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Abstract 

We review de Finetti’s two coherence criteria for 

determinate probabilities: coherence1 defined in terms of 

previsions for a set of random variables that are 

undominated by the status quo – previsions immune to a 

sure-loss – and coherence2 defined in terms of forecasts 

for events undominated in Brier score by a rival forecast.  

We propose a criterion of IP-coherence2 based on a 

generalization of Brier score for IP-forecasts that uses 1-

sided, lower and upper, probability forecasts.  However, 

whereas Brier score is a strictly proper scoring rule for 

eliciting determinate probabilities, we show that there is 

no real-valued strictly proper IP-score.  Nonetheless, 

with respect to either of two decision rules – Γ-Maximin

or (Levi’s) E-admissibility-+-Γ-Maximin – we give a 

lexicographic strictly proper IP-scoring rule that is based 

on Brier score. 

Keywords. Brier score, coherence, dominance, E-

admissibility, Γ-Maximin, proper scoring rules. 

1. Introduction 

Starting in about 1960, de Finetti emphasized two 

coherence criteria – coherence1 for previsions and 

coherence2 for forecasts assessed by Brier score.   He 

established [2, 4] that these two criteria are equivalent for 

purposes of distinguishing between sets of previsions or 

sets of forecasts that are undominated versus those that 

are dominated.  Coherence is the common requirement 

that a decision maker avoids dominated alternatives.  

That is, a set of previsions are coherent1 i.e., they are 

undominated by the alternative of the status-quo – there 

is no “Book” – if and only if those same quantities, when 

used as forecasts evaluated by Brier score, are coherent2,

i.e., they are undominated by any rival set of forecasts.   

In his later presentations de Finetti favored coherence2

over coherence1 because, in addition to providing an 

equivalent criterion for coherence, also proper scores 

provide a method for incentive compatible elicitation, 

unlike the situation with coherence1 and the prevision 

game, as we call it.  In section 2, we make precise and 

explain these claims. 

De Finetti’s theory of coherent previsions, coherence1,

serves as the basis for numerous IP generalizations – see 

[7, 18, 19] for examples.  However, we know of no 

parallel development of IP theory based on proper 

scoring rules.  It is our purpose in this essay to report 

basic findings about scoring-rule based IP theory.  In 

section 3 we explain one approach to an IP version of 

coherence2.  In section 4 we present an impossibility 

result for a real-valued proper IP scoring rule.  By 

contrast, we illustrate a strictly proper, lexicographic 

(vector-valued) IP version of Brier score.  In section 5 we 

conclude with remarks about the approach begun here. 

2. De Finetti’s two criteria for coherence

2.1 Coherence1 and coherence2. The prevision game, is 

formulated for a class of bounded variables, X = {Xi: i ∈
I} each of which is measurable with respect to a space 

{Ω, B}, where I serves an index set.   

One player, the bookie, posts a fair, or 2-sided prevision 

P(Xi) for each Xi ∈ X.    The bookie’s opponent, the 

gambler, may choose finitely many non-zero real 

numbers {αi} where, when the state ω ∈ Ω obtains,  

the bookie’s payoff is   Σi αi( Xi(ω) – P(Xi) ), and the 

gambler’s payoff is the negative, -Σi αi( Xi(ω) – P(Xi) ).

That is, the bookie is obliged either to buy (if α > 0), or 

to sell (if α < 0) |α|-many units of X at the price, P(X).

Hence, the previsions are described as being 2-sided or 

fair buy/sell prices. 

The bookie’s previsions are incoherent1 if the gambler 

has a strategy that insures a uniformly negative payoff 

for the bookie, i.e., if there exist a finite set {αi} and ε > 

0 such that, for each ω ∈ Ω, Σi αi( Xi(ω) – P(Xi) ) < -ε.

Otherwise, the bookie’s previsions are coherent1.

De Finetti’s Fundamental Theorem of Previsions:

The bookie’s previsions {P(X): X ∈ X} are coherent1

if and only if  there is a finitely additive probability 

P whose expected value for X, EP[X], is the bookie’s

prevision:     

• Coherence1 if and only if EP[X] = P(X).

This result extends to include coherence1 for conditional 

expectations given non-null events, using the device of 

called-off previsions.   Let F be an event with F(ω) its 

indicator function.  The bookie’s called-off prevision, 



PF[X], for X given event F has payoff in state ω to the 

bookie:    F(ω)α( X(ω) - PF(X) ), 

which equals 0 – the transaction is called-off – in case 

event F fails.  Assuming that the conditioning event is 

not null, i.e., P(F) ≠ 0, then 

• Coherence1 for called-off previsions requires: 

EP[X | F] = PF[X].

When the conditioning event F is null, coherence1 places 

no substantive constraints on the called-off prevision 

PF[X].  That is EP[F(ω)α( X(ω) - PF(X) )] = 0 regardless 

the real-value of PF[X].  This defect in de Finetti’s 

formulation has been discussed many times in the 

literature, and with a variety of different proposals to 

remedy the situation.  For three different corrections to 

this defect in coherence1 see [8, 10, and 20].  However, 

the problem with conditioning on null events does not 

arise for the questions addressed in this essay.  So we use 

de Finetti’s version of coherence1.

De Finetti [3] noted that strategic aspects of betting may 

affect elicitation of a bookie’s fair previsions.  For 

example, when the bookie (believes he/she) knows the 

gambler’s betting odds, then announcing a prevision is 

subject to strategic play in the game and may fail to 

reveal the bookie’s fair prevision. 

Example 1: Suppose the bookie’s fair (2-sided) prevision 

for an event G is .50.  But suppose the bookie is 

confident the gambler’s fair prevision for G is .75.   

So the bookie announces P(G) = .70, anticipating that the 

gambler will find it profitable to buy units of G at the 

inflated price.  Elicitation using the prevision game fails 

to identify the bookie’s fair price for G. ◊

Aside: There are other issues concerning elicitation in the 

prevision game.  Among these is the challenge of state-

dependent utilities [13], which we mention in section 5. 

To mitigate strategic aspects of the prevision game, de 

Finetti turned to a different coherence criterion: 

probabilistic forecasting subject to Brier score.  Hereafter 

we focus on forecasting events, represented by their 

indicator functions. E(ω) = 1 if ω ∈ E and E(ω) = 0 if 

ω ∉ E.

The bookie’s previsions serve as probabilistic forecasts 

subject to Brier score: squared-error loss.  The penalty 

for the forecast P(E) when ω ∈ Ω is given by two 

functions {g1, g0} depending upon the state:      

g1(P(E), ω) = (1 – P(E))
2
   if event ω ∈ E obtains; 

g0(P(E), ω) = (0 − P(E))
2   

 if event ω ∈ Ec
 obtains, 

which is summarized by the squared-error penalty score 

(E(ω) – P(E))
2

For the conditional (called-off) forecast PF(E), on 

condition that event F obtains, the score is   

F(ω)(E(ω) – P(E))
2
.

And just as in the prevision game, the score for a finite 

set of forecasts is the sum of the separate scores.   

Definition: A forecast set {P(X): X ∈ X} is coherent2 if, 

for each finite subset of X, there is no rival forecast set 

{P′(X): X ∈ X} whose scores uniformly dominates in Ω.

The two senses of coherence are equivalent, as de Finetti 

established. 

Proposition 1: A set of previsions is coherent1 in the 

prevision-game if and only if those same previsions are a 

coherent2 set of forecasts under Brier score.  

Proof:  Here is a geometric version of de Finetti’s 

projection argument for establishing that coherence1 = 

coherence2 with unconditional previsions/forecasts.  We 

use these ideas in Section 3 to extend coherence2 to an IP 

setting. 

 Let X = {X1, X2} where X1 is the indicator for an event A

and X2 is the indicator for the complementary event Ac
.

In Figure 1, below, a pair of forecasts, {Q(A), Q(Ac
)}

with 0 ≤ Q(A), Q(Ac
) ≤ 1, is depicted by the point (Q(A),

Q(Ac
) in the unit square.  Note: If either forecast is 

outside the unit interval, then it is outside the range for 

the variable being forecasted.  And then it is trivial to 

dominate that forecast with a rival forecast chosen to be 

closer to the nearest endpoint of the range of the variable 

in question. 

The coherent1 forecasts lie along the reverse diagonal, 

the simplex on two states, where Q(A) + Q(Ac
) = 1. No 

such point is dominated by any other coherent1 forecast, 

since moving along this line segment increases the 

distance, and hence increases the squared error relative to 

one endpoint or the other.   

Example 2: Consider, the incoherent1 previsions: P(A) = 

.6 and P(Ac
) = .7.   A Book is achieved against these 

previsions with the gambler’s strategy α1 = α2 = 1.  Then 

the net payoff to the bookie is -0.3 regardless which state 

ω obtains.   In order to see that these are also incoherent2

forecasts, review Figure 1. ◊

If the forecast previsions are not coherent1, they lie 

outside the probability simplex.  Project these 

incoherent1 forecasts into the simplex.  As in Example2,

(.60, .70) projects onto the coherent1 previsions depicted 

by the point (.45, .55).  By elementary properties of 

Euclidean projection, the resulting coherent1 forecasts are 

closer to each endpoint of the simplex.  Thus, the 

projected forecasts have a dominating Brier score 

regardless which state obtains. This establishes that the 

initial forecasts are incoherent2.  Since no coherent1

forecast set can be so dominated, we have coherence1 of 

the previsions if and only coherence2 of the 

corresponding forecasts.



Figure 1 

Just as coherence1 fails to regulate called-off previsions 

given a null event, coherence2 does not regulate called-

off forecasts given a null event.   See [5] for a parallel 

revision to coherence2.

2.2 Incentive Compatible Scoring   

Brier score is just one of an infinite class of (strictly)

proper scoring rules: A coherent forecaster (uniquely) 

minimizes expected score by announcing previsions.  

Thus, forecasting with a (strictly) proper scoring rule 

avoids the problem of strategic behavior present in the 

prevision game: there is no opponent.  Even allowing 

different proper scoring rules for different forecasts, by 

taking the combined score for a finite set of forecasts as 

the sum of the individual scores, the result is again 

(strictly) proper.   Savage [11] and Schervish [12] 

characterize the (g0, g1) pairs for proper scoring rules.  In 

[14] we establish that all (proper) scoring rules produce 

the same distinction between coherent1 and incoherent1

forecasts as with Brier score, both for unconditional 

forecasts and for conditional forecasts given a non-null 

event. 

Proposition 2 [14]:   

2.1 When the scoring rule is proper, finite, and 

continuous, each incoherent1 forecast set is dominated by 

some coherent1 forecast set. 

2.2 When the scoring rule is proper, finite, but not 

continuous, each incoherent1 forecast set is dominated, 

but not necessarily by a coherent1 forecast set. 

Note: Result 2.1 can be established by a 

generalization of de Finetti’s geometric argument, 

where the projection depends upon the scoring rule. 

See [9].  The demonstration in [14] uses game-

theoretic reasoning.  

3.  Coherence2 with a Brier IP scoring rule.

Recall C.A.B.Smith’s [17] modification of de Finetti’s 

prevision game that provides a criterion of IP-coherence1

for (closed, convex) IP sets.  Rather than requiring a 2-

sided, fair price, permit the bookie to fix a pair of 1-sided 

previsions for each X ∈ X:

• The bookie announces one rate P(X) as a buying 

price for use when α > 0, and a possibly different 

selling price P (X) for use when α < 0.

The result is a generalized Book argument. See [19, 

chapter 2] for some history and basic results. 

Proposition 3:

(3.1) A bookie’s 1-sided previsions avoid sure loss if and 

only if there is a maximal, non-empty (closed, convex) 

set of finitely additive probabilities P where    

P(X)  < infemumP∈P EP[X]

And P (X)  > supremumP∈P EP[X].

When these inequalities are equalities, the 1-sided 

previsions are said to be IP-coherent1.

(3.2) By requiring lower and upper previsions for 

sufficiently many variables (from the linear span of X),

the 1-sided previsions avoid sure loss if and only if they 

are also IP-coherent1.  See Theorem 1.ii of [15]. 

We offer a parallel version for defining IP-coherence2

based on Brier score for 1-sided forecasts, as follows:  

 Use a lower forecast to assess a penalty score when 

the event forecasted fails;

 Use an upper forecast to assess a penalty score when 

the event forecasted obtains.

Let {Ei: i = 1, …, m} be m events defined over a finite 

partition Ω = {ωj: j = 1, …, n}.  The forecaster gives 

lower and upper probability forecasts {pi, qi} for each 

event Ei.

Scoring forecasts with a Brier-styled IP scoring rule:

Fix a state ω ∈ Ω.

If ω ∈ Ei the score for the forecast of Ei is  

(1-qi)
2
 = g1(qi, ω)

If ω ∉ Ei the score for the forecast of Ei is        

pi
2
   = g0(pi, ω)

That is, use the most favorable forecast value from the 

pair {pi, qi} for determining the score.  Just as with the 

other coherence criteria discussed here, the score for a set 

of forecasts is the sum of the individual forecast scores. 

Dominance:  A forecast set G (strictly) dominates another 

F if, for each ω ∈ Ω, the score for G is (strictly) less than 

the score for F.

But, since the vacuous {0 = pi, qi = 1} forecast dominates 

each rival {0 < pi′, qi′ < 1}, we require an additional 

restriction on the class of competing forecasts in order to 

avoid triviality of the resulting theory of IP-coherence. 

Aside: This is analogous to a problem that is usually 

ignored within traditional IP theory.  With 1-sided 

previsions, it remains coherent to be strategic: announce 

a lower buying (and/or a higher selling) price than one is 

prepared to accept.  That is, knowing who is the Gambler

(.60, .70)

(.45, .55) 

( Q(A)

Q(Ac)

de Finetti  

projection

(1,0) 

(0,1



in the 1-sided Prevision Game, the Bookie may play 

strategically and mimic having a less determinate IP-

coherent1 set of previsions in order to secure strictly 

favorable gambles. 

We propose that IP-coherence2 takes into account both a 

rival model class M of coherent1 forecasts and the

relative imprecision in a forecast set.  Stated informally, 

a set of 1-sided forecasts F are incoherent2 when: 

(i) there exists a dominating set of forecast G that are  

(ii) at least as precise/determinate as F and  

(iii) where G belongs to the IP-coherent1 model class M.

We illustrate this idea by filling in the details of the two 

concepts: the rival model class M and relative 

informativeness between forecast sets. 

Example 3: M is the ε-contamination class.  Let P be a 

particular probability distribution over Ω = {ω1, …, ωn}.

Fix 0 ≤ ε ≤ 1.  Let Q be the simplex of all probability 

distributions on Ω.  The ε-contamination model with 

focus P, Pε, is the set of probability distributions on Ω

defined by Pε = {(1-ε)P + εQ: Q ∈ Q}.  For our 

purposes, it is useful to know that this class is 

characterized by specifying (IP-coherent1) lower 

probabilities for atomic events, and using the largest 

closed convex set of distributions satisfying those 

bounds.◊

In what follows we illustrate one index of relative

indeterminacy associated with our Brier-styled IP-

scoring rule. 

IP-forecasts over a finite partition for Brier-styled,

ε-contamination coherence2:   

Let F = { {pi, qi}: i = 1, …, n} be forecasts for each state 

ωi ∈ Ω ={ω1, ..., ωn}.

Define F’s score set S  by an ordered n-tuple of  n-

dimensional points:   

S = {(q1, p2, …, pn), (p1, q2, …, pn), …, (p1, p2, …, qn)}.

Thus, S  contains at most n-many distinct points. Each 

point in S has n-many coordinates.    

Observe that the IP-Brier-style score for F evaluated at 

state ωj is the square of the Euclidean distance from the 

jth
 point of S to the jth

 corner of the probability simplex 

on Ω.  Clearly, the IP-score for a forecast set can be 

improved merely by moving a lower forecast closer to 0, 

or by moving an upper forecast closer to 1. So, consider 

dominating forecast sets only when the dominating 

forecast has a score set that is less indeterminate than the 

score set for the dominated forecast.  Here is a candidate 

for relative indeterminacy which, when combined with 

our Brier-style IP-score, allows a characterization of ε-
contamination IP-coherence2.   

Definition: Forecast set F2 is at least as indeterminate as

forecast set F1 (or F1 is at least as determinate as F2) if 

the convex hull of score set S1, H(S1), is isomorphic 

under rigid movements (where both shape and sized are 

held fixed) to a subset of the convex hull of score set S2,

H(S2).

Note that this relation of relative imprecision, or relative 

indeterminacy, is merely a partial order.  We opt for such 

a concept so that relative indeterminacy may be extended 

to a variety of different real-valued indices of 

imprecision, e.g., by using generalized volume of the 

score set to quantify indeterminacy. 

We use these notions to define IP-coherence2 generally, 

and then continue with our illustration of IP-coherence2

with respect to the ε-contamination model. 

Definition:  Given an IP-scoring rule, a set F of IP-

forecasts is IP-incoherent2 with respect to the IP-model 

M provided that there is a dominating set of rival 

forecasts G from the model M where the set G is at least 

as determinate than the set F.  Say that F is IP-coherent2

with respect to M if it is not IP-incoherent2 with respect 

to M.  For convenience we will write these as M-

coherent2 and M-incoherent2

Observe that IP-incoherence2 reduces to de Finetti’s 

incoherence2 when all forecasts in F are determinate, i.e., 

when pi = qi for each forecasted event Ei (i ∈ I), and 

when M is the class of determinate, coherent1 forecasts.   

To see this, assume that |Ω| = k.  Then the score set S is 

the ordered set with k-many repetitions of the same |I|-

dimensional point.  Since the lower and upper F forecasts 

for an event are identical, the k-many points in S do not 

vary with ω.  So a dominating rival forecast set G = {p’i,

q’i} must also assign the same lower and upper values to 

each event Ei (that is, for each i ∈ I, p’i = q’i}, in order 

for G to be at least as determinate as F.  By Proposition

2.1, then if G dominates F the rival forecast set {pi’}

establish that F is incoherent2 and incoherent1.

Next, we provide two basic results for IP-coherence2

with respect to the ε-contamination model. 

Proposition 4:  Let 0 ≤ pi ≤ qi ≤ 1, with n-many forecasts 

F solely for atoms in a finite algebra Ω = {ω1, …, ωn}.

(4.1)  The score set S for F lies entirely within the 

probability simplex on Ω if and only if  the lower and 

upper forecasts F match an ε-contamination model.  And 

then F cannot be dominated by rival forecasts from a 

more determinate ε-contamination model. 

(4.2)  If all the elements of a score set S, associated with 

forecast set F, lie outside the probability simplex on Ω,

there is a dominating ε-contamination forecast model F*

with greater determinacy than F. F is IP-incoherent2

against rivals from the ε-contamination model.  



Proof:    

(4.1) is established by elementary calculations.   If and 

only if each point of the score set S belongs to the 

probability simplex then, when state ωj obtains, 

corresponding to the jth
 point of S,  1 = qj + ∑i≠j pi, and 

this equality obtains for each j = 1, …, n.  Then there 

exists an ε ≥ 0 such that for each i = 1, …, n, qi = pi + ε,

which defines an ε-contamination model.  In the opposite 

direction, if forecasts for the atoms are based on an ε-

contamination model, for i = 1, …, n, qi = pi + ε, and then 

1 = qj + ∑i≠j pi so that all of the score set S lies in the 

probability simplex.  

Last, if S belongs to the probability simplex and a rival 

ε-contamination model F’ (with corresponding score set 

S’) dominates, then H(S) is a proper subset of H(S’) 

because for each j = 1, …, n, the jth
 point of S’ is closer 

to the jth
 extreme point of the probability simplex than is 

the jth
 point of S.  So, F’ is less determinate than F.  Thus 

F is IP-coherent2 with respect to the ε-contamination 

model. 

(4.2) follows by the Brouwer Fixed-Point Theorem. 

Begin with a forecast set F = F0, whose score set S0 has 

each of its n-many ordered points outside the simplex of 

coherent1 forecasts.  Recursively create rival forecast sets 

as follow.  Apply the (de Finetti) projection to each of 

these n-many ordered points of S0 taking them into the 

probability simplex of coherent1 forecasts.  This creates 

(at most) n-points  T1 = {t1, …, tn} where each t ∈ T1 is a 

probability distribution P(•) over Ω.  Form the new 

forecast set F1 = {{p1i, q1i}: i = 1, …, n} where p1i = 

mint∈T1{P(ωi)} and q1i = maxt∈T1{P(ωi)}.  This 

determines a new score set S1.  Since none of the points 

in S0 belongs to the probability simplex, by the same 

reasoning used in de Finetti’s analysis for Proposition 1, 

F1 dominates F0.

Just in case S1 lies in the simplex, when result (4.1) 

applies, the recursive procedure halts.  Otherwise 

forecast set F2 is created from a projection of score set S1

into the probability simplex, etc. (See Appendix 2 for an 

illustration.)   

Since Euclidean projections are continuous functions and 

the probability simplex is compact, the recursive process 

with forecast sets F0, F1, F2, …. has a fixed point F* in 

the class of  ε-contamination models.  By a simple 

adaptation of de Finetti’s argument for Proposition 1, the 

forecast set Fi+1 (weakly) dominates the forecast set Fi

unless Fi is a fixed point of the process.   

Note: It may be that Fi+1 merely weakly dominates Fi for i

≥ 1, since some but not all the points in S1 may lie in the 

probability simplex.  However, since all the points of S0

lie outside the probability simplex, F1 dominates F0.

Last, the projection of a closed, convex set, e.g., the 

projection of H(S) into the probability simplex, is 

isomorphic to a subset of H(S).  Thus, assuming that the 

each of the points of S0 is outside the probability simplex 

on Ω, the fixed point F* of the process F0, F1, F2, …, 

which belongs to the ε-contamination model class, 

strictly dominates F0 , and is at least as determinate as F0.

Hence, F0 is IP-incoherent2 with respect to the ε-

contamination class.  

Example4:  Here is an illustration of Proposition 4, IP-

coherence2 with respect to the ε-contamination model, 

using 5 different forecast sets.  Let Ω = {ω1, ω2, ω3}.

Forecasts are for the three atoms only.  The five forecast 

sets Fj
 (j = 1, …, 5) are given in the form {{pi, qi} for ωi:

i = 1, 2, 3}. The respective score sets have three points 

with coordinates {(q1, p2, p3), (p1, q2, p3), (p1, p2, q3)}, as 

described above.  Figure 2 diagrams the convex hull of 

each score set and shows the shaded 2-dimensional, 

triangular simplex of probability functions on Ω.

Figure 2 (for Example 4) 

The convex hull of the five score sets are color coded.  The 

simplex of probability distributions is shaded.  Each score set 

projects onto S2, the score set for forecast set F2, corresponding 

to an ε-contamination model. 

F1
 = { {.55, .80}, {.55, .80}, {.55, .80}}   

S1
 = {(.80, .55, .55), (.55, .80, .55), (.55, .55, .80)} 

F2
= { {.25, .50}, {.25, .50}, {.25, .50}}   

S2
 = {(.50, .25, .25), (.25, .50, .25), (.25, .25, .50)} 

F3
 = { {.20, .45}, {.20, .45}, {.20, .45}}   

S3
 = {(.45, .20, .20), (.20, .45, .20), (.20, .20, .45)} 

F4
 = { {.10, .35}, {.10, .35}, {.10, .35}}   

S4
 = {(.35, .10, .10), (.10, .35, .10), (.10, .10, .35)} 

F5
 = { {.05, .30}, {.05, .30}, {.05, .30}}   

S5
 = {(.30, .05, .05), (.05, .30, .05), (.05, .05, .30)} 



The two forecast sets F1
 and F5

 are IP-incoherent1 in 

accord with Proposition 3.  Their 1-sided previsions lead 

to sure losses as, respectively, their lower (upper) 

forecasts are too great (too small). There is no 

determinate probability distribution agreeing with either 

set’s lower and upper forecasts. 

Forecast set F2
 corresponds to an ε-contamination model 

with focus the uniform probability P = (1/3, 1/3, 1/3) and 

ε =  1/6.  The convex hull of the score set S2
 lies in the 

probability simplex, as per Proposition (4.1). It is IP-

coherent1 and IP-coherent2 with respect to the ε-

contamination model class. 

Forecast set F3
 is IP-coherent1 as it has lower and upper 

forecasts agreeing with a closed convex set of 

probabilities.   Those values agree with an ALUP model, 

but not with an ε-contamination model.  That is, F3
 is IP-

coherent2 with respect to an IP-model class defined by 

specifying atomic lower and upper probabilities [ALUP], 

but not so with respect to the ε-contamination class, 

which is an IP-model class determined solely by atomic 

lower probabilities.  (See Appendix 1 for details.) 

Forecast set F4
 has lower and upper forecasts that do not 

match those from a closed convex set of probabilities.  Its 

intervals are too wide.  However, the uniform probability 

agrees with these forecasts, i.e., the probability values 

(1/3, 1/3, 1/3) fall inside the forecast intervals from F4
.

Thus, in accord with Proposition 3, the forecasts from F4

do not suffer a sure-loss in the 1-sided prevision game; 

however, F4
 is IP-incoherent1 and IP-incoherent2 with 

respect to the ε-contamination model class. 

As indicated by Figure 2, each of the other four convex 

hulls projects to H(S2
).  That is, the process described in 

the proof of Proposition (4.2) has F2
 as its fixed point for 

each of the five forecast sets, and the process terminates 

after (at most) one projection.◊
See Appendix 2 for an illustration of Proposition (4.2) 

where the fixed point is merely a limit of the process. 

4.  Incentive compatible IP-elicitation 

Recall that de Finetti favored coherence2 over coherence1

because, in addition to serving as an equivalent criterion 

of coherence, Brier score provides a strictly proper score.  

It provides incentive compatible elicitation for 

determinate probabilities.  For a forecaster whose 

degrees of belief about events are represented by a single 

probability function P(•) and who maximizes expected 

utility, she/he has a unique strategy for announcing 

forecasts (and called-off forecasts) that minimize 

expected Brier score.  Announce the probability P(E) for 

the forecast of event E.  If H is not-null, then announce 

the conditional probability P(E |H) for the called-off 

forecast of event E, on condition that H obtains.  Recall 

that when H is null, coherence2 places no restrictions on 

the called-off forecasts given H.  There is no difference 

to the expected score contributed by any conditional 

forecast of E, called-off if H fails, regardless whether that 

forecast is or is not coherent2.  See [5] for an improved 

version of coherence2.

What can be done to extend Brier score to an incentive 

compatible IP-scoring rule?  The question is ill-formed 

without a decision rule that extends maximizing expected 

utility to IP contexts.  We consider only decision rules 

that reduce to the rule of maximizing expected utility 

when those IP sets collapse onto the special case of a 

singleton set, where upper and lower probabilities are 

identical and a single probability distribution represents 

uncertainty.  Also, we require that decision rules respect 

the following weak form admissibility.  Let S(F, ω) be a 

real-valued IP-scoring rule for forecast set F in state ω.

Recall that scores are given in the form of a loss so that 

smaller is better. 

Admissibility Principle: If for each ω ∈ Ω S(F, ω) ≤

S(F’, ω), then F is admissible in a pairwise choice 

between rival forecasts F and F’.  Moreover, if for 

each ω this inequality is strict then F’ is inadmissible 

whenever F is an option. 

In this section we report two results about eliciting upper 

and lower probabilities for events when the forecaster’s 

opinion is represented by a closed, convex sets of 

probabilities on a finite state space.  

Proposition 5: There is no real-valued (strictly) proper IP 

continuous scoring rule. 

By contrast, however, 

Proposition 6: Under either the Γ-Maximin decision rule, 

or using one of Levi’s [8] lexicographic decision rules – 

E-admissibility followed by Γ-Maximin security – there 

is a strictly proper lexicographic IP-Brier scoring rule. 

The IP-decision rules we investigate in Proposition 6 are 

summarized as follows, with details given in Section 4.2:   

Γ-Maximin:  The admissible options in D are those that 

maximize their lower expected value. 

E-admissibility: An option X ∈ D is E-admissible if for 

some P ∈ P and each Y ∈ D,  EP[X] ≥ EP[Y].

E-admissibility-followed-by-Γ-Maximin:  Apply Γ-

Maximin to the set of E-admissible options in D.

Next, we establish and explain these findings. 

4.1 Proof of Proposition 5  The impossibility reported in 

this result is made evident by considering the demands 

on a real-valued strictly proper IP-scoring rule S(F’, ω),

for forecasting one event, E.



Let the interval [p, q], 0 ≤ p ≤ q ≤ 1, represent the 

forecaster’s uncertainty for E.  In general, the IP-scoring 

rule may be written 

  g1([p, q], ω)    if ω ∈ E obtains, 

and  g0([p, q], ω)    if ω ∈ Ec
 obtains.  

When p = q, in order to be strictly proper and real-

valued, the scoring rule must satisfy Theorem 4.2 of 

Schervish [12].   Specifically, with 0 ≤ x ≤ 1, the loss for 

the point forecast S([x, x], ω), x satisfies  

 g1(x)  = g1(1) + (1− q)λ(dq)x
1∫    if ω ∈ E obtains; 

 g0(x)  = g0(0) + qλ(dq)0
x∫      if ω ∈ Ec obtains, 

where g1(1) and g0(0) are finite, and λ(dq) is a measure 
on [0, 1) that gives positive measure to every non-

degenerate interval.   Continuity of the scoring rule 

results from a continuous measure λ with no point 

masses.  For example, Brier score results by letting λ
have the constant density 2 on the unit interval. 

When p < q, the impossibility of a strictly proper IP-

scoring rule is a consequence of the fact that, since λ is 
positive on non-degenerate sub-intervals of the unit 

interval [0,1] and continuous, there will be rival interval 
forecasts [p, q] and [p’, q’] with   

 g1([p, q]) – g1([p’, q’])  ≥  0,  

and g0([p, q]) – g0([p’, q’])  ≥  0. 
Then the interval forecast [p’, q’] is admissible against 

the rival interval forecast [p, q].  When the interval [p, q]

is the forecaster’s IP-uncertainty for event E, she/he will 

not have reason to announce that as her/his forecast 

rather than the rival forecast [p’, q’] and the IP-scoring 

rule is not strictly proper.  If for each ω the inequality is 

strict, then the IP-scoring rule is not proper.

Example 5.  We illustrate Proposition 5 using the ideas 
about IP-coherence2 presented in section 4.  Consider 

Brier score adapted to a forecast interval [p, q].  That is, 

let b([p,q], ω) = g1([p, q], ω) = (1-q)2   if ω ∈ E,

and b([p,q], ω) = g0([p, q], ω) =   p2       if ω ∈ Ec.
Introduce a real-valued index of indeterminacy for a 

forecast set F, I(F), where I agrees with the partial order 

of relative imprecision used to define IP-coherence2.  For 

instance, let I([p, q]) = q-p.  For real values x, y, let 

H(x,y) be a real-valued function increasing in each of its 
arguments, e.g., H(x,y) = x + y.   Define an IP-Brier score 

for forecast set F by B(F,ω) = H(b(F,ω), I(F)).  Then by 

Proposition 5, B is an improper-IP scoring rule.  To 

complete the example, consider event E and compare the 

two interval forecasts [.25, .75] and [.50, .50].  Then  

B([.25, .75], ω)   =  1/16 + 1/2  =  9/16  

and  B([.50, .50], ω)   =   1/4 + 0 = 1/4. 
Hence, the interval forecast [.25, .75] is inadmissible 

under this IP-Brier scoring rule B.◊

4.2 Proof of Proposition 6  First we review the two 

decision rules mentioned in the result.  Let P be a closed, 

convex set of probabilities P on the space {Ω, B}.  Let χ
be the class of bounded random variables, X, each 

measurable with respect to this space.  For each X, write 

X for the infemum over P of the expected value of X,

X  = infP∈P EP[X],

which identifies the lower expected value for X with 

respect to P.  Identify a decision problem, D, with a 

closed subset of χ. That is, the options in a decision 
problem form a closed set of bounded variables.   

The two IP-decision rules we investigate in Proposition 6 

are defined as follows:   

Γ-Maximin:  The admissible options in D are those that 

maximize their lower expected value. 

Note:  By making both P and D closed sets, this max-min

operation is well defined. 

E-admissibility: An option X ∈ D is E-admissible if for 

some P ∈ P and each Y ∈ D,  EP[X] ≥ EP[Y].

E-admissibility-followed-by-Γ-Maximin:  Apply Γ-
Maximin to the set of E-admissible options in D.

In general, these decision rules have very different 

axiomatic characterizations.  Γ-Maximin is represented 

by a real-valued ordering of χ using X-values to index 
each option.  But that ordering violates the independence 

axiom for preferences.  E-admissibility is not represented 
by an ordering.  In fact, it does not even reduce to 

pairwise comparisons.  (See [16] for related discussion.)  

Nonetheless, next we construct a lexicographic IP-Brier 

score that is strictly proper under either of the two 

decision rules mentioned in Proposition 6. 

Proposition 5 precludes a proper IP-scoring rule that 

elicits both endpoint of the interval forecast [p,q] for 

event E.  However, we may elicit either endpoint alone.   

Define the lower-Brier scoring rule, b([x,y], ω) = b(x,ω)

as:  g1(x) =  (1-x)2   if ω ∈ E
g0(x) =  1 + x2   if ω ∈ Ec.

and the upper-Brier scoring rule, b ([x,y], ω) = b (y,ω)

as:  

1g (y) = (1-y)2 + 1 if ω ∈ E
0g (x) = x2   if ω ∈ Ec.

Each of these is a strictly proper scoring rule for eliciting 

determinate forecasts.  This follows immediately from 

Schervish’s representation (above,) where g1(1) = 0g (0)

= 0, g1(0) = 1g (1) = 1, and λ = 2 is the uniform (Brier) 

score density for both rules.  

Lemma 1: Under the Γ-Maximin decision rule, 
respectively, the lower- (upper-) Brier score is strictly 

proper for the lower (upper) endpoint of the IP-forecast 

[p,q] of event E.
Proof of Lemma 1: We give the argument for the lower-

Brier score.  The reasoning for the upper-Brier score is 



similar. Let p = minP∈P P[E] and q = maxP∈P P[E], so that 

∀P ∈ P p ≤ P(E) ≤ q, and these bounds are tight.  The 

lower-Brier score of the forecast [r, s] for E depends 

solely on r.  The P-Expected score for forecast [r,s] is: 
EP[b[r,s]] = P(E)(1-r)2 + (1-P(E))(1+r2)

   = (1-r)2 + 2r(1-P(E)).

By simple dominance, 0 ≤ r ≤ 1.  For a given forecast r,
this expected penalty score is greatest at P(E) = p, when 

the expected score is (1-r)2 + 2r(1-p).    But since lower-

Brier score is strictly proper, this worst value is best, i.e., 

the worst of these expected scores is smallest uniquely 

for a forecast with r = p.  Lemma 1

Lemma 2: Under the E-admissibility-followed-by-Γ-
Maximin decision rule, respectively, the lower- (upper-) 

Brier score is strictly proper for the lower (upper) 

endpoint of the IP-forecast [p,q] of event E.

Proof of Lemma 2: Again, we give the argument only for 

the lower-Brier score.  Since lower-Brier score is a 

strictly proper scoring rule for determinate forecasts, the 
E-admissible forecasts are those of the form  [r, s] where 

p ≤ r ≤ q. Then, by Lemma 1, the Γ-Maximin solution 

from this set is uniquely solved at r = p.  Lemma 2

By Proposition 5, unfortunately, the real-valued 

composite score obtained by adding together these two 

scores,  b ([r,s]) = b([r,s]) + b ([r,s],  is not IP-proper, 

which we illustrate with the following example. 

Example 6: We illustrate the impropriety of the real-

valued IP-score, b ([r,s]), in accord with Proposition 5. 

Consider an extreme case where the forecaster is 

maximally uncertain of event E, so that the vacuous 

probability interval [0, 1] represents her/his uncertainty. 

The forecast [.5, .5] has constant b -score, i.e.,  

b ([.5, .5], ω) =  1 + ¼ + ¼ = 1.5,  

independent of ω.
The straightforward forecast [0,1] has the constant score   

b ([0, 1], ω) =  1+1 = 2,

independent of ω.  So forecast [.5, .5] strictly dominates 

forecast [0,1] under the b -scoring rule.◊

Therefore, we use a 2-tier lexicographical composite 

scoring to combine these two rules in a manner that 

create a strictly proper IP-Brier score. 

Definition: The two-tier, lexicographic IP-Brier score for 

the interval forecast [p, q] of event E, which we write as 
bLU([r,s]), is the 2-tier lexicographic loss function  

bLU([r,s], ω)  = < b([r,s], ω), b ([r,s], ω) >. 

That is, lexicographically, first apply the loss function 

b([r,s]), and among those forecasts have equal b-value, 

then apply the b ([r,s]) loss function.  By the preceding 

two lemmas, under the two decision rules named in 

Proposition 6, only the interval [p,q] is bLU-optimal for 

forecasting event E when the forecaster’s uncertainty for 

that event is the IP-interval [p,q].  

Aside:  It is evident that the order of the components is 

irrelevant in this 2-tiered, lexicographic IP-Brier score.  

To elicit an IP-forecast set F = { {pi, qi}: i = 1, …, n} for 

the events {E1, E2, …, En} use, e.g., the 2n tiered 

lexicographic IP-Brier score  

< b1([r1,s1]), b 1([r1,s1]), …, bn([rn,sn]), b n([rn,sn]) >.

Then the following is immediate from Proposition 6. 

Corollary. The 2n-tiered, lexicographic IP-Brier score is 

strictly proper under either the Γ-Maximin or E-

admissibility-followed-by-Γ-Maximin decision rules.   

As above, the order of the 2n-terms is irrelevant. 

5. Summary

When coherence1 of 2-sided previsions is not enough, 

and elicitation also matters, then Brier score offers an 

incentive compatible scoring rule with an equivalent 

coherence criterion: coherence2 – avoid dominated 

forecasts.  This is de Finetti’s analysis, Proposition 1.

We extend Brier scoring to IP-coherence2 of interval-

valued forecasts, analogous to the familiar use of 1-sided 

(lower and upper) previsions for defining IP-coherence1.

Subject to an IP-scoring rule for forecasting events, the 
coherent forecaster gives lower and upper probabilistic 

forecasts for a particular set of events that characterize 

elements of an IP-model class M – e.g., the ε-
contamination class is characterized by IP-forecasts for 

the atoms of the measure space – Proposition 4.  

Coherence2 of the set of IP-forecasts requires that these 

lower and upper forecasts are not dominated by any more 

determinate IP model within the model class M, subject 
to the same IP scoring rule.  

However, a distinguishing feature between coherence1

and coherence2, namely that Brier score is incentive 

compatible for elicitation of 2-sided (real-valued) 

forecasts for events, does not extend to 1-sided forecasts.  
That is, according to Proposition 5, there is no strictly 

proper, real-valued IP-scoring rule for events.  However, 

by relaxing the conditions on scoring rules to permit 

lexicographic utility, subject to either of two IP-decision 

rules, there do exist strictly proper IP-scoring rules for 

eliciting closed, interval-valued probability forecasts. 

There are numerous open questions relating to the 

preliminary work reported in this paper.  We list three 

topics on which we are currently at work. 

1) A different challenge to elicitation, even when 

probability is determinate, is the problem posed by state-

dependent utilities.  This arises in the choice of the 



numeraire that is to be used, either with outcomes of 

previsions for coherence1, or in scoring forecasts for 
coherence2.  (See [13] for discussion of the problem in 

the setting of coherence1.)

Does forecasting afford any advantage over betting 

in this context and is there a difference also with IP-

elicitation? 

2) As noted in Section 2, neither coherence1 nor 
coherence2 constrains, respectively, a called-off prevision 

for an event or a called-off forecast for an event, given a 

null event. However, lexicographic expected utility [8] is 

one approach among several others available [5, 10, 20] 

for improving the treatment of 2-sided conditional 

probability with called-off previsions given a null event.  
(See [1] for a review of some of the open issues.)  

Proposition 6 relies on a lexicographic scoring rule to 

establish propriety with respect to interval valued 

forecasts.   

Can we use lexicographic scoring rules also to elicit 

called-off forecasts given a null event? 

3) De Finetti’s theory of coherence is designed to 

accommodate all finitely additive probabilities.  That is, 

countable additivity is not a requirement of coherence1 or 

coherence2.  This is achieved by insisting that 

incoherence, i.e., a failure of simple dominance, is 
achieved using only finitely many previsions or only 

finitely many forecasts at one time.  In other words, a 

coherent set of previsions or forecasts may be dominated 

when more than finitely many are combined at once, 

even though they cannot be dominated when only finitely 

many are combined.  It is interesting, we find, that even 
with determinate probabilities, coherence1 and 

coherence2 are not equivalent in this regard.  There are 

settings where countably many coherent2 forecasts may 

be combined and remain undominated by all rival 

forecasts, though these same previsions may result in a 

sure-loss when countably many are combined into a 
single option [17].   

In order to accommodate all finitely additive 

probabilities, when does IP-coherence2 depend upon 

the restriction that violations of dominance matter 

only when finitely many forecasts are scored at the 
same time? 
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Appendix 1 

The Atomic Lower-Upper Probability [ALUP] class.   

This IP-class consists of closed, convex sets of 
probabilities defined by lower and upper probabilities for 

atomic events.  That is an ALUP model is the largest 

(closed) convex set of distributions that satisfy such 

bounds, where the bounds are achieved by the lower and 

upper probability values given for the atoms of the space.  

See [6] for discussion about this IP-class of models.   

IP-coherence2, where rival forecasts are taken from the 

ALUP class, arises when the forecaster is called upon to 

give lower-and-upper forecasts for each atom, ω, and for 

the complement to each atom, ωc, in the space.  That is, 
in order to duplicate Proposition 4 for the ALUP class 

the forecaster is called upon to give 2n-many forecasts 

when Ω = {ω1, …, ωn}.  Example 7 illustrates this. 

Example 7 (a continuation of Example 4):  An illustration 

of ALUP-coherence2.  We provide 3 forecast sets for the 

atoms, and the their complements in a space defined by  

Ω = {ω1, ω2, ω3}.   That is, each forecast set includes IP-

forecasts for 6 events.  Forecast sets Fj (j = 2, 3, 4) are 

given as 6 pairs: {pi, qi} for ωi, ωi
c i = 1, 2, 3.  Each of 

the corresponding 3 score sets is comprised by 3 points, 

corresponding to the 3 states in Ω.  Each point in a score 

set has 6 coordinates, corresponding to the scores for 

forecasts of (ω1, ω1
c, ω2, ω2

c, ω3, ω3
c).

F2 =  

        ω1              ω1
c                  ω2              ω2

c            ω3         ω3
c

{{.25, .50} {.50, .75} {.25, .50} {.50, .75} {.25, .50} {.50, .75}}  

S2    =     (.50, .50, .25, .75, .25, .75)  for ω1

    (.25, .75, .50, .50, .25, .75)   for ω2

     (.25, .75, .25, .75, .50, .50)    for ω2

F3 =  

          ω1            ω1
c                  ω2              ω2

c            ω3          ω3
c

{ {.20, .45} {.55, .80} {.20, .45} {.55, .80} {.20, .45} {.55, .80} }   

S3    =   (.45, .55, .20, .80, .20, .80)  for ω1

  (.20, .80, .45, .55, .20, .80)  for ω2

  (.20, ,80, .20, .80 .45, .55)} for ω3

F4 =  

          ω1             ω1
c                  ω2             ω2

c             ω3          ω3
c

{ {.10, .35} {.65, .90} {.10, .35} {.65, .90} {.10, .35} {.65, .90} }  

S4    =   (.35, .65, .10, .90, .10, .90) for ω1

  (.10, .90 .35, .65, .10, .90)  for ω2

  (.10, .90, .10, .90, .35, .65)} for ω3

Forecast sets F2 and F3 are ALUP-coherent.  There do not exist 

more precise forecast sets from the ALUP-model that dominate 

either of these sets of forecasts. Their score sets lie in the 

probability simplex for these 6 events. 

Forecast set F4 is ALUP-incoherent.  A de Finetti projection of 

S4 produces a more determinate rival ALUP forecast with 

dominating IP Brier score.  In fact, the projection produces a 

more informative ε-contamination model that dominates.  The 

respective IP-Brier scores for F4 and for F2 are independent of 



ω:  For F4 the score is a constant penalty of 0.885.  For F2 it is a 

constant penalty of 0.750. 

Appendix 2 

Example 8 – This construction provides a more complicated 

illustration of Proposition 4 where the fixed point F* of the 

process is a limit of the recursive procedure given in the proof 

of (4.2).  Let Ω = {ω1, ω2, ω3}.  Forecast sets Fj are of the form  

{{pi, qi} : for events ωi: i = 1, 2, 3}.  

 F = F0 = { {.25, .60}, {.20, .50}, {.10, .40} }   

 S = S0 = {(.60, .20, .10), (.25, .50, .10), (.25, .20, .40)} 

(Step 1)  Project score set S0 to form set  

T1 = { (.6 3 , .2 3 ,, .1 3 ,), (.30, .55, .15), (.30, .25, .45)} 

Form the new forecast and score sets F1, S1 based on the 

probabilities in set T1

F1 = { {.30, .6 3 } {.2 3 , .55} {.1 3 , .45} }   

S1 = {(.6 3  .2 3  .1 3 ) (.30, .55, .1 3 ) (.30, .2 3 , .45)} 

(Step 2) Project set S1 to form set  

T2 = { (.6 3 , .2 3 , .1 3 ) (.30 5 , .5 5 , .1 5 ) (.30 5 , .2 5 , .4 5 )}

Form the new forecast and score sets F2, S2 based on the 

probabilities in set T2

F2 = { {.30 5 , .63 3 } {.23 3 , .55 5 } {.13 3 , .45 5 } }

S2 = {(.6 3 , .2 3 , .1 3 ) (.30 5 , .5 5 , .1 3 ) (.30 5 , .2 3 , .4 5 )}

(Step 3) Project S2 to form set 

T3 = { (.6 3 , .2 3 , .1 3 ) (.30 047 , .55 047 , .13 047 )

        (.30 047 , .23 047 , .45 047 )}

Form the new forecast and score sets F3, S3 based on the 

probabilities in set T3

F3 = { {.30 047 , .6 3 } {.2 3 , .55 047 } {.1 3 , .45 047 } }

S3 = {(.6 3 , .2 3 , .1 3 ) (.30 047 , .55 047 , .1 3 )

         (.30 047 , .2 3 , .45 047 )}

(Step 4) Project S4 to form set  

T4 ≈ { (.6 3 , .2 3 , .1 3 ) (.308, .558, .134) (.308, .234, .458)} 

Form the new forecast and score sets F4, S4 based on the 

probabilities in set T4

F4 = { {.308, .6 3 } {.2 3 , .558} {.1 3 , .458} }  

S4 = {(.6 3 , .2 3 , .1 3 ) (.308, .558, .1 3 ) (.308, .2 3 , .458)} 

Iterate the process which converges to forecast set    

F* = { {.308 6 , .6 3 } {.2 3 , .558} {.1 3 , .458} } 

and score set    

S* = {(.6 3 , .2 3 , .1 3 ) (.308 6 , .558, .1 3 )

           (.308 6 , .2 3 , .458)} 

F* is an ε-contamination model whose IP-Brier score 

dominates F’s score.  F* has greater informativeness (greater 

determinacy) than forecast F as the hull H(S*) is isomorphic to 

a proper subset of the hull H(S).
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