real-valued
function based on a finite set of observations with ran-
dom noise. In classification, the output variable is in
one of a finite number of classes1 and the main task is
to classify the output y corresponding to each input
x into one of the classes by means of a discriminant
function. Many methods have been proposed for solv-
ing machine learning problems, but these are mostly
based on rather restrictive assumptions, for example

1Often two classes, to which attention is restricted in this
paper; generalization is possible but not addressed here.

assuming the availability of a large amount of training
data, known probability distribution for the random
noise, or that all observations are point-valued (‘pre-
cise’). Such assumptions are typically not fully satis-
fied in applications. For example, data often include
interval-valued (‘imprecise’) observations, which may
result from imperfection of measurement tools or im-
precision of expert information if used as data. There
may also be (partially) missing data, for example in
classification problems the input vector (‘pattern’) x
is often not fully observed. Many methods for dealing
with such features use additional assumptions. In this
paper, a general framework is presented that allows
such important aspects to be incorporated in machine
learning problems without additional assumptions, in-
stead it uses the framework of imprecise probability
[34] and it can be used for a wide variety of inferences,
models and real-world situations.

Many methods have been presented for regression and
classification with interval-valued data [11, 16, 23]. In
some methods for machine learning, interval-valued
observations are replaced by precise values based on
some (often ad-hoc) additional assumptions, for ex-
ample by taking middle points of the intervals [14].
Also, they may not be suitable if an observation is
not restricted to an interval of finite length. This is
an important restriction, as frequently it may only be
known that an observation is larger (or smaller) than
a specific value while the support of the corresponding
random quantity is not finite. The method presented
in this paper can deal with such information without
additional assumptions and allows infinite support2,
including the use of (−∞,∞) for missing elements of
the input vector x. Machine learning methods have
been presented which use standard interval analysis
and provide predictor functions with interval-valued
parameter [2, 9, 26], and construction of second-order
machine learning models for interval-valued patterns

2It should be noted that the support of elements of vector
x can be arbitrary. Without loss of generality, we assume it to
be (−∞,∞).



was proposed in [4]. Although many methods have
been presented for dealing with interval-valued data
[23], these are mostly based on interval extension of
the empirical risk functional [33] without benefiting
from, or even considering, an imprecise probabilistic
framework in direct relation to imprecise statistical
data.

Pelckmans et al. [17] presented a detailed analysis of
different methods and models for dealing with miss-
ing data in classification. Many methods do so by im-
putation of (partially) missing patterns, where miss-
ing (precise) values are replaced by some preferable
values. Imputation using intervals, including the full
support in case of missing elements of x has also been
presented. De Cooman and Zaffalon [5] studied the
classification problem with missing data in the frame-
work of imprecise probability theory. An interesting
approach for regression analysis with interval-valued
and fuzzy data using belief functions and evidence
theory has been proposed by Petit-Renaud and De-
noeux [18]. One of the possible approaches to re-
gression analysis is to consider a set of probability
distributions for the random noise instead of a sin-
gle distribution. This approach can be realized in the
framework of imprecise probability theory [34] and
has been developed by Walter et al. [36].

The novel approach for constructing a class of ma-
chine learning models and methods proposed in this
paper uses risk functionals as in [18] and sets of prob-
ability distributions as in [36]. The starting point is
a set of probability distributions related to the train-
ing data, which can just be a small amount of data
or imprecise data, and this set can be generated by
a variety of inferential methods and is assumed to be
bounded by some lower and upper CDFs. Such sets
of probability distributions are also called p-boxes [7].
In the regression and classification applications con-
sidered in this paper, these bounds for the set of prob-
ability distributions depend on the unknown parame-
ter of the regression or discriminant function, because
the sets of probability distributions considered are for
the random residuals and as such they depend on the
model parameter. It should be noted that the consid-
ered set of distributions is not the set of parametric
distributions having the same parametric form as the
bounding distributions, but it is the set of all pos-
sible distributions restricted by the lower and upper
bounds. This is an important feature of the proposed
approach in this paper.

Traditionally, machine learning methods have used a
variety of simplifying assumptions in order to main-
tain acceptable computational effort required for im-
plementation. The fact that the bounds for the set of
probability distributions considered in the regression

and classification problems depend on the model pa-
rameter makes it clear that any optimisation of risk
functionals over the whole set of probability distribu-
tions is likely to require an enormous computational
effort. It will be illustrated that, for a wide range of
popular risk functions, computational is feasible due
to new results for the optimisation. In addition to
introduction of the general theory, the approach will
be illustrated by presenting the resulting optimisation
problem formulations for several combinations of loss
functions and sets of probability distributions.

Generally, the parameter of a regression model is com-
puted by minimising a risk functional defined by the
combination of a certain loss function and a probabil-
ity distribution for the random noise [10, 33]. When
using a set of probability distributions instead of a
precise distribution, we can choose a single distribu-
tion from this set which minimises or maximises the
risk functional; the probability distribution maximis-
ing (minimising) the risk functional corresponds to
the minimax (minimin) strategy. These cases can be
called the ‘pessimistic’ and ‘optimistic’ decisions, re-
spectively. The main problem in finding these two
(‘extreme’ or ‘optimal’) precise distributions is that,
like the bounds of the corresponding set of distribu-
tions, they depend on the unknown regression and
classification model parameter which has to be com-
puted. We will identify these optimal probability
distributions as functions of the unknown parameter
only, which enables us to substitute them into the
expression for the risk functional and to compute the
optimal model parameter by minimising the risk mea-
sure over the set of possible values for the parameter.

The sets of probability distributions can be con-
structed from training data by a variety of statis-
tical inference methods, including imprecise (‘gener-
alized’) Bayesian inference models [19, 34, 35], non-
parametric predictive inference [3] or belief functions
[1, 6, 7, 13, 22]. The approach has recently been used
in regression modelling with precise statistical data
using Kolmogorov-Smirnov (KS) confidence bounds
[30] and also includes imprecise Bayesian normal re-
gression [28]. In this paper, there is special atten-
tion to the use of extended support vector machines
(SVMs) [10, 33] to construct sets of probability distri-
butions in case of interval-valued data, as SVMs are
popular tools in machine learning. It will be inter-
esting to implement the general approach presented
here with a wide range of methods for constructing
the sets of probability distributions and to compare
the resulting inferences, for example also with regard
to the effect of parameters such as the chosen confi-
dence level if KS bounds are used; this is left as an
important topic for future research.



2 Regression and classification in the
machine learning framework

The standard learning problem can be formulated as
follows [10, 33]. We select the best available function
f(x, αopt) from the set of functions f(x, α) parame-
terized by parameter α ∈ Λ (this parameter is typi-
cally multi-dimensional), so the function f(x, αopt) is
considered to be the best approximation of the sys-
tem response. The selection of the desired function
is based on a (training) set of n observations (xi, yi),
i = 1, ..., n, assumed to be independent (conditionally
on the assumed model) and identically distributed
with probability density function (PDF) p(x, y) =
p(y | x)p(x) and CDF F (x, y). Here x ∈Rm is a mul-
tivariate input and y is a scalar output which takes
values from R for the regression model and from the
set {−1, 1} for the classification model3. The regres-
sion and classification models can be regarded as spe-
cial cases of the general learning problem, the method
presented here is widely applicable.

The quality of an approximation f(x, α) in a re-
gression model is measured by the loss function
L(y, f(x, α)) which typically depends on the differ-
ence z = y − f(x, α). Therefore, we use the notation
L(z) = L(y, f(x, α)). Common and convenient loss
functions are the quadratic loss L(z) = z2, the lin-
ear loss L(z) = |z|, and the so-called ‘ε-insensitive’
[33] and ‘pinball’ loss functions [12]. In classification
models, commonly used loss functions are the indi-
cator loss function L(x, y) = 1{sgn(f(x, α)) 6= y},
the logistic loss, the hinge loss, the squared hinge loss
and the least square loss functions [21]. All these loss
functions can be implemented in the general approach
presented in this paper.

The main goal of learning is to find the optimal pa-
rameter αopt which minimises the following risk func-
tional over the parametrized class of functions f(x, α),
α ∈ Λ:

R(α) =

∫ ∫
L(y − f(x, α))p(x, y)dxdy.

A commonly made assumption for regression mod-
els is that the random error (noise) Z, which takes
the values z = y − f(x, α), has mean zero and PDF
p(z | α) = p(y | x), leading to

R(α) =

∫
L(z | α)p(z | α)dz.

If the joint density p(x, y) is unknown (or no specific
form of it has been assumed), then the risk functional

3Generally, y might take values in any finite set, the restric-
tion to binary classification is due to space limitations.

R(α) can be replaced by the empirical risk functional

Remp(α) =
1

n

n∑
i=1

L(y − f(x, α)). (1)

If p(x, y) is known or of an assumed parametric form,
then a common technique for computing αopt is the
maximum likelihood estimation method [33].

In this paper we assume that the function f is linear,

f(x, α) = α0 + 〈αϕ(x)〉

with 〈·〉 the canonical dot product notation. In partic-
ular we consider the function with ϕi(xi) = xi, which
corresponds to many popular models in learning. The
use of more general functions f will be discussed else-
where.

3 Regression with a set of
distributions

Suppose that we do not know the precise CDF of Z,
but we know that it belongs to a set F(α) bounded
by lower CDF F (z | α) and upper CDF F (z | α)
which depend on the parameter α. As mentioned be-
fore, these bounds can result from the use of a wide
range of inferential methods applied to the observa-
tions (xi, yi), i = 1, ..., n. It is important to emphasize
that the dependence of the lower and upper CDFs
on the parameter α is an important feature of the
proposed approach. When we have a set of prob-
ability distributions instead of a single one, we can
construct a corresponding set of regression models.
For decision making, it is important to choose some
of these models4, we consider the use of the minimax
(‘pessimistic’) and minimin (‘optimistic’) strategies to
judge the quality of an estimator and hence of the cor-
responding regression model.

3.1 The minimax strategy

The minimax strategy can be motivated as follows.
We do not know (or wish to assume) a precise CDF
F and every CDF in F(α) could be selected. There-
fore, we should take the ‘worst’ distribution providing
the largest value of the risk functional. The minimax
criterion can be interpreted as an insurance against
the worst case because it aims at minimising the ex-
pected loss in the least favorable case [20]. The upper
risk functional R(α) for α is defined as

R(α) = max
F (z | α)∈F(α)

∫
L(z | α)dF (z | α). (2)

4Alternative methods for dealing with the set of regression
models can be of interest but are not investigated here.



It can be regarded as the upper expectation of the loss
function. The optimal parameter αopt is computed by
minimising the upper risk functional over the set Λ.

Most loss functions in regression models have one min-
imum at point 0. Utkin and Destercke [31, 32] have
shown that the optimal CDF from the set F(α) pro-
viding the upper bound for R(α) in case of such loss
functions is of the form

FU (z) =


F (z), z ≤ F−1(τ),

τ, F
−1

(τ) < z < F−1(τ),
F (z), z ≥ F−1(τ),

(3)

where τ is one of the roots of the equation

L
(
F
−1

(τ)
)

= L
(
F−1(τ)

)
.

If the loss function is symmetric about 0, then τ can

be derived from the equation F−1(τ) + F
−1

(τ) = 0.
Using this optimal CDF, the upper risk functional
R(α) is

R(α) =

∫ F
−1

(τ)

−∞
L(z | α)dF (z | α)

+

∫ ∞
F−1(τ)

L(z | α)dF (z | α). (4)

The optimal value of parameter α according to the
minimax strategy can be derived by minimising R(α)
over α ∈ Λ.

3.2 The minimin strategy

The minimin strategy can be interpreted as corre-
sponding to an ‘optimistic’ decision, namely a CDF
F (z | α) ∈ F(α) is used which provides the smallest
value for the risk functional R(α) for arbitrary values
of α. The corresponding lower risk functional for α is
defined as

R(α) = min
F (z | α)∈F(α)

∫
L(z | α)dF (z | α). (5)

It can be regarded as the lower expectation of the loss
function. The optimal parameter αopt is computed by
minimising the lower risk functional over the set Λ.

The optimal CDF from the set F(α) providing the
lower bound for the expectation is

FL(z) =

{
F (z), z ≤ 0,
F (z), z > 0.

(6)

Using this optimal CDF, which has a jump at point
z = 0, the lower risk functional R(α) is

R(α) =

∫ 0

−∞
L(z | α)dF (z | α)

+

∫ ∞
0

L(z | α)dF (z | α). (7)

The optimal value of parameter α according to the
minimin strategy can be derived by minimising R(α)
over α ∈ Λ.

4 Regression with interval-valued
observations

Suppose that the training set consists of n indepen-
dent observations (xi,Yi), i = 1, ..., n, with intervals
Yi = [y

i
, yi] instead of point-valued observations5.

This implies that the random noise Z takes values
in intervals Zi(α) such that y − f(xi, α) ∈ Zi(α) for
all y ∈ Yi. The question that needs to be addressed is
how to proceed with the interval-valued training set
in the framework of predictive learning.

There are several ways in which one could deal with
such an interval-valued data set. In this paper, we
construct the lower and upper CDFs for a set of
probability distributions corresponding to the avail-
able information through a chosen inferential method
out of a wide range of possibilities, as discussed be-
fore. This set depends on the parameter α because
the intervals Zi(α), i = 1, ..., n are functions of α.
With such intervals Zi(α), the same approach as pro-
posed by Utkin and Coolen [30], who used p-boxes
corresponding to Kolmogorov-Smirnov bounds, can
be applied for parameter optimisation in the regres-
sion model under the minimax and minimin scenar-
ios. Denoting the boundary points of intervals Zi(α)
by Zi(α) = y

i
− f(xi, α) and Zi(α) = yi− f(xi, α), a

p-box can be constructed from the observed intervals
in the framework of Dempster-Shafer theory [6, 22].
If we assume for simplicity that every observation in-
terval occurs only once, then

F (z | α) = Bel((−∞, z]) = n−1
∑

i:Zi(α)≤z

1,

F (z | α) = Pl((−∞, z]) = n−1
∑

i:Zi(α)≤z

1.

If some intervals occur more than once then the corre-
sponding CDFs follow straightforwardly. These lower
and upper CDFs, which depend on the parameter α,
can be used for dealing with interval-valued y in re-
gression, as is illustrated next for several scenarios.

5The method presented in this paper can also deal with
interval-valued input variables xi. Due to space limitations, for
regression the presentation is restricted to point-valued input
variables, but for classification (Section 5) interval-valued input
variables are used. Throughout, the intervals are not restricted,
hence they can be any interval of possible values upto the whole
of (−∞,∞).



4.1 The minimax strategy

With the lower and upper CDFs corresponding to the
interval-valued observations as discussed above, the
upper risk functional in (4) is

R(α) = n−1
∑

i:Zi(α)≤F
−1

(τ)

L(Zi(α))

+ n−1
∑

i:Zi(α)≥F−1(τ)

L(Zi(α)).

with τ such that F−1(τ) = −F−1(τ). Note that
this upper risk functional uses, for every α, only the
boundary points Zi(α) and Zi(α) of the intervals
Zi(α). This feature is important as it significantly
simplifies computation of the optimal parameter αopt.

The upper risk functional for the minimax strategy
with a fixed α can be written as the upper expectation
corresponding to basic probability assignments [15,
24], giving

R(α) = n−1
n∑
i=1

max
z∈[Zi(α),Zi(α)]

L(z).

We also concluded that this upper risk functional is
achieved at boundary points of intervals Zi, with

R(α) = n−1
n∑
i=1

max
{
L(Zi(α)), L(Zi(α))

}
.

It should be pointed out that, if all observations are
precise (‘point-valued’), so y

i
= yi = yi, this upper

risk functional is equal to the standard empirical risk
functional (1). We can now consider some of the most
important loss function in regression, where the opti-
mal parameter αopt under minimax can be obtained
by minimising R(α) over all α ∈ Λ.

4.1.1 Quadratic loss function

We consider the quadratic loss function L(z) = z2,
the most popular one in classical regression theory
and applications. To minimise the corresponding up-
per risk functional we have to solve the optimisation
problem functional:

min
α

(
n∑
i=1

max
{
Zi2(α),Zi2(α)

})
. (8)

Introducing new optimisation variables Gi, i =
1, ..., n, such that G2

i = max
{
Zi2(α),Zi2(α)

}
, prob-

lem (8) can be rewritten as

min
α,Gi

n∑
i=1

G2
i , (9)

subject to

Gi ≥ Zi(α), Gi ≥ Zi(α),

Gi ≥ −Zi(α), Gi ≥ −Zi(α), i = 1, ..., n. (10)

The third and fourth constraints take into account the
fact that residuals may be negative. If we assume that
the function f(x, α) is linear, i.e., f(x, α) = α0+〈αx〉,
then the optimisation problem specified by (9) and
(10) is a well-known quadratic programming problem
with the optimisation variables α and Gi, i = 1, ..., n,
which can be solved by means of standard methods.

4.1.2 Linear and pinball loss function

The pinball loss function with parameter τ ∈ [0, 1] is
given by [12]

Lτ (z) =

{
τz, z > 0,

(τ − 1)z, z ≤ 0.

The linear loss function is the special case of the pin-
ball loss function with τ = 1. We consider calculation
of the optimal parameter of the regression model us-
ing the minimax criterion with the pinball loss func-
tion. We introduce new optimisation variables Gi, i =
1, ..., n, such that Gi = max

{
Lτ (Zi(α)), Lτ (Zi(α))

}
.

The condition z ≥ 0 implies the condition Gi ≥ τ · z.
However, if Gi ≥ τ · z and z ≥ 0, then G ≥ τ · z − z.
On the other hand, the condition z < 0 implies the
condition Gi ≥ (τ − 1)· z = τ · z − z. However, if
Gi ≥ τ · z − z and z < 0, then Gi ≥ τ · z. Finally, the
condition Gi ≥ Lτ (z) can be represented by means of
two constraints Gi ≥ τ · z and Gi ≥ τ · z − z, which
simultaneously ‘cover’ all possible values of z. This
implies that the optimisation problem for computing
the optimal regression parameter can be written as

min
α,Gi

n∑
i=1

Gi, (11)

subject to

Gi ≥ τ · Zi(α), Gi ≥ τ · Zi(α),

Gi ≥ (τ − 1) · Zi(α),

Gi ≥ (τ − 1) · Zi(α), i = 1, ..., n. (12)

If we assume that the function f(x, α) is linear, then
this is a well-known linear programming problem.

4.2 SVM

Let us return to the case with the linear loss func-
tion and the minimax strategy, and compare the ob-
tained optimisation problem with the popular SVM
approach [10, 21, 33] which in regression is also called



‘support vector regression’. The ε-insensitive loss
function is applied in the corresponding regression
models [33]. If all observations are point-valued, so
y
i

= yi = yi, then according to the standard SVR ap-
proach, parameter α is determined by the quadratic
programming problem

min
α

(
1

2
〈α, α〉+ C

n∑
i=1

(ξi + ξ∗i )

)
(13)

subject to

ξi ≥ 0, ξi + ε ≥ (〈αxi〉+ α0)− yi,
ξ∗i ≥ 0, ξ∗i + ε ≥ yi − (〈αxi〉+ α0) , i = 1, .., n. (14)

Here C is a constant ‘cost’ parameter, ξi, ξ
∗
i , i =

1, ..., n, are slack variables, and 1
2 〈α, α〉 is the

Tikhonov regularization term (the most popular
penalty or smoothness term) [27] which enforces
uniqueness by penalizing functions with wild oscilla-
tion and effectively restricting the space of admissi-
ble solutions [8]. The positive slack variables ξi, ξ

∗
i

represent the distance from yi to the corresponding
boundary values of the ε-tube.

The constraints (12) and (14) coincide if the variables
Gi coincide with the slack variables ξi, ξ

∗
i and y

i
= yi,

ε = 0, τ = 1. Consequently, the proposed approach
for constructing the regression model with interval-
valued data, supplemented by the regularization term
and the constant ‘cost’ parameter C, can be regarded
as an extension of the SVM approach to the case of
interval-valued data, i.e. we have the same objective
function and the following constraints in terms of SVR
for every i = 1, ..., n:

ξi ≥ 0, ξi + ε ≥ (〈αxi〉+ α0)− y
i
,

ξi ≥ 0, ξi + ε ≥ (〈αxi〉+ α0)− yi,
ξ∗i ≥ 0, ξ∗i + ε ≥ y

i
− (〈αxi〉+ α0) ,

ξ∗i ≥ 0, ξ∗i + ε ≥ yi − (〈αxi〉+ α0) .

Now the slack variables ξi, ξ
∗
i are additionally con-

strained and represent the largest distance from y
i

and yi to the corresponding boundary values of the
ε-tube, respectively. This implies that the minimax
strategy searches for the largest residuals (or ‘mar-
gins’ in terms of classification) from all residuals in
every interval Zi, i = 1, ..., n. The corresponding dual

optimisation problem is

max

−1

2

n∑
i=1

n∑
j=1

(Qi − Ti) (Qj − Tj) 〈xixj〉

− ε
n∑
i=1

(Qi + Ti)−
n∑
i=1

y
i
(Qi − Ti)

+

n∑
i=1

(yi − yi) (ϕ∗i − ϕi)

)
,

subject to

n∑
i=1

(Qi − Ti) = 0, 0 ≤ Qi ≤ C, 0 ≤ Ti ≤ C.

Here ψi, ψ
∗
i , ϕi, ϕ

∗
i are Lagrange multipliers and Qi =

ψi + ϕi, Ti = ψ∗i + ϕ∗i .

It can be seen from this dual optimisation problem
that in the regression model we use a point in every
observation interval which is a linear combination of
its bounds y

i
and yi with coefficients determined by

the values of the Lagrange multipliers. If yi = y
i

we get the dual optimisation problem of the standard
SVM method with variables Qi and Ti.

If the quadratic loss function is used instead of the ε-
insensitive loss function, then the proposed regression
model (optimisation problem (9)-(10)) is the ‘least
squares SVM’ approach [25] which is solved through
a system of linear equations.

4.3 The minimin strategy

Using the lower and upper CDFs corresponding to the
interval-valued observatons, as discussed at the start
of this section, we can rewrite the lower risk functional
(7) as

R(α) = n−1
∑

i:Zi(α)≤0

L(Zi(α))

+ n−1
∑

i:Zi(α))≥0

L(Zi(α)).

As in the case of the upper risk function, this lower
risk functional is, for every α, defined only by the
boundary points Zi(α) and Zi(α) of the intervals
Zi(α). However, not all observation intervals con-
tribute to the lower risk functional because the opti-
mal CDF has a jump at point 0.

The lower risk functional for the minimin strategy
with a fixed α can be written as the lower expectation
corresponding to basic probability assignments [15,
24], giving

R(α) = n−1
n∑
i=1

min
z∈[Zi(α),Zi(α)]

L(z). (15)



It follows that the risk measure is 0 if there exist one or
more values of α such that 0 ∈ [Zi(α),Zi(α)] for ev-
ery i = 1, ..., n. If this is the case for multiple vectors
α, one can consider to have found several ‘perfect fits’
to the available data, which either could be considered
all together (this would be in line with some funda-
mental ideas behind imprecise probability) or which
could be compared by a secondary criterion (the same
comment applies generally if there are multiple opti-
mal vectors α). This is an interesting topic for future
research, for now let us assume that a unique best esti-
mate of α can be obtained and that the corresponding
lower risk functional is positive (so there is no ‘perfect
fit’). A term in the objective function is non-zero if
one of the following two conditions holds

Zi(α) < 0, Zi(α) > 0.

Let us consider the pinball loss function for this sit-
uation. Introducing new optimisation variables Hi,
i = 1, ..., n, it is easy to prove that the optimisation
problem can be written as

min
α,Hi

n∑
i=1

Hi,

subject to

Hi ≥ τZi(α), Hi ≥ (τ − 1)Zi(α),

Hi ≥ 0, i = 1, ..., n.

The quadratic loss function leads to the similar prob-
lem with Hi replaced by G2

i , minimisation over Gi,
and τ = 1. These are well-known optimisation prob-
lems that can be solved efficiently by standard meth-
ods.

4.4 SVM

We consider the case with the linear loss function un-
der the minimin strategy and derive the optimisation
problem in the SVM framework. By using the stan-
dard Tikhonov regularization term, we can formulate
the following convex optimisation problem

min
α

(
1

2
〈α, α〉+ C

n∑
i=1

(ξi + ξ∗i )

)
,

subject to

ξi ≥ 0, ξi + ε ≥ (〈αxi〉+ α0)− yi, i = 1, ..., n,

ξ∗i ≥ 0, ξ∗i + ε ≥ y
i
− (〈αxi〉+ α0) , i = 1, ..., n.

This is a quadratic programming problem, with slack
variables ξi, ξ

∗
i representing the distance from yi and

y
i

to the corresponding lower and upper boundary val-
ues of the ε-tube, respectively. The minimin strategy

searches for the smallest residuals in each interval Zi,
i = 1, ..., n, under condition that there are positive
residuals. As in Subsection 4.2, the corresponding
dual optimisation problem provides further insights
into the optimal solution, a detailed analysis will be
presented elsewhere.

5 Classification with interval-valued
observations

We consider classification problems where the sys-
tem output y is restricted to two values, the pro-
posed method can be generalized to more possible
values. The input variables (patterns) x may be
interval-valued. Suppose that we have a training set
(Xi, yi), i = 1, ..., n. Here Xi ⊂ Rm is the Cartesian

product of m intervals [x
(i)
k , x

(i)
k ], k = 1, ...,m, which

again are not restricted so could even include inter-
vals (−∞,∞), and yi ∈ {−1, 1}. Let the n−1 = r
observations Xi with i = 1, . . . , r correspond to the
class (with) y = −1 and the n+1 = n− r observations
Xi with i = r+1, . . . , n correspond to the class y = 1.

The risk functional can be written as R(α) =
R−1(α) +R+1(α), with

Ry(α) =

∫
Rn

L(x, y)dF (x, y)

=πy

∫
Rn

L(x, y)dF (x | y),

where πy = p(y) is a prior probability6 for class y.
Suppose that the CDFs F (x | y) are unknown. As
discussed before, a wide range of inferential meth-
ods can be chosen to, in combination with the data-
set containing interval-valued observations, produce
a set of CDFs F (x | y). One additional obstacle due
to the interval-valued input variables is that x is a
vector so now p-boxes of multivariate distributions
must be constructed. We propose that this problem
can be resolved as follows. Note that interval-valued
data x lead to an interval-valued discriminant func-
tion f(x, α) whose parameter α is unknown and has
to be determined. Therefore, in contrast to many al-
ternative approaches in classification, we propose to
consider the CDF F (f | y) instead of the multivari-
ate CDF F (x | y). This is briefly discussed further
below, detailed explanation and illustrations will be
presented elsewhere. With this change, the risk func-
tional becomes

Ry(α) = πy

∫
R
L(f | y)dF (f | y).

6Choice of prior probabilities is not addressed here. How-
ever, it is worth noting that generalization to allow imprecise
prior probabilities is possible.



But we allowed explicitly the use of a set of CDFs, so
now consider the set F(y) of probability distributions
produced by lower CDF F (f | y) and upper CDF
F (f | y) CDFs , i.e.

F(y) = {F (f) | ∀f ∈ R, F (f |y) ≤ F (f) ≤ F (f |y)}.

It is important to emphasize that, although we have
not explicitly included α in the notation for these dis-
tribution sets, F(y) depends on the parameter α be-
cause f is a function of α and the lower and upper
CDFs depend on α. We introduce notation

fL = min
x∈X

f(x, α), fU = max
x∈X

f(x, α).

If the function f is linear, then the lower and upper
bounds for the discriminant functions are determined
only by the bounds of pattern intervals, i.e.

fL = min
xk∈{xk,xk}, k=1,...,m

f(x, α),

fU = max
xk∈{xk,xk}, k=1,...,m

f(x, α).

This property is also valid for arbitrary monotone dis-
criminant functions. For every interval-valued obser-
vation (Xi, yi), we have the interval fi = [fL,i, fU,i] of
values of the discriminant function. These intervals
depend on the parameter α, so the bounds fL,i and
fU,i cannot be computed explicitly, but inference is
again possible in many important scenarios through
specification of the optimisation problems involved,
and the use of standard algorithms to solve such prob-
lems. We illustrate this next for the minimax strategy,
methods for the minimim strategy can be developed
similarly and will be presented elsewhere.

5.1 The minimax strategy

According to the minimax strategy, we select a prob-
ability distribution from the set F(−1) and a proba-
bility distribution from the set F(+1) such that the
risk measures R−1(α) and R+1(α) achieve their max-
ima for every fixed α. It must be emphasized that
the ‘optimal’ probability distributions may be differ-
ent for different values of parameter α, which implies
that the corresponding ‘optimal’ probability distribu-
tions depend on α. Since the sets F(−1) and F(1)
are obtained independently for y = −1 and y = 1,
the upper risk functional with respect to the minimax
strategy is of the form

R(α) = max
F (f |−1)∈F(−1)

R−1(α) + max
F (f |1)∈F(1)

R+1(α).

For many popular loss functions in such classification
the loss function L(f,−1) is increasing. If this is the

case, then the upper bound for R−1(α) is achieved at
the distribution F (f,−1), hence

R−1(α) =

∫
R
L(f,−1)dF (f,−1).

In this case the function L(f, 1) is decreasing, so

R+1(α) =

∫
R
L(f, 1)dF (f, 1).

The upper expectationR−1(α) corresponding to given
basic probability assignments m(fi) = r−1 for inter-
vals fi, i = 1, ..., r, can be derived for fixed α by
[15, 24]

R−1(α) = r−1
r∑
i=1

max
f∈[fL,i(α),fU,i(α)]

L(f,−1)

= r−1
r∑
i=1

L(fU,i(α),−1).

And similarly, the corresponding upper expectation
R+1(α) is

R+1(α) = (n− r)−1
n∑

i=r+1

L(fL,i(α), 1).

Finally, we minimise R(α) to compute αopt, with

R(α) =
π−
r

r∑
i=1

L(fU,i(α),−1)

+
π+
n− r

n∑
i=r+1

L(fL,i(α), 1).

Further steps towards the solution of the problem de-
pend on the chosen loss function, we briefly consider
one important special case. For the hinge loss func-
tion L(x, y) = max(1− yf, 0),

R(α) =
π−
r

r∑
i=1

max (0, 1 + fU,i(α))

+
π+
n− r

n∑
i=r+1

max (0, 1− fL,i(α)) .

After simple modifications, we get the linear problem

min
α

(
π−
r

r∑
i=1

Gi +
π+
n− r

n∑
i=r+1

Gi

)
(16)

subject to

Gi ≥ 1− yi (〈αxi〉+ α0) , ∀x(i)k ∈ {x
(i)
k , x

(i)
k },

Gi ≥ 0, i = 1, ..., n. (17)



By adding the standard Tikhonov regularization term
to the objective function, we get the SVM classifier
with cost parameters C− = π−/r and C+ = π+/(n−
r). We introduce notation

Qi =
∑
k∈Ji

ψik, Tj(i) =
∑

k∈Ji(j)

ψikx
(i,k)
j

where the set Ji(j) is a ‘projection’ of the set of indices
on the j-th element of the vector xi. Then the dual
optimisation problem is

max

 n∑
i=1

Qi −
1

2

n∑
i=1

n∑
j=1

yiyj

(
m∑
v=1

Tv(i)Tv(j)

) ,

subject to

n∑
i=1

yiQi = 0, 0 ≤ Qi ≤ C−, i = 1, ..., r,

0 ≤ Qi ≤ C+, i = r + 1, ..., n.

This is the SVM classification approach with interval-
valued data under the minimax strategy. Space re-
strictions prevent further details, illustration or dis-
cussion of this result and related results for different
loss functions and for the minimin strategy. However,
it is clear that the general approach presented in this
paper leads to a wide variety of attractive methods
for machine learning, with relatively straightforward
inclusion of interval-valued observations.

6 Concluding remarks

In this paper, a new class of imprecise regression
and classification models has been proposed which
are capable to deal with interval-valued data as fre-
quently occur in practice. The class has been illus-
trated for several important specific cases, and it has
been shown that the resulting inference problems can
be formulated as standard optimisation problems, so
the method can be implemented using readily avail-
able software. This new method has several important
features. First, it has a clear explanation and justi-
fication in the decision making framework. Secondly,
it allows a wide variety of inferential methods for con-
structing the p-boxes. For example, imprecise (‘gen-
eralized’) Bayesian inference models [19] can be used
and these provide an exciting opportunity for devel-
oping learning models for a wide range of different ap-
plications. Thirdly, the method can deal with (partly)
missing data as the intervals for observations are not
restricted, which is important as complete data sets
are the exception in practice. Finally7, resulting sta-
tistical inferences are similar some well-known robust

7This was discussed by Utkin and Coolen [30] for p-boxes
based on Kolmogorov-Smirnov bounds

statistics methods, for which the current approach
provides formal justifications and interpretations in a
decision theoretic framework. Detailed study of these
aspects, and development of further models and cor-
responding inferences, is ongoing. The main disad-
vantage of the proposed approach is that it is often
not straightforward how the bounding CDFs can be
explicitly defined as functions of the regression or clas-
sification parameter, which may add to computational
complexity but the results show that the approach can
be developed to allow real-world applications. A main
strength of the proposed method is the link with the
popular SVM approach. A key feature of SVMs is
the use of kernels which are functions that transform
the input data to a high-dimensional space where the
learning problem is solved. Such kernel functions can
be linear or nonlinear, which will allow us to signifi-
cantly extend the class of regression or discriminant
functions that can be used. Our approach directly
showed how the regular SVM approach can be gener-
alized for dealing with interval-valued observations.

There are interesting possibilities for combining cor-
responding ‘minimin’ and ‘minimax’ strategies. For
example, the method for cautious decision making
proposed by Utkin and Augustin [29], which uses the
extreme points of a set of probability distributions
produced by imprecise data, can be applied. In our
approach, the values of the extreme points are de-
termined from the optimal CDFs (3) and (6) for the
minimax and minimin strategies, respectively. De-
tailed analysis of this cautious strategy and the pos-
sibility to arrive at set-based predictions and related
final decisions on the basis of our model outputs, are
interesting topics for future research, together with
dealing with imprecise input variables for the object
to predict, imprecision in the dependent variables and
of course comparison with more established methods.

Acknowledgements

We thank two referees for detailed comments and sug-
gestions which all have improved this paper and will
guide future research.

References

[1] A. Arequi, T. Denoeux. Constructing predictive be-
lief functions from continuous sample data using con-
fidence bands. ISIPTA’07 8, pp 11-20, 2007.

[2] C. Angulo, D. Anguita, L. Gonzalez-Abril, J.A. Or-
tega. Support vector machines for interval discrimi-
nant analysis. Neurocomputing, 71:1220–1229, 2008.

8Proceedings ISIPTA conferences available from
www.sipta.org



[3] T. Augustin, F.P.A. Coolen. Nonparametric predic-
tive inference and interval probability. Journal of Sta-
tistical Planning and Inference, 124:251–272, 2004.

[4] E. Carrizosa, J. Gordillo, F. Plastria. Classification
problems with imprecise data through separating hy-
perplanes. Technical Report MOSI/33, Vrije Univer-
siteit Brussel, 2007.

[5] G. de Cooman, M. Zaffalon. Updating beliefs with in-
complete observations. Artificial Intelligence, 159:75–
125, 2004.

[6] A.P. Dempster. Upper and lower probabilities in-
duced by a multi-valued mapping. Annals of Mathe-
matical Statistics, 38:325–339, 1967.

[7] S. Destercke, D. Dubois, E. Chojnacki. Unifying prac-
tical uncertainty representations - i: Generalized p-
boxes. International Journal of Approximate Reason-
ing, 49:649–663, 2008.

[8] T. Evgeniou, T. Poggio, M. Pontil, A. Verri. Reg-
ularization and statistical learning theory for data
analysis. Computational Statistics & Data Analysis,
38:421–432, 2002.

[9] P.Y. Hao. Interval regression analysis using support
vector networks. Fuzzy Sets and Systems, 60:2466–
2485, 2009.

[10] T. Hastie, R. Tibshirani, J. Friedman. The Elements
of Statistical Learning: Data Mining, Inference and
Prediction. Springer, New York, 2001.

[11] H. Ishibuchi, H. Tanaka, N. Fukuoka. Discriminant
analysis of multi-dimensional interval data and its ap-
plication to chemical sensing. International Journal
of General Systems, 16:311–329, 1990.

[12] R. Koenker, G. Bassett. Regression quantiles. Econo-
metrica, 46:33–50, 1978.

[13] E. Kriegler, H. Held. Utilizing belief functions for
the estimation of future climate change. International
Journal of Approximate Reasoning, 39:185–209, 2005.

[14] E.A. Lima Neto, F.A.T. de Carvalho. Centre and
range method to fitting a linear regression model on
symbolic interval data. Computational Statistics and
Data Analysis, 52:1500–1515, 2008.

[15] H.T. Nguyen, E.A. Walker. On decision making us-
ing belief functions. In: R.Y. Yager, M. Fedrizzi,
J. Kacprzyk (Eds), Advances in the Dempster-Shafer
Theory of Evidence. Wiley, New York, pp 311–330,
1994.

[16] P. Nivlet, F. Fournier, J.J. Royer. Interval discrim-
inant analysis: An efficient method to integrate er-
rors in supervised pattern recognition. ISIPTA’01, pp
284-292, 2001.

[17] K. Pelckmans, J. De Brabanter, J.A.K. Suykens,
B. De Moor. Handling missing values in support vec-
tor machine classifiers. Neural Networks, 18:684 –
692, 2005.

[18] S. Petit-Renaud, T. Denoeux. Nonparametric regres-
sion analysis of uncertain and imprecise data using
belief functions. International Journal of Approxi-
mate Reasoning, 35:1–28, 2004.

[19] E. Quaeghebeur, G. de Cooman. Imprecise proba-
bility models for inference in exponential families.
ISIPTA’05, pp 287–296, 2005.

[20] C.P. Robert. The Bayesian Choice. Springer, New
York, 1994.

[21] B. Scholkopf, A.J. Smola. Learning with Kernels:
Support Vector Machines, Regularization, Optimiza-
tion, and Beyond. MIT Press, Cambridge, 2002.

[22] G. Shafer. A Mathematical Theory of Evidence.
Princeton University Press, 1976.

[23] A. Silva, P. Brito. Linear discriminant analysis for
interval data. Computational Statistics, 21:289–308,
2006.

[24] T.M. Strat. Decision analysis using belief func-
tions. International Journal of Approximate Reason-
ing, 4:391–418, 1990.

[25] J.A.K. Suykens, J. Vandewalle. Least squares support
vector machine classifiers. Neural Processing Letters,
9:293–300, 1999.

[26] H. Tanaka, H. Lee. Interval regression analysis by
quadratic programming approach. IEEE Transac-
tions on Fuzzy Systems, 6:473–481, 1998.

[27] A.N. Tikhonov, V.Y. Arsenin. Solution of Ill-Posed
Problems. W.H. Winston, Washington DC, 1977.

[28] L.V. Utkin. Regression analysis using the impre-
cise Bayesian normal model. International Journal of
Data Analysis Techniques and Strategies, 2:356–372,
2010.

[29] L.V. Utkin, T. Augustin. Efficient algorithms for de-
cision making under partial prior information and
general ambiguity attitudes. ISIPTA’05, pp 349–358,
2005.

[30] L.V. Utkin, F.P.A. Coolen. On reliability growth
models using Kolmogorov-Smirnov bounds. Interna-
tional Journal of Performability Engineering, 7:5–19,
2011.

[31] L.V. Utkin, S. Destercke. Computing expectations
with p-boxes: two views of the same problem.
ISIPTA’07, pp 435–444, 2007.

[32] L.V. Utkin, S. Destercke. Computing expectations
with continuous p-boxes: Univariate case. Interna-
tional Journal of Approximate Reasoning, 50:778 –
798, 2009.

[33] V. Vapnik. Statistical Learning Theory. Wiley, New
York, 1998.

[34] P. Walley. Statistical Reasoning with Imprecise Prob-
abilities. Chapman and Hall, London, 1991.

[35] P. Walley. Inferences from multinomial data: Learn-
ing about a bag of marbles. (With discussion) Jour-
nal of the Royal Statistical Society, Series B, 58:3–57,
1996.

[36] G. Walter, T. Augustin, A. Peters. Linear regression
analysis under sets of conjugate priors. ISIPTA’07,
pp 445–455, 2007.


