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Abstract

In this paper, lower bounds and upper bounds are
given for the mass assigned to a set of maximal cliques
in self-consistent estimates of CDF NPMLEs for mul-
tivariate (including univariate) interval censored data
under the assumption that the censoring mechanism
is ignorable for the purpose of likelihood inference.
The bounds are applied to give upper bounds of the
diameter and size of the polytope of CDF NPMLEs
for multivariate censored data.
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1 Introduction

Survival analysis is the statistical analysis of event
times, assumed nonnegative. It must account for, and
is largely characterized by, censoring. Censoring is
a type of coarsening of the data whereby an event
time is only known up to an interval. While right-
censored data consist of exactly observed times and
intervals unbounded on the right, collections of pos-
itive values and of bounded and (right-) unbounded
intervals on the nonnegative half-line are known as
interval censored data. Right-censoring will occur in
studies where follow-up is limited by design at a deter-
ministic or random time. Interval censored data will
typically arise in medical longitudinal studies, where
patients can be assessed for a condition continuously,
or at regular or irregular intervals.

The first task to undertake given interval censored
data is often to estimate the underlying cumulative
distribution function (CDF) F or equivalently the
survival function S = 1 − F . In many instances,
a nonparametric approach will be preferred to the
constraining assumption of a parametric form for the
CDF. In such situations the nonparametric maximum
likelihood estimator (NPMLE) of the CDF will be the

estimator of choice in the univariate case (Peto [18],
Turnbull [22]), even when smoothing estimators are
sought (Braun, Duchesne & Stafford [3]).

Event times can sometimes be stochastically associ-
ated, for instance through clustering. It is then use-
ful to treat them as multivariate. Multivariate in-
terval censored data are geometrically represented as
the Cartesian product of the marginal event times or
intervals that enter in a given observation.

Computing the CDF NPMLE can be a complex en-
deavor. Generally this computation can be carried
out in two phases: in the first the effective support of
the NPMLE is determined (Gentleman & Vandal [9],
Bogaerts & Lesaffre [2], Maathuis [16]). This effective
support consists in the real representations (RR) of
the maximal cliques of the data, concepts to be de-
fined in Section 2; for now it suffices to describe an
RR as a generalized, possibly degenerate, hypercube
in R+d

0 , (R+
0 = [0,+∞), d = 1, 2, ...), with edges par-

allel to the axes. In the second phase a nonparametric
likelihood with the CDF as argument is maximized;
the maximizer assigns a probability mass to each RR
(Wang [26]).

The probability vector obtained thus completely char-
acterizes the CDF NPMLE. It is worth noting that
this probability vector is always unique with univari-
ate data (Vandal [23]). Arbitrary mass placement
within an RR does not however affect the nonpara-
metric likelihood, a situation to which we refer as
R-nonuniqueness (Gentleman & Vandal [10]). With
multivariate data, the probability vector itself may
not be unique, a somewhat more serious situation we
label M-nonuniqueness.

In this paper, we are interested in obtaining lower
and upper bounds of the total CDF NPMLE mass as-
signed to an RR or a set of RRs of maximal cliques
without conducting NMPL estimation. This is done
by considering bounds on a class of more general es-
timators, namely self-consistent estimators (SCE), to



which NPMLEs belong.

These bounds can be obtained much more quickly
than the probability vector that maximizes the like-
lihood (whether unique or not). There are good rea-
sons for providing such bounds. First, even when
one NPMLE vector is available, M-nonuniqueness will
prevent us from deducing bounds for the probabil-
ity mass on a collection of RRs. Second, reliable
lower and upper bounds may enable us to select
good starting probability vectors for NPML estima-
tion: currently all algorithms used in for NPML es-
timation with general interval censored data are iter-
ative. Third, there are self-contained applications of
the bounds; in Section 5, we use them to provide up-
per bounds for the diameter and size of the polytope
of NPMLEs.

The present paper focuses on nonparametric (and
non-smoothed) maximum likelihood estimation. In
that respect it differs from works such as those of Fer-
son et al. [7], whose statistical focus lies in parametric
analysis with some forays in smoothing estimators. It
also differs from the works such as that of Manski
[17], that focus on the consequences of unobservabil-
ity. This paper can be thought of as an inferential
addition to the “catalogue” of techniques for symbolic
data analysis, described in Billard & Diday [1].

We will assume in the sequel that the true CDF and
the CDF NPMLE have support in R+d

0 . We will also
assume that the censoring mechanism is ignorable in
the sense of Heitjian & Rubin [12], which implies in
particular that likelihood-based inference relying on
the data can be performed without reference to the
censoring mechanism. A sufficient condition for ig-
norability of the censoring mechanism is for the un-
derlying inspection process to be independent of the
event times.

The rest of the paper is divided into 4 sections. In
Section 2, we provide some necessary concepts and
notation. In Section 3, we provide SCE bounds for
any given collection of maximal clique RRs. In Sec-
tion 4, we consider two special cases: one concerns the
bounds on the SCE mass of a single maximal clique;
the other the bounds on the SCEs given univariate
censored data. In Section 5, we apply SCE bounds
to give upper bounds of the diameter and size of the
polytope of CDF NPMLEs for multivariate censored
data.

2 Preliminaries and Notation

We provide some concepts and notation used in sub-
sequent sections.

Let R1, ..., Rn be the n observations of an interval

censored data set in R+d
0 . Throughout this paper, we

always assume that the censoring mechanism is ig-
norable in the sense of Heitjian & Rubin [12], which
implies in particular that likelihood-based inference
relying on the data can be performed without refer-
ence to the censoring mechanism. A sufficient condi-
tion for ignorability of the censoring mechanism is for
the underlying inspection process to be independent
of the event times. For any CDF F , the likelihood of
F given the data is

L(F ) =

n∏
i=1

PF (Ri). (1)

2.1 Intersection Graph, Maximal Clique,
Clique Matrix, Real Representation

We can form the intersection graph of the data set in
the following way: each observation corresponds to a
vertex and two vertices are connected if and only if
their corresponding observations intersect. A clique is
a subset of vertices such that every pair are connected.
A clique is called maximal if it is not a proper subset
of another clique. The clique structure can be rep-
resented by the clique matrix, which is a 0/1 matrix,
each row corresponding to a maximal clique and each
column corresponding to an observation. An entry in
the clique matrix is 1 if and only if the corresponding
observation (i.e., vertex) belongs to the correspond-
ing maximal clique. The clique matrix is unique up
to permutations of rows and columns. In addition,
each maximal clique has a real representation (RR),
namely, the intersection of all its observations. The
following is an illustrative example.

Example 2.1 Let Ri, i = 1, ..., 7, be bivariate cen-
sored data as shown on Figure 1. Their intersection
graph 1 is displayed in Figure 2. There are 4 maximal
cliques M1, M2, M3 and M4:

M1 = {R1, R2, R4}, M2 = {R3, R4, R7},
M3 = {R4, R5, R6} and M4 = {R4, R6, R7}.

Their corresponding maximal intersections (i.e., real
representations of maximal cliques) are shaded in Fig-
ure 1. The clique matrix of these data is given in
Table 1.

2.2 NPML and Self-consistent Estimators of
the CDF

The importance of maximal cliques lies in two facts:
the possible support of NPMLE is limited to the RRs

1Note that each Ri intersects itself and hence corresponds
to a loop in the intersection graph. The loops are ignored in
Figure 1.



Figure 1: An example of bivariate interval censored
data set

Figure 2: The intersection graph for the data in Fig-
ure 1

of maximal cliques; and the clique matrix is suffi-
cient for the probability vector corresponding to the
NPMLE. For a detailed discussion of the first fact, see
Peto [18] and Turnbull [22]. For the second, refer to
Gentleman & Vandal [10]. In the multivariate case,
maximal cliques are most efficiently identified using
the HeightMap algorithm of Maathuis [16] and the
marked iso-graph algorithm (Liu [15]).

Suppose we have m maximal cliques M1, ...,Mm,
which are assigned masses p1, ..., pm respectively. The
likelihood (1) can then be redefined as a function of
p:

L(p) =
n∏

j=1

m∑
i=1

aijpi, (2)

where aijs valued in {0, 1} are the entries of the
clique matrix Am×n. (That is, aij = 1 if and
only if the observation Rj is in the maximal clique
Mi.) The NPMLE corresponds to a probability vector
p = [p1, ..., pm]′. An NPMLE of the CDF will be con-
stant except for increases of sizes pi concentrated on
the on the real representations of the maximal cliques.

R1 R2 R3 R4 R5 R6 R7

M1 1 1 0 1 0 0 0
M2 0 0 1 1 0 0 1
M3 0 0 0 1 1 1 0
M4 0 0 0 1 0 1 1

Table 1: Clique matrix of the data in Example 2.1

The precise placement of the mass within the real rep-
resentations does not affect the likelihood, a situation
to which we refer as R-nonuniqueness.

An important feature of a CDF NPMLE under cen-
sored data is that it must satisfy the self-consistency
condition (Turnbull [22]). There are several equiv-
alent definitions of self-consistency of estimators in
the literature. We use the following, which precisely
identifies fixed points of the EM algorithm:

Definition 2.2 Let Am×n be the clique matrix for
the multivariate censored data. A probability vector p̃
is a self-consistent estimate if and only if

np̃ = Dp̃A(A′p̃)−I, (3)

where I is the identity matrix of order m, and

• Dx denotes the diagonal matrix with diagonal x;

• For any column vector am×1 := [a1, ..., am]′, ai ̸=
0, a−I is the column vector whose i−th element
is 1/ai, i = 1, 2, ...,m. 2

The product-limit estimator for univariate right-
censored data, first proposed by Kaplan & Meier [13],
was later shown by Efron [6] to be self-consistent.
Turnbull [21, 22] then used self-consistency as the ba-
sis for an estimation algorithm, later shown in Demp-
ster, Laird & Rubin [5] to be a particular application
of the EM algorithm. It is now a well recognized fact
(Groeneboom & Wellner [11], Gentleman & Geyer [8],
Wellner & Zhan [27]) that in general there exist sev-
eral distinct values of p̃ which are self-consistent but
do not maximize the likelihood. In order to be the
NPMLE, a self-consistent estimate must also satisfy
the Kuhn-Tucker conditions listed in Gentleman &
Geyer [8].

2.3 Further Notation

Let C be a set of maximal cliques of a multivariate cen-
sored data (MCD) set with n observations. Through-
out this chapter, we use p̃ to denote a self-consistent

2The notation a−I is a special case of Hadamard exponenti-
ation. For more detailed information, see Gentleman & Vandal
[9].



estimate. For such an estimate, define p̃C to be the
total mass assigned to C.

Let n+(C) and n−(C) be the numbers of observations
in ∪

C∈C
C and only in ∪

C∈C
C respectively. Equivalently,

we may interpret n+(C) as the number of observations
covering some maximal clique RRs in C and n−(C) as
the number of the observations covering only some
maximal clique RRs in C. Formally,

n+(C) :=
∣∣∣ ∪
C∈C

C
∣∣∣

and

n−(C) :=
∣∣∣ ∪
C1∈C

C1\
∪

C2 /∈C

C2

∣∣∣.
We have

n−(C) = n− n+(Cc)

where Cc is the complement of C with respect to the
set of all maximal cliques.

3 Bounds on Self-consistent CDF
Estimates for MCD: General Case

3.1 Main Result

The main result of this section is the following theo-
rem.

Theorem 3.1 Let C be a set of maximal cliques of
an MCD set with n observations, there holds

n−(C)
n

6 p̃C 6 n+(C)
n

. (4)

Proof. First, we prove the right-hand side of (4),
that is

p̃C 6 n+(C)
n

. (5)

Without any loss of generality, we assume that in the
clique matrix A, the first |C| rows correspond to max-
imal cliques in C and first n+(C) columns correspond
to observations in ∪

C∈C
C. Therefore, A is of the form

A =

[
A11 O
A21 A22

]
,

where the size of A11 is |C| by |n+(C)| and O denotes
a matrix whose entries are all 0.

Rewrite p̃ as p̃ =

[
p̃1

p̃2

]
, where p̃1 ∈ R|C|

+ and p̃2 ∈

Rm−|C|
+ . Then p̃C =

∑|C|
i=1 p̃i. Also let I, I1 and I2

be the identity matrices of orders m, |C| and m −

|C| respectively. The self-consistency condition on p̃
becomes[

p̃1

p̃2

]
=

1

n

[
Dp̃1 O
O Dp̃2

] [
A11 O
A21 A22

]
([

A′
11 A′

21

O A′
22

] [
p̃1

p̃2

])−I

=
1

n

[
Dp̃1 O
O Dp̃2

] [
A11 O
A21 A22

]
[

A′
11p̃1 +A′

21p̃2

A′
22p̃2

]−I

=
1

n

[
Dp̃1 O
O Dp̃2

] [
A11 O
A21 A22

]
[

(A′
11p̃1 +A′

21p̃2)
−I1

(A′
22p̃2)

−I2

]
,

which implies that

p̃1 =
1

n
Dp̃1A11(A

′
11p̃1 +A′

21p̃2)
−I1 .

Hence, by letting e be the vector [1]|C|×1,

|C|∑
i=1

p̃i = e′p̃1

=
1

n
e′Dp̃1A11(A

′
11p̃1 +A′

21p̃2)
−I1

=
1

n
p̃′
1A11(A

′
11p̃1 +A′

21p̃2)
−I1

=
1

n
(A′

11p̃1)
′(A′

11p̃1 +A′
21p̃2)

−I1 .

Since A′
11p̃1 > 0 and A′

21p̃2 > 0, we have

|C|∑
i=1

p̃i 6 1

n
(A′

11p̃1 +A′
21p̃2)

′(A′
11p̃1 +A′

21p̃2)
−I1

=
1

n
× n+(C)

and (5) is proved.

Now we show the left part of (4). Denoting by Cc

the complement of the set C of maximal cliques, we
obtain from (5)

p̃Cc 6 n+(Cc)

n

and therefore

p̃C = 1− p̃Cc > 1− n+(Cc)

n
=

n− n+(Cc)

n
=

n−(C)
n

.

The proof is complete. �
Note that, in the proof of Theorem 3.1, since (A′

11p̃1+
A′

21p̃2)
−I1 > 0 (without which the notation (A′

11p̃1+



A′
21p̃2)

−I1 does not make sense), the equality in (5) is
valid (that is, p̃C reaches its upper bound in (5)) if and
only if A′

21p̃2 = 0. The latter condition is equivalent
to the following statement: if the rth entry in p̃2 is
positive, then the rth row of A21 is a zero row-vector.

Specifically, when A21 is the null matrix, p̃C reaches
its upper bound in (5). In this case, the observations
R corresponding to A can be divided into two groups:
the observations which are only in C and observations
only in Cc. A similar argument is applicable to the
left-hand side of (4). We can therefore conclude that
(4) cannot be improved for any data set.

The lower and upper bounds described by Theo-
rem 3.1 correspond to belief and plausibility measures
in Dempster-Shafer Theory ([4, DST]). These mea-
sures are obtained from a basic assignment induced
by equiprobability on the original data; this basic as-
signment is normalized to the set of maximal cliques
rather than the power set of the data. To our knowl-
edge this is the first time a relationship is established
(via self-consistency) between Dempster-Shafer the-
ory and non-smoothing/non-penalized nonparametric
likelihood estimation.

3.2 Two Examples

Example 3.2 Consider the data depicted in Figure
3: Applying (4) to the data, we obtain the bounds
shown in Table 3. The “True region” heading indi-
cates the bounds on the total mass of p̂C implied by
the M-nonuniqueness of the NPMLE. Indeed, the two
end-points of the true region are the lower and upper
probabilities defined by the NPMLE probability vec-
tors.

Figure 3: An example bivariate censored data set

Example 3.3 Consider Pruitt’s data (Pruitt [19])
depicted in Figure 4. Applying (4) to the data, bounds
of p̃C for some given subsets C of maximal cliques are
given in Table 5.

A B C D
M1 1 1 0 0
M2 0 1 1 0
M3 0 0 1 1
M4 1 0 0 1

Table 2: The clique matrix for the data on Figure 3

C Lower Upper True
bound bound region

{p̃1}, {p̃2}, {p̃3}, {p̃4} 0 2/4 [0, 0.5]
{p̃1+p̃2}, {p̃2+p̃3}, 1/4 3/4 [0.5, 0.5]
{p̃3+p̃4}, {p̃4+p̃1}
{p̃1+p̃3}, {p̃2+p̃4} 0/4 4/4 [0,1]
{p̃i+p̃j+p̃k, 2/4 4/4 [0.5, 1]

1 6 i < j < k 6 4}

Table 3: Mass bounds on pC for the data set in Ex-
ample 3.2

Figure 4: Pruitt’s data set

A B C D E F G H
M1 0 0 0 1 0 0 0 0
M2 0 1 0 0 1 0 0 0
M3 1 0 1 0 1 0 0 0
M4 0 0 1 0 0 1 0 0
M5 0 1 0 0 0 0 1 0
M6 1 0 1 0 0 0 1 0
M7 0 0 1 0 0 0 1 1

Table 4: The clique matrix for Pruitt’s data set

C Lower Upper True
bound bound region

{p̃1} 1/8 1/8 [0.125, 0.125]
{p̃2} 0/8 2/8 [0.095,0.191]

{p̃5 + p̃6} 0/8 4/8 [0.096, 0.096]
{p̃2+p̃3+p̃5+p̃6} 3/8 5/8 [0.457, 0.457]

Table 5: Mass bounds on pC for some C’s for the data
set in Example 3.3



3.3 Discussion

For uncensored data, the lower and upper bounds in
(4) are always equal. Hence, (4) is an extension from
uncensored to censored data.

M-nonuniqueness of NPMLEs for MCD can poten-
tially create large differences between the lower and
upper bounds in (4). From Examples 3.2 and 3.3, we
notice that some intervals are wide and that we get
no information at all in some cases. For instance, in
Example 3.2, the lower and upper bounds for p̃1 + p̃3
are 0 and 1 respectively. Note, however, that tighter
bounds on p̃1 + p̃3 are not available, since, the M-
nonuniqueness interval of p̃1 + p̃3 is [0, 1].

4 The Bounds in some Special Cases

4.1 Bounds on the SCE Mass of a Single
Maximal Clique

In this section, we focus on the bounds for the mass
assigned to one maximal clique by an SCE.

Theorem 4.1 Let Mi be any maximal clique of an
MCD set with n observations, there holds

n−({Mi})
n− n+({Mi}) + n−({Mi})

6 p̃i 6
n+({Mi})

n
. (6)

Note that, the lower bound in (6) improves the lower
bound in (4) in Section 3, and the upper bounds in
(6) and (4) are the same.

Proof of Theorem 4.1 . We only need to show the
left-hand side of (6), that is

p̃i >
n−({Mi})

n− n+({Mi}) + n−({Mi})
.

Denote by

Ji := {j;Rj ∈ Mi}

the index set of Mi ∈ M. So,

|Ji| = n+({Mi}).

Also, denote

η̃ := A′p̃.

Clearly, for every i = 1, ...,m and all j ∈ Ji,

p̃i 6 ηj 6 1. (7)

Put

Si = {j ∈ Ji;Rj is only contained in Mi}. (8)

Then |Si| = n−({Mi}) and hence,

n =
∑
j∈Ji

1

ηj

=
n−({Mi})

p̃i
+

∑
j∈Ji\Si

1

η̃j
(9)

> n−({Mi})
p̃i

+
∑

j∈Ji\Si

1 [from (7)]

=
n−({Mi})

p̃i
+ n+({Mi})− n−({Mi}) (10)

whence the result follows.

Note that
n+({Mi}) = n−({Mi})

if and only if

n−({Mi})/(n−n+({Mi})+n+({Mi}) = n+({Mi})/n.

�

4.2 Bounds on Self-consistent Estimates for
Univariate Censored Data

In this section, we give the form of (4) and (6) for
univariate censored data based on the characteristic
matrix notation introduced by Vandal [23]. For uni-
variate censored data, we further improve the lower
bound for one maximal clique in (6).

4.2.1 Characteristic Matrix for Univariate
Data

The clique matrix of a univariate censored data set
is equivalent to its characteristic matrix, defined as
follows.

Definition 4.2 Let A = [aij ]m×n be the clique ma-
trix for a univariate censored data set {R1, ..., Rn}
with maximal cliques M1, ...,Mm and corresponding
RRs H1, ..., Hm, ordered in the natural way. For each
pair i, j ∈ {1, ...,m} with i 6 j, define χi,j to be the
number of columns in A such that the sub-column of
1’s starts at i and ends at j.3 The following upper-
right triangle matrix

χ :=


χ1,1 χ1,2 ... χ1,m−1 χ1,m

χ2,2 ... χ2,m−1 χ2,m

. . .
...

...
χm−1,m−1 χm−1,m

χm,m


is called the characteristic matrix of the data. 4

3Recall that the clique matrix of univariate censored data
has the consecutive-1’s property.

4The lower-left triangle in characteristic matrix is left unde-
fined.



Example 4.3 The following is the clique matrix of a
univariate censored data set:

A =


1 1 1 1 0 0 0 0 0 0 0
0 1 1 1 1 1 1 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 1 1 1 1

 .

The equivalent characteristic matrix is

χ =


1 2 1 0

0 3 0
0 2

2

 .

4.2.2 Bounds on SCEs for Univariate
Censored Data

The inequalities (4) for univariate censored data can
be expressed using the entries of the characteristic
matrix. Let Am×n be the clique matrix for a univari-
ate data set with rows ordered according to the nat-
ural order of the maximal cliques5. Let p̃ = [p̃i]m×1

be a self-consistent estimate based on A. Also, in
this section, we always assume that χ1,m = 0 in
A’s characteristic matrix χ, since χ1,m corresponds
universal observations and have no bearing on the
CDF estimation. For any given j ∈ {1, ...m}, let
C := {M1, ...,Mk}. We then have

n−(C) =
∑
s6k

r free

χrs =

k∑
s=1

s∑
r=1

χrs,

and

n+(C) =
∑
r6k
s free

χrs =
k∑

r=1

m∑
s=r

χrs.

From (4), the bounds on
k∑

i=1

p̃i can be given as

Theorem 4.4

1

n

k∑
s=1

s∑
r=1

χr,s 6
k∑

i=1

p̃i 6
1

n

k∑
r=1

m∑
s=r

χr,s (11)

Corollary 4.5 When j > 1,

k∑
i=j

p̃i > 1

n

(
k∑

s=1

s∑
r=1

χr,s −
j−1∑
r=1

m∑
s=r

χr,s

)
, (12)

k∑
i=j

p̃i 6 1

n

(
k∑

r=1

m∑
s=r

χr,s −
j−1∑
s=1

s∑
r=1

χr,s

)
. (13)

5 That is, H < H′ if and only if x < x′ for all x ∈ H and
x′ ∈ H′.

Proof. Apply (11) to
∑k

i=j p̃i and
∑j−1

i=1 p̃i and sub-
tract. �
When we focus on the bounds of mass for one maximal
clique, it is not difficult to show that for i = 1, ...,m,

n−({Mi}) = χi,i,

n+({Mi}) =
∑

j16i6j2

χj1,j2 =: ni.

from Theorem 4.1, we have

Theorem 4.6

χi,i

n− ni + χi,i
6 p̃i 6

ni

n
. (14)

If 0 < χi,i < ni < n for some i = 1, ...,m, then we can
further improve the lower bound on p̃i in (14). First,
for i = 1, ...,m, introduce the following notation:

li := min{r; χr,s > 0 and r 6 i 6 s},
ui := max{s; χr,s > 0 and r 6 i 6 s},

di :=

ui∑
r=1

m∑
s=r

χr,s −
li−1∑
s=1

s∑
r=1

χr,s

(We adhere to the usual convention that a summa-
tion over an empty index set is 0.) Since di is always
smaller than n, the lower bound on p̃i can be improved
in the following theorem.

Theorem 4.7

p̃i >
χi,idi

n(di − ni + χi,i)
. (15)

Proof. The proof is similar to that of Theorem 4.1,
except that for every i = 1, ...,m and all j ∈ Ji, η̃j
now satisfies that,

η̃j 6
ui∑

c=li

p̃c

6 di
n
. [from (13)]

Therefore,

n =
∑
j∈Ji

1

ηj

=
χi,i

p̃i
+

∑
j∈Ji\Si

1

η̃j

> χi,i

p̃i
+

ni − χi,i

di

n

,

and (15) follows. �



Corollary 4.8

p̃1 > χ1,1(n− χm,m)

n(n− χm,m − n1 + χ1,1)

p̃m > χm,m(n− χ1,1)

n(n− χm,m − ni + χm,m)

and for i = 2, ...,m− 1,

p̃i >
χi,i(n−min(χ1,1, χm,m))

n(n−min(χ1,1, χm,m)− ni + χi,i)
.

Proof. Proof is obtained from the facts that

d1 6 n− χm,m, dm 6 n− χ1,1,

and for every i = 2, ...,m− 1,

di 6 n−min(χ1,1, χm,m).

�

Example 4.9 Consider a univariate data set
{R1, ..., R12} =

{
1, 2, [3, 5], [4, 7], [6, 10], [8, 12], 9,

[11,∞), 13, [14,∞), 15, [16,∞)
}
which are represented

in Figure 5. (The vertical positions hold no special
meaning.) The RRs of the data are represented at the
lowest vertical position and labeled H1, ..., H9. The

Figure 5: An artificial univariate data set

following is the clique matrix of this univariate cen-
sored data set:

A =



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 1 1 0 1 0 1


.

The equivalent characteristic matrix is

χ =



1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0

1 1 0 0 0 0 0
0 1 0 0 0 0

1 1 0 0 0
0 0 0 1

1 0 1
1 0

1


.

The (unique) NPMLE probability vector is p̂ =
[0.083, 0.083, 0.167, 0, 0.25, 0, 0.104, 0.156, 0.156]′. The
CDF NPMLE is displayed in Figure 6.

Figure 6: Example CDF NPMLE. Shaded boxes in-
dicate areas of R-nonuniqueness, i.e. nonuniqueness
related to arbitrariness of mass placement.

Applying Theorem 4.4, we can compare the NPMLE
and the SCE lower and upper bounds as shown in Ta-
ble 6.

C Lower NPMLE Upper
bound bound

p̃1 0.083 0.083 0.083
p̃1 + p̃2 0.167 0.167 0.167

p̃1 + p̃2 + p̃3 0.250 0.333 0.333
p̃1 + · · ·+ p̃4 0.333 0.333 0.417
p̃1 + · · ·+ p̃5 0.500 0.583 0.583
p̃1 + · · ·+ p̃6 0.583 0.583 0.667
p̃1 + · · ·+ p̃7 0.667 0.688 0.750
p̃1 + · · ·+ p̃8 0.750 0.844 0.917
p̃1 + · · ·+ p̃9 1.000 1.000 1.000

Table 6: NPMLE, lower and upper bounds compari-
son for a univariate data set



5 Application to M-Nonuniqueness

For MCD, the NPMLEs may display the aforemen-
tioned mixture or M-nonuniqueness, which occurs
when different probability vectors have the same like-
lihood, that is, mass may be exchanged between max-
imal cliques without changing the likelihood. Gen-
tleman & Vandal [9] proved that M-nonuniqueness
cannot occur with univariate censored data but that
it may arise with multivariate censored data. Liu
[14, 15] and Vandal, Gentleman & Liu [24] discuss
conditions for uniqueness of the NPMLEs and ap-
ply methods from convex optimization theory to show
that the set of all NPMLEs is a polytope.

Suppose that the size of the clique matrix A for a
MCD set ism×n. When we have one CDF NPMLE p̂
for A, the NPMLE’s polytope P can be described by
the following so called H-representation (Liu [14, 15],
Vandal, Gentleman & Liu [24]):

P = {p = [p1, ...pm]′;A′p = A′p̂,p > 0 and e′p = 1}.

We consider three descriptions of the NPMLE’s
polytope P designed to quantify the extent of M-
nonuniqueness. The first description is the so-called
V-representation of P, that is, the list of all its ver-
tices. The second is the diameter of P, correspond-
ing to the longest distance between two of its ver-
tices. The third is the size of P, defined as the
longest projection on one of the m axes correspond-
ing to the vector entries. The diameter and size of P
have been considered in the study of CDF NPMLEM-
nonuniqueness and asymptotic properties. For more
detail, see Liu [14, 15] and Vandal, Gentleman & Liu
[24].

From (6), upper bounds for the diameter and the size
of P for a censored data set with clique matrix Am×n

can be obtained respectively as

dia(P) 6
(

m∑
i=1

(Ui − Li)
2

)1/2

, (16)

size(P) 6 max
i=1,...,m

(Ui − Li), (17)

where for i = 1, 2, ..., n,

Li :=
n−({Mi})

n− n+({Mi}) + n−({Mi})

and

Ui :=
n+({Mi})

n

are lower and upper bounds of p̃i given in (6). As an
application of (16) and (17), consider a cyclical data

set with order 2k, k = 2, 3, ..., circulant clique matrix
defined as follows:

1 1
1 1

1 1
. . .

. . .

1 1
1 1


(18)

where all unspecified entries in the matrix are 0.

Then the diameter and size of the corresponding
NPMLE polytope are at most

√
2/k and 1

k respec-
tively. 6

The last theorem provides a sufficient condition for
asymptotic mixture uniqueness.

Theorem 5.1 When

1

n
max

i=1,...m
(n+(Mi)− n−(Mi))

a.s−→ 0,

the M-nonuniqueness of the CDF NPMLE will disap-
pear asymptotically, in the sense that,

size(P)
a.s−→ 0.

Proof. Since for every i = 1, ...,m,

n+({Mi}) > n−({Mi}),

then from (17),

size(P) 6 max
i=1,...,m

(n+({Mi})− n−({Mi})
n

)
.

The conclusion follows. �
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