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Abstract

We deal with the statistical matching problem and in
particular we study the problem related to the manag-
ing of inconsistencies. In fact, when logical relations
among the variables are present incoherence can arise
in the probability evaluations. The aim of this pa-
per is to remove such incoherences by using different
methods. Specific precise distances minimization or
least committal imprecise probability extensions are
adopted. We compare these methods using a prac-
tical example that brings to light the peculiarities of
the statistical matching problem.

Keywords. Statistical matching, incoherence, infer-
ence, specialized discrepancy measure.

1 Introduction

In several economic applications there is a need to
consider different data sources and to integrate the in-
formation coming from them [3, 13, 23, 25, 26]. In par-
ticular, we deal with the so called statistical match-
ing problem, that can be represented by the follow-
ing simple situation: there are two different sources,
A and B, with some overlapping variables and some
variables collected only in one source. Let X repre-
sent the common variables, Y denotes the variables
collected only in A, and Z those only in B. Thus, the
data consist of a first sample (X,Y ) and a second
sample on (X,Z). In this context data are missing
by design since they have been already collected sep-
arately, and to get jointly data on Y and Z would be
expensive and time-consuming.

Traditionally, to cope with these problems the avail-
able data are combined with assumptions strong
enough to point-identify the joint probability distri-
bution (see references in [26]): we recall, for example,
those based on a conditional independence assump-
tion, i.e. the variables Y and Z are independent con-
ditional on X.

However, in several situations the independence as-
sumption is not adequate, as first raised by Sims [31]
(see also [25, 28, 29, 32]). Other methods aim at in-
corporating auxiliary information about relationships
between Y and Z to avoid or to relax conditional in-
dependence assumption (see, e.g. [32]). Although this
is an important case, it is not always feasible because
the required external knowledge may not be available.

Actually, since there are many distributions on
(X,Y, Z) compatible with the available partial infor-
mation on (X,Y ) and (X,Z), it is too restrictive to
consider just one of the compatible distributions, ob-
tained perhaps by taking a specific assumption (as
already noted in [14, 17, 30] and for the missing data
problem [11, 22, 34]).

This problem has been faced in a coherent conditional
probability setting in [35, 36]: coherence allows us to
check the compatibility of partial (conditional) assess-
ments, to manage further available knowledge, for ex-
ample coming from field experts; moreover it allows us
to draw inferences by considering all the compatible
distributions.

A further remarkable advantage of using this ap-
proach is that we are able to consider multiple in-
tegration, that is important for real applications (for
instance, see [33] for some economic Hungarian ap-
plications based on the combination of three different
surveys).

Moreover, this approach [36] allows to manage logi-
cal constraints characterizing the relevant links among
variables describing the phenomenon. In particular,
in [36] it is proved that when there is no logical con-
straint among the variables, coherence is always satis-
fied by also requiring conditional independence, then
this hypothesis is legitimate from a syntactical point
of view (even if it is useful to look for all compati-
ble coherent extensions). On the other hand, when
logical constraints are present it is necessary to check
global coherence of the relevant partial assessments



drawn from the different sources and if coherence is
not satisfied we need to remove incoherences. In [35]
this is done by looking for the “minimal” incoherent
assessments and to remove them in order to restore
coherence by using the L1 norm.

The aim of this paper is to deal with incoherences
and to look for the coherent assessment “closest”
to the given one with respect to different distances
(L1, L2, Kulback-Leibler divergence, discrepancy).
Then, when coherence is restored we can draw in-
ference: for each (conditional) event we can directly
build the interval of all coherent probability values
solely on the base of a partial assessment, i.e. it is
not needed to artificially fulfill the missing values of
the data base. It is important to remark that the
interval bounds are computed analytically.

Actually, our aim is in the same line of those based on
multiple imputation [30] and its extension [26], which
aims at approximating the lower and upper bounds
for the quantities of interest in the multinormal set-
ting. A similar approximation for these bounds is
carried out in [14] on the base of maximum likelihood
approach.

To let this paper be as much as possible self-contained,
in Section 2 we introduce the basic notions and char-
acteristic of coherent conditional partial assessments,
either based on precise p or on imprecise lub evalu-
ations given on a finite domain E . Coherence of an
assessment is required to perform a sound inference
that for partial assessments coincide with a coherent
extension. Hence also basic extension notions, both
for the precise and imprecise context, are given. Af-
terwards in Section 3 the main (pseudo)distances be-
tween conditional assessments are introduced. It is
in fact thanks to their minimization that consistent
correction of incoherent assessments will be possible.
Such (pseudo)distances can be based on geometrical
properties, e.g. L1 and L2 norms, or on information
theoretic foundation, e.g. KL divergence, or can de-
rive from proper scoring rules, e.g. discrepancy ∆,
suitably tailored for partial conditional assessments.
In Subsection 3.1 it is sketched an alternative way
of restoring consistency: whenever it is possible to
identify a coherent sub-assessment (G,p|G), it can be
coherently extended to the rest of the initial domain
F = E \ G. This inevitably produces an imprecise
conditional probability assessment. Subsequently, in
Section 4, the statistical matching problem is refor-
mulated inside a conditional probability assessment
framework and conditions are given that guarantee
the coherence of the whole assessment. On the con-
trary, whenever there are logical constraints among
the variables under investigation, even starting from
separately coherent sources of information, the whole

assessment could result incoherent. In Section 5 this
is well described by a simple example. This section
is the core of our contribution, where the previous
concepts are merged together and the two main ap-
proaches for inconsistency correction, the minimiza-
tion of (pseudo)distances or the extension of a coher-
ent sub-assessment, are specialized to the statistical
matching problem. It is also shown how the pecu-
liarity of the statistical matching suggests a special-
ization of the general discrepancy ∆ into a peculiar
one ∆mix. This new discrepancy is a mixture of the
original one applied to the different scenarios and the
consequent inconsistency correction, obtained by its
minimization, leaves unchanged the marginal distri-
bution of the common variables X. To better show
the advantages and drawbacks of the proposed meth-
ods, in Section 6 we introduce an example built from
data taken from [14]. The final short concluding Sec-
tion 7 sums up the proposed methodologies.

2 Preliminaries about coherent
conditional probability

Whenever several sources of information, that could
represent expert’s opinions and/or knowledge bases,
are merged together, we can generally start to deal
with an overall domain E = [E1|H1, . . . , En|Hn].

The events Ei’s represent the situations under consid-
eration, while the Hi’s usually represent the different
contexts, or scenarios, under which the Ei’s are eval-
uated.

The basic events E1, . . . , En,H1, . . . , Hn can be en-
dowed with logical constraints, that represent depen-
dencies among particular configurations of them (e.g.
incompatibilities, implications, partial or total coinci-
dences, etc.).

In the following EiHi will denote the logical connec-
tion “Ei and Hi” (Ei∧Hi), E

c
i will indicate “not Ei”,

the contrary of Ei, and the event H0 =
∨n

i=1 Hi will
represent the whole set of contexts.

Starting with the basic events E1, . . . , En,H1, . . . , Hn,
it is possible to span a sample space Ω = {ω1, . . . , ωk},
where ωj represents a generic atom that is the elemen-
tary element in the algebra generated by the Ei and
Hi. Note that the sample space Ω, together with H0,
are not part of the assessment but only auxiliary tools.

Every probability mass function α : P (Ω) → R cor-
responds to a non-negative vector α = [α1, . . . , αk],
with αj = α(ωj), then for every event E it results
α(E) =

∑
ωj⊆E αj .

We need to introduce a nested hierarchy among prob-
ability distributions sets:



• A =
{
α,
∑k

1 αi = 1, αj ≥ 0, j = 1, . . . , k
}
;

• A0 =
{
α ∈ A|α(H0) = 1

}
;

• A1 = {α ∈ A0|α(Hi) > 0, i = 1, . . . , n}.

It is easy to see that the set A1 is a convex set and
A0 is the closure of A1 in the usual topology.

We focus our attention on coherent (conditional)
probability assessments p, that can be reduced to the
compatibility with a conditional probabilities, as in-
troduced by Dubins [15] and De Finetti [12] (see also
Krauss [18] and Rényi [27]).

Definition 1 Let E = [E1|H1, . . . , En|Hn] be an ar-
bitrary set of conditional events, an assessment p
on E is said to be a coherent conditional probabil-
ity if there exists a conditional probability P (·|·) de-
fined on B × (B \ ∅) (with B the algebra spanned by
E1, H1, ..., En,Hn) which restriction to E coincides
with p.

Every probability distribution α ∈ A1 generates a
coherent conditional probability assessment qα on E
through the usual formula

qαi =
∑

ωj⊆EiHi

αj/
∑

ωj⊆Hi

αj for all i = 1, . . . , n. (1)

Note that qα is a continuous function of α when α ∈
A1. When α ∈ A0, the previous formula (1) defines
qα only on

Eα := {Ei|Hi ∈ E , α(Hi) > 0} . (2)

To cover the case of conditioning events with null
probability, in fact we need to resort to a suitable
class of probability distributions α1, . . . ,αl agreeing
with P (·|·) (for more details refer to the characteriza-
tion theorem reported e.g. in [9, 10]).

Coherence is crucial since it is a prerequisite for a
sound inference, that means extension of the given
assessment to any new conditional event. In fact the
following theorem, essentially due to [12], holds:

Theorem 1 Let p be an assessment on an arbitrary
family E; then there exists a (possibly not unique) co-
herent extension of p to any family K ⊃ E if and only
if p is a coherent conditional probability on E.

Moreover, if p is a coherent conditional probability on
E, then the coherent probability values for any condi-
tional event F |K ∈ K \ E belong to a closed interval
[pF |K , pF |K ].

The aforementioned coherent interval [pF |K , pF |K ]

can be obtained by solving specific linear optimization

problems (for details refer again to [10]) based on suit-
able classes of probability distributions {α1, . . . ,αl}
agreeing with p.

The notion of coherence also apply to imprecise con-
ditional assessments, i.e. whenever the numerical part
of the assessment is elicited through interval values

lub = ([lb1, ub1], . . . , [lbn, ubn]). (3)

Of course, some of the intervals [lbi, ubi] could degen-
erate to a precise value pi.

For assessments such as (E , lub), although defined on
finite spaces, there could be different kinds of consis-
tency requirements (for a detailed exposition, among
others, refer to [24]). The basic consistency notion
is the so called avoiding of partial loss, while in this
paper we focus on the most stringent one: (strong)
coherence. By taking into account a Bayesian sen-
sitivity analysis interpretation, coherent lower-upper
conditional probability assessments (E , lub) are such
that intervals’ lower (upper) extremes lbi (ubi) can be
obtained as lower (upper) envelopes of sets of coher-
ent precise conditional probability assessments on E .
It follows that to have a coherent lower-upper assess-
ment (E , lub), there should exist a set of probability
classes α1, . . . ,αl such that they induce probabilities
for the Ei|Hi inside the ranges [lbi, ubi], and moreover
each lower (lbis) and upper (ubis) bound on a condi-
tional event is attained in at least one distribution.

Also, starting from a coherent lower-upper assess-
ment (E , lub), it is possible to infer coherent bounds
[pF |K , pF |K ] for the probability of any target condi-

tional event F |K through specific sequences of linear
optimization problems and/or satisfiability of logical
configurations (for details refer to [4]).

3 Coherent adjustments

Given an incoherent conditional probability assess-
ment, for example, on a domain arising from the merg-
ing of separately coherent partial probability assess-
ments, we need to restore coherence in a way to pre-
serve, as much as possible, the information on the ini-
tial assessments, without introducing exogenous infor-
mation. This goal is obtained generally by minimizing
some kind of distance among partial conditional as-
sessments.

(Pseudo)distances among probability distributions
are usually defined through divergencies (e.g. Eu-
clidean distance, Kulback-Leibler divergence, Csiszár
f-divergences, etc.). Some of them can be applied only
among unconditional probability distributions; others
could be applied in our context of partial conditional



assessments, but could have no probabilistic justifica-
tion, being purely geometrical tools.

Given two conditional assessments p = [p1, . . . , pn]
and q = [q1, . . . , qn] on the same set of conditional
events E , the most widely adopted divergencies among
them are:

1. L1(p,q) =
n∑

i=1

|qi − pi|;

2. L2(p,q) =
n∑

i=1

(qi − pi)
2;

3. KL(p,q) =
n∑

i=1

(qi ln(qi/pi)− qi + pi).

L1 and L2 are usual metric distances, endowed with
all their geometric properties, but until now remain
without an intuitive probabilistic interpretation for
conditional assessments. Moreover, their use in con-
ditional context could lead to numerical troubles due
to non-convexity of coherent assessments, as the fol-
lowing simple example borrowed from [2] shows:

Example 1 Consider E = [A|H,B|AH,AB|H] with
A,B,H logically independent. Hence the sample space
is composed by 8 atoms, 4 of them inside H0 ≡ H.
The set of coherent assessments QE is formed by the
triples [q1, q2, q3] ∈ [0, 1]3 with q3 = q1 q2.

Then, the set QE is evidently non-convex.

KL is the so called logarithmic Bregman divergence.
In the unconditional framework, such divergence is
the most frequently adopted, because of its informa-
tion theoretic properties. In fact, it generalizes the
well known Kulback-Leibler divergence [19] to partial
assessments. Anyhow, it is known that this Bregman
divergence is generated by a logarithmic scoring rule
that has a peculiarity that in some cases it is better to
avoid: it evaluates only the events that occur, without
considering those that turn out to be false.

To overcome this characteristic and to encompass the
need of considering the conditional framework where
the assessment is given, recently in [6, 8] for partial
conditional assessments v = [v1, . . . , vn] ∈ (0, 1)n over
E = [E1|H1, . . . , En|Hn], the following random vari-
able has been proposed as scoring rule:

S(v) :=

n∑
i=1

|EiHi| ln vi +
n∑

i=1

|Ec
iHi| ln(1− vi) (4)

with |·| the indicator function of unconditional events.

The motivation of such a score is that the assessor
“loses less” the higher the probabilities are of occur-

ring events, and at the same time, the lower the prob-
abilities of events are, which do not occur. The values
assessed on events that turn out to be undetermined
do not influence the score. Such a score S(v) is an
extension to partial and conditional probability as-
sessments of the “total-log proper scoring rule” for
probability distributions proposed by Lad in [20, pag.
355].

By considering the difference between the expected
penalties suffered by the two evaluations p and qα
as distance criterion, it is possible to define the “dis-
crepancy” ∆(p,α) between a partial conditional as-
sessment p over E and a distribution α ∈ A0 through
the expression∑

i|α(Hi)>0

α(Hi)

(
qi ln

qi
pi

+ (1− qi) ln
(1− qi)

(1− pi)

)
(5)

taking the convention 0 ln(0) = 0. Note that in
∆(p,α) each term is weighted by α(Hi), which re-
flects the “relevance” of each context Hi with respect
to all the assessments.

The main idea is to take as coherent correction of p
the assessment qp ≡ qα̃ generated by the distribution
α̃ solution of the nonlinear optimization program

min
α∈A0

∆(p,α). (6)

The motivation for this choice is that (intuitively) the
assessor of p would expect to suffer the penalty S(p),
hence we select the coherent assessment qp that has
a (probabilistic) expected score as close as possible.

In [8] it is formally proved that ∆(p,α) is a non neg-
ative function on A0 and that ∆(p,α) = 0 if and
only if p = qα; moreover ∆(p, ·) admits a minimum
on A0. Finally if α,α0 ∈ A0 are distributions that
minimize ∆(p, ·), then for all i ∈ {1, . . . , n} such that
α(Hi) > 0 and α0(Hi) > 0 we have (qα)i = (qα0)i;
in particular if ∆(p, ·) attains its minimum value on
A1 then there is a unique coherent assessment qα

such that ∆(p,α) is minimum. On the contrary, if
the minimum is attained in A0 \ A1, i.e. there exists
some conditioning event forced to have null probabil-
ity, the optimization program (6) can be iterated by
restricting the assessment only on the different “zero
layers” (for details refer again to [8]). Moreover, the
discrepancy measure ∆(p,α) can be used to correct
incoherent assessments and to aggregate expert opin-
ions [6, 8]. ∆(p,α) can even be applied to correct
incoherent assessments and to aggregate conflicting
opinions based on imprecise conditional probabilities
[7] but this feature will not be used here since the sta-
tistical matching analysis will be based on a precise
initial assessment p. Imprecise probabilities can ap-
pear whenever a consistent sub-assessment is selected



and it is coherently extended to the rest of the do-
main, as it is shown in the next sub-section.

3.1 Coherent Extension

Another possibility to adjust the initially incoherent
assessment (E ,p) could be to determine a coherent
sub-assessment (G,p|G) and coherently extend it to
the rest F = E \ G as prescribed by the generalized
Bayesian updating scheme (see e.g. [9, 10, 36] among
others). Since, in general, coherent extension pro-
duces intervals of plausible values, with this approach
the whole assessment turns out to be imprecise due to
the interval values ((F , [pF ,pF ])). Also in such a sit-
uation, inference can pe performed again through the
generalized Bayesian updating scheme but applied to
imprecise evaluations (see e.g. [1, 4] among others).
Whenever such inferences are too vague, i.e. when
the intervals are very wide (close to [0,1]), they can
be eventually reduced by a procedure proposed in [5]
that enucleates coherent cores, i.e. surely coherent
subintervals with highest degree of support. This is
motivated by the fact that, in general, not all the
subintervals of the extensions are coherent, whereas
this is guaranteed by the choice of such coherent cores
since they are total coherent (for this stronger consis-
tency notion refer e.g. to [16]).

The choice of the coherent sub-assessment (G,p|G)
should follow some criterion, since it could not be
uniquely determined. Anyhow, for the specific ap-
plication to statistical matching that is the scope of
the present paper, such a choice comes quite natu-
rally since in [35] it has been shown that it is possible
to detect the incoherent sub-assessment (F ,p|F ) with
minimal cardinality.

4 Integration of sources in a coherent
setting

We briefly describe how the problem of integration of
sources, named statistical matching, can be formal-
ized in the coherent conditional probability setting.
In particular here we refer to the case of two sources
as already described in [35], while the case of more
sources has been studied in [36].

Let us denote by (X1, Y1), ..., (XnA
, YnA

) and by
(XnA+1, ZnA+1), ..., (XnA+nB , ZnA+nB ) two random
samples (with a finite range) related to two sources A
and B. We suppose that the two samples both con-
cern the same population of interest and are drawn ac-
cording to the same sampling scheme. We can regard,
under the above conditions, (X1, Y1), ..., (XnA

, YnA
)

(analogously (XnA+1, ZnA+1), ..., (XnA+nB , ZnA+nB ))
exchangeable, as well as the sequence X1, ..., XnA

,

XnA+1, ..., XnA+nB
.

We can elicit from the two files the relevant probabil-
ity values: from file A the conditional probabilities

Yj|i = PY |(X=xi)(Y = yj), (7)

that the next unit has Y = yj on the hypothesis that
(X = xi) (for any xi taken by X), and analogously
from file B the conditional probability values

Zk|i = PZ|(X=xi)(Z = zk). (8)

Moreover, from data on both files we can evaluate

X i = PX(X = xi). (9)

Given Yj|i,Zk|i,X i, for any i, j, k, one needs to check
coherence of the whole assessment (E ,p), that is

E ={
(X = xi), (Y = yj)|(X = xi), (Z = zk)|(X = xi)

for any xi, yj , zk

}
,

p = {X i, Yj|i,Zk|i}i,j,k .
(10)

Now we recall the result proved in [36], that claims
that when the partitions EX , EY , EZ associated to the
variables are logically independent (i.e. for any A ∈
EX , B ∈ EY , C ∈ EZ , A ∧ B ∧ C ̸= ∅) coherence is
assured.

Theorem 2 Let X,Y, Z be three finite random vari-
ables and consider the following three coherent as-
sessments {PX(X = xi)}i, {PY |X=xi

(Y = yj)}j and
{PZ|X=xi

(Z = zk)}k.

Then the assessment

{PX(X = xi) , PY |X=xi
(Y = yj) : for any xi, yj}

(analogously {PX(X = xi), PZ|X=xi
(Z = zk) :

for any xi, zk}) is coherent.

Moreover, if the partitions EY , EZ are logically in-
dependent with respect to EX (i.e. (X = xi, Y =
yj , Z = zk) is possible for any value xi of X, yj of
Y , zk of Z s.t. the events (X = xi, Y = yj) and
(X = xi, Z = zk) are possible), then the whole assess-
ment (10) is coherent.

On the other hand, when there are some logical con-
straints among the variables Y and Z, the coherence
of the whole assessment (10) is not assured by coher-
ence of the single assessments (7-9) (see [35]). Notice
that the need of managing logical constraints arises
from practical applications [14].

5 Removing inconsistencies in
statistical matching

We have now all the elements to specialize the general
approaches for inconsistencies correction described in



Section 3 for the specific setting of the statistical
matching as depicted in the previous Section 4.

The starting point is that the whole assessment (10)
is not coherent, then inconsistencies must be detected
in order to restore coherence. This kind of problem
has already been studied (e.g. see [21]) in combin-
ing assessments given by different experts: the ap-
proach to the identification and reconciliation of in-
coherence uses an external observer equipped with a
prior distribution and likelihood function. Actually,
this approach does not seem suitable in the context
of statistical matching because of the lack of infor-
mation on the variables not jointly observed, so that
the prior distribution cannot be updated and the like-
lihood function has a flat ridge (as already noted in
[30]). Hence we propose a different method: to restore
coherence we can easily find the minimal restriction
of the whole assessment which is not coherent (as pro-
posed in [36]) and adjust it by a specialization of the
techniques presented in Section 3. Let us see it into
details.

As claimed by Theorem 2, in statistical matching
incoherences are related to conditional events with
the same conditioning event (X = xi). Hence the
check of coherence of the whole assessments (10) can
be reduced to the check of coherence for the sub-
assessments{

Yj|i, Zk|i : for fixed i and any j, k
}
. (11)

Once not coherent sub-assessments of type (11)
have been disclosed, they can be adjusted by find-
ing coherent values that minimize some of the
(pseudo)distances presented in Section 3.

Whereas classical distances - L1, L2 and KL - can be
directly applied to such minimal incoherent restric-
tion since their arguments are directly the conditional
probabilities, for the discrepancy ∆(p,α) a “reformu-
lation” is required. In fact, we require that its expres-
sion (5) specifically acts on values for any conditioning
events (X = xi). This is possible by considering the
following mixture of discrepancies ∆mix(p, {αi}i):

∑
i

X i

∑
j

(
qαi

j|i ln
qαi

j|i

Yj|i
+ (1− qαi

j|i) ln
(1− qαi

j|i)

(1− Yj|i)

)
+

+
∑
k

(
qαi

k|i ln
qαi

k|i

Zk|i
+ (1− qαi

k|i) ln
(1− qαi

k|i)

(1− Zk|i)

)]
(12)

where each distribution αi works just on the
sample space spanned by the conditional events
{(Y = yj)|(X = xi), (Z = zk)|(X = xi)}, it is con-
strained to fulfill the normalizing condition

αi(X = xi) = X i, (13)

and generates the conditional probabilities

qαi

j|i =
αi(Y = yj)

αi(X = xi)
qαi

k|i =
αi(Z = zk)

αi(X = xi)
. (14)

As already mentioned, coherence of the overall assess-
ment (E ,q), with

q = {X i, q
αi

j|i, q
αi

k|i}i,j,k

is guaranteed by Theorem 2.

Since the specialized discrepancy defined in equation
(12) is a mixture of discrepancies, each one working
on a specific scenario (X = xi), its use in an opti-
mization program like (6) allows to adjust only the
values inside sub-domains of E conditioned to scenar-
ios (X = xi) where some incoherence appear, with-
out changing the other values. This characteristic dif-
ferentiates the specialized discrepancy (12) from the
original discrepancy (5), as the following simple ex-
ample shows:

Example 2 Let {x1, x2}, {y1, y2, y3}, {z1, z2, z3} be
the sample space of three r.v. X,Y, Z with constraints

(Z = z1) ∧ ((Y = y1) ∨ (Y = y2)) = ∅

and
(Z = z2) ∧ (Y = y1) = ∅.

Consider the following conditional assessment p:

X1 = 1
3 X2 = 2

3

Y1|1 = 387
1111 Y2|1 = 102

1111 Y3|1 = 622
1111

Y1|2 = 2
3 Y2|2 = 0 Y3|2 = 1

3

Z1|1 = 179
1108 Z2|1 = 443

1108 Z3|1 = 486
1108

Z1|2 = 2
3 Z2|2 = 1

9 Z3|2 = 2
9

.

It is easy to check that p on events (X = xi) is co-
herent, as well as Yj|i = P (Y = yj |X = xi) (and
analogously Zk|i = P (Z = zk|X = xi)) for any
(X = xi). However, the whole assessment is not co-
herent, and incoherence is localized on events condi-
tioned to (X = x2).

By applying either ∆(p,α) or ∆mix(p, {αi}i) the
same correction on those values is induced (see Ta-
ble 1), whereas with the former also the unconditional
values for P (X = xi) are modified, even if they are
coherent.

Note that, with such specialized discrepancy, the sub-
domains, where incoherence must be removed, are im-
plicitly detected, without the need of a preliminary



E P ∆ ∆mix

X = x1 0.3333 0.3726 -
X = x2 0.6667 0.6274 -
Y = y1|X = x1 0.3483 0.3483 0.3483
Y = y2|X = x1 0.0918 0.0918 0.0918
Y = y3|X = x1 0.5599 0.5599 0.5599
Z = z1|X = x1 0.1616 0.1616 0.1616
Z = z2|X = x1 0.3998 0.3998 0.3998
Z = z3|X = x1 0.4386 0.4386 0.4386
Y = y1|X = x2 0.6667 0.4156 0.4156
Y = y2|X = x2 0 0.0996 0.0996
Y = y3|X = x2 0.3333 0.4848 0.4848
Z = z1|X = x2 0.6667 0.4848 0.4848
Z = z2|X = x2 0.1111 0.0996 0.0996
Z = z3|X = x2 0.2222 0.4156 0.4156

Table 1: Correction comparison for Example 2. In
boldface changes associated to unconditional events,
while in italic changes associated to conditional ones

inspection of the assessment (E ,p). Moreover the ad-
justments are weighted by the relevance of the scenar-
ios expressed through the X i’s in (12).

From these data we can also get a comparison between
∆ and ∆mix: actually ∆ also changes the probability
distribution on (X = xi)’s in order to reduce the min-
imum value taken from ∆ even if Theorem 2 assures
the separate coherence of the probability assessments
(X i, Yj|i) and (X i,Zj|i), for any i = 1, 2 and j = 1, 2, 3.
Then, we can stress that for the statistical matching
problem ∆mix seems to be more appropriate than ∆.

Another criterion (further than the quoted ones based
on L1, L2,KL minimizations) for restoring coherence
could be based on the maximum likelihood criterion:
when the evaluations are obtained through the maxi-
mum likelihood criterion, we can maximize the “par-
tial likelihood function” on the set of events generat-
ing incoherence. Also in this situation we have an op-
timization problem with a non-linear objective func-
tion and a set of linear constraints.

Note that if we apply this criterion to data in Exam-
ple 2 the marginal distribution of X does not change
and the adjustment is localized on the assessment over
(X = x2), analogously to what happens with ∆mix.
We have not reported these values on Table 1 because
the aim of the example is just to stress the difference
between ∆ and ∆mix. Explicit results of the maxi-
mum likelihood criterion will appear in the next sec-
tion.

6 A practical example

In order to show our proposal we develop an exam-
ple with data taken from [14] and studied also in [36].
The data are a subset of 2313 employees (people at
least 15 years old) extracted from 2000 pilot survey of
the Italian Population and Household Census. Three
categorical variables have been analyzed: Age, Ed-
ucational Level and Professional Status. In file A,
containing 1148 units, the variables Age and Profes-
sional Status are observed, while file B, consisting of
1165 observations, the variables Age and Educational
Level are considered. The variables are grouped in
homogeneous response categories as follows: A1=15-
17 years old, A2=18-22 years old, A3=23-64 years
old, A4=more than 65 ; E1=None or compulsory
school, E2=Vocational school, E3=Secondary school,
E4=Degree; S1=Manager, S2=Clerk, S3=Worker.

Logical constraints between the variables Age and Ed-
ucational level (Age and Professional Status) are de-
noted by the symbol “–” (to be distinguished from the
zero frequencies) in Table 2 (Table 3): for example, in
Italy a 17 years old person cannot have a University
degree. Tables 2 and 3 show, respectively, the distri-
bution of Age and Professional Status in file A, and
in file B that related to Age and Educational Level.

Prof. Status

Age S1 S2 S3 Tot.

A1 – – 9 9
A2 – 5 17 22
A3 179 443 486 1108
A4 6 1 2 9

Tot. 185 449 514 1148

Table 2: Distribution of Age and Professional Status
in file A.

Educ. level

Age E1 E2 E3 E4 Tot.

A1 6 0 – – 6
A2 14 6 13 – 33
A3 387 102 464 158 1111
A4 10 0 3 2 15

Tot. 417 108 480 160 1165

Table 3: Distribution of Age and Educational level in
file B.

Additional logical constraints involving both the vari-
ables Professional Status and Educational level are



the following ones:

S1 ∧ (E1 ∨ E2) = ∅ and S2 ∧E1 = ∅.

By considering the frequencies (that, whenever co-
herent, correspond also to the maximum likelihood
estimations) as evaluation of the relevant conditional
probabilities, we get the assessment reported in Ta-
ble 4. Such conditional probability assessment is not

A1 A2 A3 A4

P (·) 0.0065 0.0238 0.9594 0.0104
P (S1|·) −− −− 0.1616 0.6667
P (S2|·) −− 0.2273 0.3913 0.1111
P (S3|·) 1 0.7727 0.4293 0.2222
P (E1|·) 1 0.4242 0.3419 0.6667
P (E2|·) 0 0.1818 0.0918 0
P (E3|·) −− 0.3940 0.4176 0.2
P (E4|·) −− −− 0.1422 0.1333

Table 4: Conditional probability assessment elicited
from frequencies of Tab.2 and Tab.3.

coherent as shown in [36]. The incoherencies need to
be identified and removed. It comes out that P (·|A4)
is not coherent since from logical constraints between
Educational Level and Professional Status it follows
E1 ∧ S1 = ∅ and E1 ⊆ S3, respectively, while from
Table 4 result P (E1|A4) + P (S1|A4) + P (S3|A4) > 1
and P (E1|A4) > P (S1|A4).

Then, we could either identify, as proposed in [36],
the minimal set of conditional events involved in in-
coherencies that is F = {E1|A4, S1|A4, S3|A4}, or ad-
just, with respect to a suitable distance, the whole
distribution on Professional Status and Educational
Level conditioned to A4.

Different corrections are considered and the results
are shown in Table 5, where

• L1|F gives the solution proposed in [36] by min-
imizing L1 distance only among F , the minimal
incoherent subset of E ;

• L1|A4, L2|A4, KL|A4 gives the solutions obtained
by minimizing usual distances discussed in Sec-
tion 3 only among events conditioned to A4;

• ∆MIX gives the solution obtained by minimizing
the specific discrepancy (12);

• ML gives the maximum likelihood estimation;

• IPE\F gives the coherent lower-upper extension
induced by the given assessment on E \ F ;

• IPE\{·|A4} gives the coherent lower-upper exten-
sion induced by the given assessment on E \
{Si|A4, Ej |A4 : i = 1, 2, 3 ; j = 1, ..., 4};

• the last column gives the extensions of the re-
spective corrections on the inference target S3|E4

with the respective “core” rows showing the total
coherent sub-interval extension with maximum
support in line with [5].

Note that only the values conditioned to A4 are re-
ported, those involved in the incoherence (the other
18 values remaining the same as the given assessment
p).

Firstly, we compare the rows related to remove the
minimal set of incoherence, and it seems that L1|F
and IPE\F perform similarly. Even though we can
observe a drastic change on the probability values,
mainly induced by removing not all the set of condi-
tioning events with conditioning A4 but just a subset
(a minimal subset), they induce quite reasonable in-
ference bounds. In particular, the imprecise adjust-
ment IPE\F performs quite well. In fact it induces in-
ference bounds for S3|E4 similar to the precise correc-
tions with the advantage of having the possibility to
enucleate the “core” sub-interval. This sub-interval,
even though it remains quite vague, has the positive
aspect of bounding away from zero the lower proba-
bility, and this is seen very often as a positive aspect.

Note that L1|A4 and ML give similar results and in
particular they leave to 0 the probability of E2|A4

since the absence of observations in the original data.
And the impossibility to change null values is one of
the peculiarities of maximum likelihood criterion.

On the other hand, we observe that precise adjust-
ments on the whole assessment conditioned to A4

have all quite similar behaviors for the other distances
taken into consideration, and in particular they also
modify the assessment related to E2|A4, where there
is no observation.

The advantage of ∆mix correction is its automatic
localization of the scenarios (in this specific exam-
ple A4) where the adjustment can be performed and
their relative importance expressed by the uncondi-
tional probabilities X i. Note that we apply ∆mix,
instead of ∆, in order to avoid any change on the
probability distribution of X, that is coherent with
any conditional probability on Y |(X = x) (or equiv-
alently Z|(X = x)), for any x, as shown in Theorem
2. In fact, ∆ tighten to change also the distribution
of X (through the weights) in order to reduce the in-
consistencies, as shown in Example 2.

On the other hand, the wider imprecise correction
IPE\{·|A4}, being the one with less assumption re-
quirement, surely performs worst. Its vagueness on
the values conditioned on A4 is due to freedom in-
duced by the coherence characterization, and this re-



S1|A4 S2|A4 S3|A4 E1|A4 E2|A4 E3|A4 E4|A4 S3|E4

p 0.6667 0.1111 0.2222 0.6667 0 0.2000 0.1333 ∅
L1|F 0.2222 - 0.6667 0.6667 - - - [0,0.6285]
L1|A4 0.5266 0 0.4734 0.4734 0 0.2836 0.2431 [0,0.6234]
L2|A4 0.5333 0.0389 0.4278 0.4278 0.0389 0.3 0.2333 [0,0.6238]
KL|A4 0.4856 0.1179 0.3965 0.3965 0.1179 0.2914 0.1942 [0,0.6257]
∆mix 0.4985 0.0939 0.4077 0.4077 0.0939 0.2943 0.2042 [0,0.6252]
ML 0.4286 0.0714 0.5000 0.5000 0 0.3000 0.2000 [0,0.6254]

IPE\F [0 , 0.2222] - [0.6667 0.8889] - - - - [0,0.6386]
core [0.0017,0.6286]

IPE\{·|A4} [0 , 1] [0 , 1] [0 , 1] [0 , 1] [0 , 1] [0 , 1] [0 , 1] [0,0.6607]
core [0,0.6349]

Table 5: Several incoherence correction with associated inference results for the target S3|E4

flects also on the inference performances.

Note that we report, just as an example, only the
extension values for a conditional event, however we
could compute all the values of the (conditional)
events of interest, as for example on the partition gen-
erated by the three random variables.

7 Conclusion

Checking coherence and removing incoherences in the
data is a long debated problem in literature, we have
studied it by focusing on statistical matching applica-
tions. In fact, in this kind of application the incoher-
ence can arise when the variables are linked by logical
relations.

We have applied several incoherence adjustment pro-
cedures in this specific ambit. From this study some
differences among these adjustments come out. Due
to peculiarities of source integration and lack of infor-
mation on the variables not jointly observed, usual
divergences techniques can be specialized. In par-
ticular, a specific adjustment of a discrepancy, orig-
inally introduced for general conditional probability
assessment, shows the advantage of an automatic and
weighted localization of the sub-domains where inco-
herence must be removed.

We have analyzed also a very simple practical appli-
cation and we have shown that better results are ob-
tained not simply focusing on the minimal number
of incoherent values, but involving all the elements
conditioned to the same scenarios, where incoherence
arises. On the other hand, coherent imprecise adjust-
ment performs better focusing on the minimal number
of incoherent values. This entail a minimal number
of changes with respect the original assessment, but
has as counterpart obvious vaguer inference conclu-
sions. Vagueness that can however be reduced by the
aforementioned “maximally supported” sub-intervals

detection.
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