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Abstract

We introduce a robust regression method for impre-
cise data, and apply it to social survey data. Our
method combines nonparametric likelihood inference
with imprecise probability, so that only very weak as-
sumptions are needed and different kinds of uncer-
tainty can be taken into account. The proposed re-
gression method is based on interval dominance: in-
terval estimates of quantiles of the error distribution
are used to identify plausible descriptions of the rela-
tionship of interest. In the application to social sur-
vey data, the resulting set of plausible descriptions is
relatively large, reflecting the amount of uncertainty
inherent in the analyzed data set.

Keywords. Robust regression, imprecise data, non-
parametric statistics, likelihood inference, imprecise
probability distributions, survey data, informative
coarsening, complex uncertainty, interval dominance,
identification regions.

1 Introduction

Data are often available only with limited precision.
However, only few general methods for analyzing the
relationships between imprecisely observed variables
have been proposed so far. These approaches seem
to fall in two categories. One of them consists of
approaches suggesting to apply standard regression
methods to all possible precise data compatible with
the observations, and to consider the range of out-
comes as the imprecise result: see for example [8].
The approaches in the second category consist in rep-
resenting the imprecise observations by few precise
values (for example, intervals by center and width),
and in applying standard regression methods to those
values: see for instance [7].

In the present paper, we follow another line of ap-
proach and suggest a new regression method directly
applicable to the imprecise data. This method com-

bines likelihood inference with imprecise probability.
It allows to take into account different kinds of uncer-
tainty, that are also reflected in the imprecise results
of the regression. The suggested method imposes only
very weak assumptions and yields extremely robust
results. In particular, it is nonparametric, in the sense
that no assumptions about the error distribution are
necessary, in contrast, for instance, to the approach
of [20]. We describe the regression method in Sec-
tion 3, which is based on the general methodology for
inference with imprecise data introduced in Section 2.

In addition to the theoretical results, in Section 4 we
apply the method to analyze an interesting question
in the social sciences. We investigate the relationship
between age and income on the basis of survey data.
The source of data used in this paper is “Allgemeine
Bevölkerungsumfrage der Sozialwissenschaften (ALL-
BUS) —German General Social Survey” of 2008. The
data is provided by GESIS — Leibniz Institute for the
Social Sciences.

2 Imprecise Data

Let V1, . . . , Vn be n random objects taking values in
a set V, and let V ∗

1 , . . . , V
∗
n be n random sets tak-

ing values in a set V∗ ⊆ 2V , such that the events
Vi ∈ V ∗

i are measurable. We are actually interested
in the data Vi, but we can only observe the imprecise
data V ∗

i . The connection between precise and impre-
cise data is established by the following assumptions
about the probability measures considered as models
of the situation.

For each ε ∈ [0, 1], let Pε be the set of all proba-
bility measures1 P such that the n random objects
(V1, V

∗
1 ), . . . , (Vn, V

∗
n ) are independent and identically

distributed and satisfy

P (Vi ∈ V ∗
i ) ≥ 1− ε. (1)

1Probability measures and random objects are defined on
an underlying measurable space.



We assume that the precise and imprecise data can
be modeled by a probability measure P included in a
particular set P ⊆ Pε, for some ε ∈ [0, 1]. Each P ∈ P
can be identified with a particular joint distribution
for Vi and V ∗

i (that is, the precise and imprecise data,
respectively) satisfying condition (1). In particular,
P = Pε corresponds to the fully nonparametric as-
sumption that any joint distribution for Vi and V ∗

i

satisfying condition (1) is a possible model of the situ-
ation (this is the assumption we consider in Sections 3
and 4). The usual choice for the value of ε is 0 (see for
example [6, 17]), which corresponds to an assumption
of correctness of the imprecise data: V ∗

i = A implies
Vi ∈ A (a.s.). However, this assumption is often too
strong: some imprecise data can be incorrect, in the
sense that V ∗

i = A, but Vi /∈ A. This is for example
the case, when the imprecise data represent the clas-
sification of the precise data into categories, and some
observations are misclassified. By choosing a positive
value for ε, we allow each imprecise observation to be
incorrect with probability at most ε.

The set V∗ describes which imprecise data V ∗
i = A

are considered as possible. As extreme cases we have
the actually precise data (when A is a singleton) and
the missing data (when A = V). In general, the fully
nonparametric assumption P = Pε does not exclude
informative coarsening (see for example [23]): para-
metric models or uninformative coarsening can be im-
posed by a stronger assumption P ⊂ Pε. However, it
is important to note that the set Pε depends strongly
on the choice of V∗. For example, when ε = 0, the
choice of a set V∗ such that its elements build a parti-
tion of V implies the assumption that the coarsening
is deterministic and uninformative, because each pos-
sible precise data value is contained in exactly one
possible imprecise observation A ∈ V∗.

2.1 Complex Uncertainty

In general, we are uncertain about which of the prob-
ability measures in P is the best model of the reality
under consideration. Our uncertainty is composed of
two parts. On the one hand, we are uncertain about
the distribution of the imprecise data V ∗

i : this uncer-
tainty decreases when we observe more and more (im-
precise) data. On the other hand, even if we (asymp-
totically) knew the distribution of the imprecise data
V ∗
i , we would still be uncertain about the distribu-

tion of the (unobserved) precise data Vi: this uncer-
tainty is unavoidable. To formulate this mathemat-
ically, let PV and PV ∗ be the marginal distributions
of Vi and V ∗

i , respectively, corresponding to the prob-
ability measure P ∈ P. There is uncertainty about
PV ∗ in the set2 PV ∗ := {P ′

V ∗ : P ′ ∈ P}, but even if

2The symbol := denotes “is defined to be”.

PV ∗ were known, there would still be an unavoidable
uncertainty about PV in the set

[PV ∗ ] := {P ′
V : P ′ ∈ P, P ′

V ∗ = PV ∗}.

The sets [PV ∗ ] with PV ∗ ∈ PV ∗ are the identification
regions for PV in the terminology of [12]. Each of
them consists of all the distributions for the precise
data Vi compatible with a particular distribution for
the imprecise data V ∗

i . Hence, each set [PV ∗ ] can be
interpreted as an imprecise probability distribution on
V. By observing the realizations of the imprecise data
V ∗
i , we learn something about which of the imprecise

probability distributions [PV ∗ ] is the best model for
the (unobserved) precise data Vi.

Example 1 Let V = {0, 1} and V∗ = 2{0,1}, and as-
sume P = Pε for some ε ∈ [0, 1]. Then PV ∗ is the set
of all probability distributions on 2{0,1} such that the
probability of ∅ is at most ε. For each PV ∗ ∈ PV ∗ ,
the identification region [PV ∗ ] is the set of all proba-
bility distributions on {0, 1} such that the probability
of 1 lies in the interval

[
PV ∗{1}, PV ∗{1}

]
, with

PV ∗{1} = max (PV ∗ {{1},∅} − ε, 0)

PV ∗{1} = min (PV ∗ {{1}, {0, 1}}+ ε, 1) .

In particular, when ε = 0, the imprecise probability
distribution [PV ∗ ] corresponds to the belief function
on {0, 1} with basic probability assignment PV ∗ (see
for example [16]), in the sense that [PV ∗ ] is the set of
all probability distributions on {0, 1} dominating that
belief function.

2.2 Likelihood

The likelihood function is a central concept in sta-
tistical inference. For parametric probability mod-
els, it is usually expressed as a function of the pa-
rameters: here we consider the more general formu-
lation (as a function of the probability measures),
which is applicable also to nonparametric models (see
for example [14]). The observed (imprecise) data
V ∗
1 = A1, . . . , V

∗
n = An induce the (normalized) like-

lihood function lik : P → [0, 1] defined by

lik(P ) =
P (V ∗

1 = A1, . . . , V
∗
n = An)

supP ′∈P P ′(V ∗
1 = A1, . . . , V ∗

n = An)
=

=

∏n
i=1 PV ∗{Ai}

supP ′∈P
∏n

i=1 P
′
V ∗{Ai}

for all P ∈ P. The likelihood function describes the
relative ability of the probability measures P in pre-
dicting the observed (imprecise) data. Therefore, the
value lik(P ) depends only on the marginal distribu-
tion PV ∗ of the imprecise data V ∗

i . The likelihood



function can be interpreted as the second level of a
hierarchical model for imprecise probabilities, with P
as first level (see for example [4, 5]). In particular, for
any β ∈ (0, 1), the likelihood function can be used to
reduce P to the set

P>β := {P ∈ P : lik(P ) > β}

of all the probability measures that were sufficiently
good in predicting the observed (imprecise) data.

Let g be a multivalued mapping3 from P to a set G,
describing a particular characteristic (in which we are
interested) of the models considered. For example, g
can be the multivalued mapping from P to R assigning
to each probability measure P the p-quantile of the
distribution of h(Vi) under P , for some p ∈ (0, 1) and
some measurable function h : V → R. This is the
kind of mapping g we consider in Sections 3 and 4:
it is multivalued, because in general quantiles are not
uniquely defined4. For each β ∈ (0, 1), the set

G>β :=
⋃

P∈P>β

g(P )

is called likelihood-based confidence region with cutoff
point β for the values of the multivalued mapping g.
This confidence region consists of all values that the
characteristic described by g takes on the set P>β

of all the probability measures that were sufficiently
good in predicting the observed (imprecise) data.

The unique function likg : G → [0, 1] describing these
confidence regions, in the sense that

G>β = {γ ∈ G : likg(γ) > β}

for all β ∈ (0, 1), is called (normalized) profile likeli-
hood function induced by the multivalued mapping g.
It can be easily checked that5 for all γ ∈ G,

likg(γ) = sup
P∈P : γ∈g(P )

lik(P ).

Example 2 In the situation of Example 1, let ε = 0,
and consider the mapping6 g from P to [0, 1] assigning
to each probability measure P the probability PV {1}
that a precise data value Vi is 1 (before observing the
corresponding imprecise data value V ∗

i ). The induced
profile likelihood function7 likg on [0, 1] is plotted in
Figure 1 for the cases in which the imprecise data

3Mathematically, g : P → 2G \ {∅}, but g is interpreted as
an “imprecise” mapping from P to G.

4A p-quantile of the distribution of h(Vi) is any value q ∈ R
such that P (h(Vi) < q) ≤ p ≤ P (h(Vi) ≤ q).

5In this paper, sup∅ = 0.
6As a multivalued mapping, g is defined by g(P ) = {PV {1}}

for all P ∈ P.
7The details of the calculation of likg are not of primary

interest at this point.
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Figure 1: Profile likelihood functions from Examples
2 and 3.

{0}, {1}, and {0, 1} have been observed 11, 21, and 6
times, respectively (solid line), and 213, 651, and 98
times, respectively (dashed line).

In these two cases, the likelihood-based confidence re-
gions with cutoff point β = 0.15 for the probability
PV {1} are approximately the intervals [0.39, 0.84] and
[0.65, 0.80], respectively (the cutoff point β = 0.15
is represented by the dotted line in Figure 1). They
are (conservative) confidence intervals of approximate
level 95% (see for example [11]).

2.3 Likelihood for Imprecise Data Models

In the situation we consider, we are actually inter-
ested in the (unobserved) precise data Vi. In this case,
the characteristic of interest (described by g) depends
only on the marginal distribution PV of the precise
data Vi; that is, we can write g(P ) =: g′(PV ) for all
P ∈ P. For example, the p-quantile of the distribution
of h(Vi) depends only on the distribution of Vi. By
contrast, as noted at the beginning of Subsection 2.2,
the value lik(P ) depends only on the marginal dis-
tribution PV ∗ of the imprecise data V ∗

i . By writing
lik(P ) = lik∗(PV ∗) for all P ∈ P, we define a function
lik∗ : PV ∗ → [0, 1], which can be interpreted as the
likelihood function on PV ∗ .

In order to obtain the profile likelihood function likg,
it can be useful to consider the multivalued mapping
g∗ from PV ∗ to G defined by

g∗(PV ∗) =
⋃

PV ∈[PV ∗ ]

g′(PV )

for all PV ∗ ∈ PV ∗ . The multivalued mapping g∗ as-
signs to each PV ∗ all the values that the characteristic
described by g′ takes on the set [PV ∗ ] of all distri-
butions for the precise data Vi compatible with the
distribution PV ∗ for the imprecise data V ∗

i . That is,
g∗ can be interpreted as an imprecise version of g′,
assigning to each imprecise probability distribution
[PV ∗ ] the corresponding imprecise value of g′.

The multivalued mapping g∗ can be useful to obtain
the profile likelihood function likg because, as can be



easily checked,

likg(γ) = sup
PV ∗∈PV ∗ : γ∈g∗(PV ∗ )

lik∗(PV ∗)

for all γ ∈ G. The right-hand side of this expression
can be interpreted as the value lik∗g∗(γ) of the profile
likelihood function lik∗g∗ induced by the multivalued
mapping g∗, when lik∗ is considered as the likelihood
function on PV ∗ .

The profile likelihood function lik∗g∗ is particularly
interesting, because lik∗ describes the uncertainty
about the distribution PV ∗ of the imprecise data V ∗

i ,
which decreases when we observe more and more (im-
precise) data, while g∗ describes the unavoidable un-
certainty about the values of the multivalued mapping
g′. In the terminology of [12], the values of g∗ are the
identification regions for the values of the multivalued
mapping g.

Example 3 The imprecise version g∗ of the mapping
g of Example 2 is the multivalued mapping from PV ∗

to [0, 1] assigning to each PV ∗ the interval[
PV ∗{1}, PV ∗{1}

]
= [PV ∗ {{1}} , PV ∗ {{1}, {0, 1}}] .

That is, g∗(PV ∗) is the interval probability that a pre-
cise data value Vi is 1 (before observing the corre-
sponding imprecise data value V ∗

i ) according to the
imprecise probability distribution [PV ∗ ] (i.e., the belief
function on {0, 1} with basic probability assignment
PV ∗).

The profile likelihood function likg = lik∗g∗ on [0, 1]
is plotted in Figure 1 for the two cases considered in
Example 2. In the case with 38 data (solid line) there
is uncertainty also about the distribution PV ∗ of the
imprecise data V ∗

i , while in the case with 962 data
(dashed line) almost only the unavoidable uncertainty
described by g∗ remains, in the sense that lik∗g∗ is al-
most equal to the indicator function of an identifica-
tion region for PV {1} (i.e., of a probability interval[
PV ∗{1}, PV ∗{1}

]
).

3 Regression

Now consider that the (unobservable) precise data are
pairs Vi = (Xi, Yi), where X1, . . . , Xn are n random
objects taking values in a set X , and Y1, . . . , Yn are
n random variables, with V = X × R. For some
V∗ ⊆ 2X×R and some ε ∈ [0, 1], we consider the fully
nonparametric assumption P = Pε. In the remainder
of the paper, we focus on this setting.

We want to describe the relation between Xi and Yi

by means of a function f ∈ F , where F is a particular
set of (measurable) functions f : X → R. In order to

assess the quality of the description by means of f ,
we define the (absolute) residuals

Rf,i := |Yi − f(Xi)| .

The n random variables Rf,1, . . . , Rf,n ∈ [0,+∞) are
independent and identically distributed: the more
their distribution is concentrated near 0, the better
is the description by means of f .

In order to compare the quality of the descriptions
by means of different functions f ∈ F , we need
to compare the concentration near 0 of the distri-
butions of the corresponding residuals Rf,i. Usual
choices of measures for this concentration are the sec-
ond and first moments E(R2

f,i) and E(Rf,i), respec-
tively. However, the moments of the distribution of
the residuals cannot be really estimated in the fully
nonparametric setting we consider, because moments
are too sensitive to small variations in the distribution
(see also Subsection 4.2). In fact, if ε > 0 or the set

Rf := {|y − f(x)| : (x, y) ∈ A, A ∈ V∗}

is unbounded, then the likelihood-based confidence re-
gion for any particular moment of the distribution
of the residuals is unbounded (even when only the
distributions with finite moments are considered), in-
dependently of the cutoff point and of the observed
(imprecise) data.

By contrast, the quantiles of the distribution of the
residuals can in general be estimated even in the fully
nonparametric setting we consider. Therefore, we
propose to use the p-quantile of the distribution of
the residuals Rf,i as a measure of the concentration
near 0 of this distribution, for some p ∈ (0, 1). The
technical details of the estimation of such quantiles
are given in Subsections 3.1 and 3.2.

The minimizations of the second and first moments
of the distribution of the residuals can be interpreted
as the theoretical counterparts of the methods of least
squares and least absolute deviations, respectively. In
the same sense, the minimization of the p-quantile of
the distribution of the residuals can be interpreted
as the theoretical counterpart of the method of least
quantile of squares (or absolute deviations), intro-
duced in [15] as a generalization of the method of
least median of squares (corresponding to the choice
p = 0.5). The method of least quantile of squares
leads to robust regression estimators, with breakdown
point min{p, 1−p} (that is, the highest possible break-
down point 50% is reached when p = 0.5). By con-
trast, the methods of least squares and least absolute
deviations lead to regression estimators with break-
down point 0, since they cannot even handle a single
outlier (including leverage points).



In the location problem (that is, when F is the set
of all constant functions f : X → R), the values of
the constant functions f minimizing the second and
first moments of the distribution of the residuals Rf,i

are the mean and median of the distribution of Yi,
respectively (when these exist and are unique). The
value of the constant function f minimizing the p-
quantile of the distribution of the residuals Rf,i is the
p-center of the distribution of Yi (that is, the center
of the shortest interval containing Yi with probabil-
ity at least p), when this exists and is unique. The
p-center can be interpreted as a generalization of the
mode of a distribution, since under some regularity
conditions the mode corresponds to the limit of the
p-center when p tends to 0. The p-center of a symmet-
ric, strictly unimodal distribution corresponds to its
median and mean (when this exists), independently
of p. Therefore, the minimizations of the p-quantile,
first moment, and second moment of the distribution
of the residuals lead to the same (correct) regression
function, under the usual assumptions for the error
distribution: see for example [18].

3.1 Determination of Profile Likelihood
Functions for Quantiles of Residuals

We want to determine the likelihood-based confidence
regions for the quantiles of the distribution of the
residuals: to this purpose, we calculate the profile
likelihood function for such quantiles. Let p ∈ (0, 1),
and for each function f ∈ F , let Qf := Lf ∩ Uf , with

Lf =
⋃

r∈Rf

[r,+∞)

when p > ε and Lf = [0,+∞) otherwise, while

Uf =
⋃

r∈Rf

[0, r]

when p < 1−ε and Uf = [0,+∞) otherwise. It can be
easily checked that Qf is the set of all possible values
for the p-quantile of the distribution of the residuals
Rf,i, since P (Rf,i /∈ Rf ) ≤ ε. In particular, if ε <
p < 1− ε, then Qf is the smallest interval containing
Rf .

For each f ∈ F , let Qf be the multivalued mapping
from P to Qf assigning to each probability measure
P the p-quantile of the distribution of the residuals
Rf,i under P . As noted in Subsection 2.2, the map-
ping Qf is multivalued, because in general quantiles
are not uniquely defined. We want to determine the
profile likelihood function likQf

: Qf → [0, 1] induced
by the multivalued mapping Qf . It is important to
note that we would obtain the same results by consid-
ering only the distributions for which the p-quantile

is unique (that is, the vagueness in the definition of
quantiles has no influence on the resulting likelihood-
based confidence regions).

Assume that the (imprecise) data V ∗
1 = A1, . . . , V

∗
n =

An are observed, where A1, . . . , An ∈ V∗\{∅}. In
order to obtain the profile likelihood function likQf

for
the p-quantile of the distribution of the residuals Rf,i,
we define for each function f ∈ F and each distance
q ∈ [0,+∞) the bands

Bf,q := {(x, y) ∈ V : |y − f(x)| ≤ q}
Bf,q := {(x, y) ∈ V : |y − f(x)| < q}

and the functions kf , kf on [0,+∞) such that8

kf (q) = #
{
i ∈ {1, . . . , n} : Ai ∩Bf,q ̸= ∅

}
kf (q) = #

{
i ∈ {1, . . . , n} : Ai ⊆ Bf,q

}
for all q ∈ [0,+∞). That is, kf (q) is the number
of imprecise data intersecting Bf,q, while kf (q) is
the number of imprecise data completely contained
in Bf,q. Therefore, in particular, kf (q) ≤ kf (q) for
all q ∈ [0,+∞).

Thanks to the results of Subsection 2.3 and the above
definitions, we can now express the profile likelihood
function likQf

for the p-quantile of the distribution of
the residuals Rf,i as follows (a sketch of the proof is
given in the Appendix):

likQf
(q) =


[
λ
(

kf (q)
n , p− ε

)]n
if kf (q) < (p− ε)n[

λ
(

kf (q)

n , p+ ε
)]n

if kf (q) > (p+ ε)n

1 otherwise

for all q ∈ Qf , where λ is the function on [0, 1]× (0, 1)
defined by9

λ(s, t) =
(s
t

)−s
(
1− s

1− t

)s−1

for all s ∈ [0, 1] and all t ∈ (0, 1). Hence, likQf
is a

piecewise constant function, which can take at most
n+ 2 different values.

Example 4 Consider the (imprecise) data described
in Subsection 4.1 and depicted in Figure 4, and the
regression function f represented by the upper curve
(blue) in Figure 5. The corresponding profile likeli-
hood function likQf

for the 0.5-quantile of the distri-
bution of the residuals Rf,i is plotted in Figure 2 for
the cases with ε = 0 (solid line) and ε = 0.05 (dashed
line).

8The cardinality of a set A is denoted by #A.
9In this paper, 00 = 1.
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Figure 2: Profile likelihood functions from Examples
4 and 5.

3.2 Determination of Confidence Intervals
for Quantiles of Residuals

Thanks to the above expression for the profile like-
lihood function likQf

, we can now calculate the
likelihood-based confidence regions for the quantiles
of the distribution of the residuals Rf,i. Choose
β ∈ (0, 1) and assume that

(max{p, 1− p}+ ε)
n ≤ β (2)

(that is, ε < p < 1 − ε, and n is sufficiently large).
Let K := {0, . . . , n}, and define

k := max
{
k ∈ K : k < (p− ε)n, λ( kn , p− ε) ≤ n

√
β
}

k := min
{
k ∈ K : k > (p+ ε)n, λ( kn , p+ ε) ≤ n

√
β
}
.

Then k < k, and for each f ∈ F , the interval

Cf :=
{
q ∈ [0,+∞) : k < kf (q), kf (q) < k

}
is the likelihood-based confidence region with cut-
off point β for the p-quantile of the distribution of
the residuals Rf,i. The interval Cf consists of all
q ∈ [0,+∞) such that the band Bf,q intersects at least
k + 1 imprecise data, and the band Bf,q contains at
most k − 1 imprecise data. When ε = 0, the interval
Cf is asymptotically a (conservative) confidence in-
terval of level Fχ2(−2 log β) for the p-quantile of the
distribution of the residuals Rf,i, where Fχ2 is the cu-
mulative distribution function of the chi-square distri-
bution with 1 degree of freedom (see for example [13]).
The exact level of the (conservative) confidence inter-
val Cf can be obtained directly from its definition, by
means of simple combinatorial arguments (also when
ε > 0).

It is important to note that the confidence intervals
Cf do not depend on the choice of the set V∗ of
possible imprecise data (as far as the observed ones,
A1, . . . , An, are contained in it). This can be sur-
prising, since the set P = Pε of probability measures
considered depends strongly on V∗, as noted at the
beginning of Section 2. However, the independence of

the confidence intervals Cf from the choice of the set
V∗ is not so surprising when one considers that the
intervals Cf are likelihood-based confidence regions,
and that likelihood inference is always conditional on
the data (that is, independent of considerations about
which other data could have been observed). This can
be considered as a sort of robustness against misspec-
ification of the set V∗ of possible imprecise data. The
practical advantage is that it is not necessary to think
about which other imprecise data could have been ob-
served, besides the ones that were actually observed
(that is, A1, . . . , An).

Example 5 In the situation of Example 4, the con-
fidence interval Cf with β = 0.15 is approximately
[1429, 1874] when ε = 0, and [1304, 1929] when ε =
0.05 (the cutoff point β = 0.15 is represented by the
dotted line in Figure 2).

3.3 Regression as a Decision Problem

The problem of minimizing the p-quantile of the dis-
tribution of the residuals Rf,i can be described as
a statistical decision problem: the set of probability
measures considered is P = Pε, the set of possible de-
cisions is F , and the loss function L : P ×F → [0,∞)
is defined by

L(P, f) = Qf (P )

for all P ∈ P and all f ∈ F . That is, the p-quantile
of the distribution of the residuals Rf,i is interpreted
as the loss we incur when we choose the function f .
In fact, the loss function L is multivalued, since in
general the p-quantile is not unique: L(P, f) could be
reduced to a single value by taking for example the
upper p-quantile of the distribution of the residuals
Rf,i.

The information provided by the observed (imprecise)
data is described by the likelihood function lik on P.
A very simple way of using this information consists
in reducing P to the set P>β for some cutoff point
β ∈ (0, 1). The resulting set P>β can be interpreted
as an imprecise probability measure, on which we can
base our choice of f . For each f ∈ F , the set of all
possible values of the loss L(P, f) when P varies in
P>β can be interpreted as the imprecise p-quantile
of the residuals Rf,i under the imprecise probability
measure P>β . It corresponds to the interval Cf , when
condition (2) is satisfied.

Assume that condition (2) is satisfied. In order to
choose a function f , we can minimize the supremum
of Cf . This approach is similar to the Γ-minimax de-
cision criterion with respect to the imprecise proba-
bility measure P>β , and is called LRM (likelihood-
based region minimax) criterion in [4]. When there



is a unique f ∈ F minimizing sup Cf , it can be de-
noted by fLRM , and sup Cf can be denoted by qLRM .
In this case, fLRM is characterized geometrically by
the fact that BfLRM ,qLRM

is the thinnest band of the
form Bf,q containing at least k imprecise data, for
all f ∈ F and all q ∈ [0,+∞). Finding the function
fLRM is an interesting computational problem: see
for example [2, 15, 22].

An interesting description of the uncertainty about
the optimal choice of f ∈ F is obtained by considering
interval dominance for the imprecise p-quantiles of the
residualsRf,i under the imprecise probability measure
P>β . When fLRM exists, the undominated functions
f ∈ F are those such that Cf intersects CfLRM

. In
particular, when qLRM ∈ CfLRM

(that is, CfLRM
is

right-closed), the undominated functions f ∈ F are
characterized geometrically by the fact that Bf,qLRM

intersects at least k+1 imprecise data. In general, the
set of undominated functions f tends to get smaller
when we observe more and more (imprecise) data, but
it does not necessarily tend to reduce to a singleton,
because of the unavoidable uncertainty discussed in
Subsection 2.1.

3.4 Prediction

Consider the case in which (instead of n) we have
n + 1 pairs (Vi, V

∗
i ) of precise and imprecise data

Vi = (Xi, Yi) and V ∗
i , respectively. We want to pre-

dict the realization of the precise data value Vn+1 on
the basis of the realization of the n imprecise data
V ∗
1 , . . . , V

∗
n . Choose k ∈ {1, . . . , n}, and assume that

for each possible realization of the n+1 imprecise data
V ∗
1 , . . . , V

∗
n+1, there is a distance q′ ∈ [0,+∞) such

that for some f ′ ∈ F (not necessarily unique), Bf ′,q′

is a thinnest band of the form Bf,q containing at least
k of the n+1 imprecise data, for all f ∈ F and all q ∈
[0,+∞). Because of symmetry, the probability that
V ∗
n+1 is included in a band Bf,q′ containing at least

k of the n + 1 imprecise data (for some f ∈ F) is at
least k

n+1 . Hence, when Bf ′′,q′′ is a thinnest band of
the form Bf,q containing at least k of the n imprecise
data V ∗

1 , . . . , V
∗
n (for all f ∈ F and all q ∈ [0,+∞)),

the probability that V ∗
n+1 is included in the union B

of all bands Bf,q′′ containing at least k − 1 of the n
imprecise data V ∗

1 , . . . , V
∗
n (for all f ∈ F) is at least

k
n+1 . That is, B is a (conservative) prediction region
of level k

n+1 − ε for the precise data value Vn+1.

In particular, when condition (2) is satisfied and
fLRM exists, the union B of all bands Bf,qLRM

containing at least k − 1 of the n imprecise data
V ∗
1 , . . . , V

∗
n (for all f ∈ F) is a (conservative) predic-

tion region of level k
n+1 − ε for the precise data value

Vn+1. Prediction regions of this form can sometimes

be reduced to smaller regions thanks to the assump-
tion that V ∗

n+1 takes values in V∗. When besides the
realization of the n imprecise data V ∗

1 , . . . , V
∗
n , also

the (precise or imprecise) realization ofXn+1 has been
observed, the realization of Yn+1 can be predicted for
example by using the idea of conformal prediction (see
[21]), but this goes beyond the scope of the present
paper.

4 Example of Application

In this section, we apply the proposed regression
method to socioeconomic data from the ALLBUS
(German General Social Survey). Data collection in
surveys is subject to many different influences that
may cause various biases in the data set (see for ex-
ample [3]). Therefore, it is often reasonable to as-
sume that the actual value lies rather in some inter-
val around the observed value. Furthermore, data on
sensitive quantities is sometimes only available in cat-
egories that form a partition of the space of possible
values. A simple approach to analyze this kind of
data is to reduce the intervals to their central values
and to apply usual regression methods to the reduced,
precise data. In contrast to this, we suggest to ana-
lyze directly the interval-valued data by means of the
regression method proposed in Section 3.

We want to investigate the age-income profile, which
is a fundamental relationship in the social sciences
and a typical example in textbooks on social research
methods (see for example [1]).

Income is a key demographic variable for socioeco-
nomic research questions. But asking for income in
an interview is a sensitive question that some respon-
dents refuse to answer. Thus, survey data on income
often include missing values. One way to make the
question less sensitive is to present predefined income
categories according to which the income of the re-
spondent shall be classified. In the ALLBUS, income
data is collected with a two-step design with the open
question for income as first step and the presentation
of a category scheme as second step. As a result, the
data set contains at the same time precise values for
some individuals and interval-valued observations for
others. Yet, even if the respondents are willing to
give their exact income, limited remembrance usually
prevents them from doing so. Instead, they will give
rounded and heaped values (see [9]), where heaping
refers to irregular rounding behavior (see for example
[10]). Therefore, it is more reliable to regard also the
precise income values as interval-valued observations.

Data on the age of respondents is more easily ob-
tained, but it is always measured with limited pre-
cision, e.g. in years. In this case, it might be useful to



consider intervals [age, age+1) instead. Furthermore,
age data might be available as age classes only.

4.1 ALLBUS Data and Regression Model

We analyze the ALLBUS data set of 2008 contain-
ing 3 247 interviews. The considered variables are
personal income (on average per month) and age.
Here, we consider the worst case, where both vari-
ables are available in categories only (v389 and v155
of the data set with 22 possible income categories and
six age classes; see [19]), although the proposed re-
gression method could be applied to the data set with
some precise and some imprecise observations, too.
Thus, for each individual i ∈ {1, . . . , n} we consider
observations V ∗

i = X∗
i × Y ∗

i , where X∗
i = [xi, xi) is

the corresponding age class and Y ∗
i = [y

i
, yi) is the

category into which the income of respondent i falls.
In the given data set, there are 620 missing income
values and 11 missing age values. Missing values are
replaced by intervals that cover the entire observation
space of each variable. In this case, X∗

i = [18, 100) or
Y ∗
i = [0,+∞), respectively. A two-dimensional his-

togram of the data set is given in Figure 4.

The relationship between age and income is usually
modeled by a quadratic function in age (see for ex-
ample [1]). Thus, the set of regression functions we
consider here is

F = {fa,b1,b2 : a, b1, b2 ∈ R},

where each function fa,b1,b2 is defined by

fa,b1,b2(x) = a+ b1 x+ b2 x
2

for all x ∈ X := [18, 100). We choose to minimize the
0.5-quantile of the distribution of the residuals (i.e.,
p = 0.5), and we take the cutoff point β = 0.15. Fur-
thermore, we want to compare the results obtained
by the proposed method with those from an ordi-
nary least squares (OLS) regression based on the in-
terval centers. Since the latter implies the assumption
P (Vi ∈ V ∗

i ) = 1, we also set ε = 0 here.

We conduct the regression analysis as follows: First,
the likelihood-based confidence regions Cfa,b1,b2

are
computed for reasonable parameter values (a, b1, b2).
Then, we identify the parameter combination among
these that minimizes the upper bound of Cfa,b1,b2

. The
function corresponding to this parameter combination
is the function fLRM which is optimal according to
the LRM criterion (see Subsection 3.3). Finally, the
upper bound qLRM of CfLRM

is used to determine the
set of undominated functions.

Figure 3: Two-dimensional projections of the set of
undominated parameter values.

4.2 Results

We considered a grid of combinations of parameter
values where a ∈ [−10 000, 12 000], b1 ∈ [−200, 250],
and b2 ∈ [−10, 10]. Corresponding to the set of un-
dominated functions, we find the set of undominated
parameter combinations displayed in Figure 3. This
set is clearly not convex. Moreover, in the case consid-
ered here, the parameters are not independent from
each other, in the sense that many different combina-
tions of parameter values (a, b1, b2) may lead to very
similar functions fa,b1,b2 over X . Thus, there are ac-
tually infinitely many undominated parameter combi-
nations, but the associated curves are similar to those
we find within the considered grid.

The parameter combination implying the smallest up-
per endpoint of the confidence interval for the 0.5-
quantile of the residuals is (850, 0, 0) with Cf850,0,0 =
[525, 650]. The function fLRM is thus a constant line:
this is due to the rectangular shape and the locations
of the observations in our data set. Hence, the value
850 can be interpreted as an estimate of the p-center
(with p = 0.5) of the income distribution (see the be-
ginning of Section 3). A further interpretation of the
function fLRM is given by the band BfLRM ,qLRM

lim-
ited by the functions fLRM−qLRM and fLRM+qLRM :
Among all bands constructed around all considered
functions, this band is the thinnest one that contains
at least k = 1679 imprecise observations (see Subsec-
tion 3.3).

The function fLRM and the band BfLRM ,qLRM
are

presented in Figure 5, besides the undominated func-
tions. It can be seen that within the set of undom-
inated functions there is a large variety of shapes of
the age-income profile, including straight lines, con-
vex parabolic curves as well as concave ones. From a
social scientist’s point of view this result may be un-
satisfying because it doesn’t support only one form of
the relationship between age and income. However,
given the imprecision of the data, it is reasonable to
consider all shapes consistent with the data as possi-



Figure 4: Two-dimensional histogram of the data set.

ble age-income profiles. If the observed intervals were
overlapping or if they constituted a finer partition of
the space of possible observations, the set of undom-
inated functions would be smaller. Hence, the set of
undominated functions can be interpreted as the set
of plausible descriptions of the age-income profile that
reflects at the same time the uncertainty inherent in
the imprecise data.

The usual method to analyze this kind of interval data
is to conduct a quadratic OLS regression based on
the interval centers ignoring the imprecision of the
data. In this case, one has to give an upper limit for
the highest income class [7 500, +∞) in order to com-
pute the interval centers. Of course, the choice of this
upper limit has an impact on the estimates of the
OLS regression. The effect of two different choices
of the upper income limit is illustrated in Figure 5.
The OLS curves displayed there are based on interval
centers with upper income limits 15 000 and 10 000,
respectively. In contrast to the OLS approach, the
regression method proposed in this paper is not sen-
sitive to the extremes, since the regression functions
are evaluated on the basis of confidence regions for
the 0.5-quantile of the residuals’ distribution.

The proposed regression method permits to identify
plausible descriptions of the relationship between the
socioeconomic characteristics age and income. Given
the imprecise data, many different shapes of the age-
income profile are plausible. Further computations in-
dicated that our findings hold for transformed income
data on the logarithmic scale, too. The results are not
very informative, but reliable. To obtain more infor-
mative, but less reliable results, it suffices to increase

Figure 5: Undominated functions (dotted curves,
gray), interval data-based fLRM (solid line, violet)
and band BfLRM ,qLRM

(dashed lines, violet) versus
OLS regressions on interval centers with upper income
limit 15 000 (upper curve, blue) and upper income
limit 10 000 (lower curve, green).

the cutoff point β (that is, to decrease the confidence
level of the intervals Cfa,b1,b2

). One idea to obtain
more informative results without sacrificing reliabil-
ity could be to use many different category schemes
during the income data collection and thereby obtain
a data set with overlapping categories.

5 Conclusion

In this paper, we introduced a robust approach to
regression with imprecise data, in which the error dis-
tribution is not constrained to a particular parametric
family. The method was presented within a very gen-
eral framework and it can be adapted to a wide range
of practical settings, since it can be applied to all kinds
of imprecise data covering e.g. interval data, precise
data, and missing data. In our method, the imprecise
data are interpreted as the result of a coarsening pro-
cess which can be informative, and even wrong with
a certain probability.

In future work, the statistical properties of the pro-
posed regression method shall be studied in more de-
tail. In particular, we plan to investigate the impact of
stronger assumptions about the error distribution and
the coarsening process. Moreover, the performance
of the regression method shall be compared to those
of alternative approaches to regression with imprecise
data, also with regard to computational aspects.
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Appendix

The expression for the profile likelihood function likQf

given in Subsection 3.1 can be proved as follows. In Sub-
section 2.3, we have seen that likQf = lik∗

Q∗
f
, where lik∗

and Q∗
f are defined on the set PV ∗ of all possible distri-

butions PV ∗ for the imprecise data V ∗
i . The function lik∗

assigns to each PV ∗ the corresponding likelihood value:
in particular, it has a unique maximum in the empirical
distribution (of the imprecise data) P̂V ∗ . The multival-
ued mapping Q∗

f assigns to each PV ∗ all p-quantiles of the
residuals Rf,i for all distributions of the precise data Vi

compatible with PV ∗ . Consider in particular Q∗
f (P̂V ∗): if

ε = 0, then q ∈ Qf is a p-quantile of the residuals Rf,i for
some distribution of the precise data Vi compatible with
P̂V ∗ if and only if kf (q) ≤ p n ≤ kf (q). The case with
ε > 0 corresponds to the case with ε = 0 when Q∗

f (P̂V ∗)
is enlarged to all p′-quantiles of the residuals Rf,i such
that p− ε ≤ p′ ≤ p+ ε. This proves the “otherwise” part
of the expression for likQf given in Subsection 3.1, since
lik∗(P̂V ∗) = 1.

Now assume that q ∈ Qf satisfies kf (q) < (p − ε)n. Let
P ′
V ∗ ∈ PV ∗ be the empirical distribution obtained when

only the n−kf (q) imprecise data not intersecting Bf,q are
considered, and let P ′′

V ∗ ∈ PV ∗ be the empirical distribu-
tion obtained when only the kf (q) imprecise data inter-
secting Bf,q are considered. The latter is not well-defined
when kf (q) = 0: in this case, let P ′′

V ∗ ∈ PV ∗ be the Dirac
distribution assigning probability 1 to a set A ∈ V∗ inter-
secting Bf,q (such a set A exists, since q ∈ Qf ). Then
q ∈ Q∗

f (P
′′′
V ∗) with P ′′′

V ∗ = (p − ε)P ′′
V ∗ + (1 − p + ε)P ′

V ∗ ,
and it can be easily checked that

lik∗
Q∗

f
(q) = lik∗(P ′′′

V ∗) =

[
λ

(
kf (q)

n
, p− ε

)]n

.

This proves the first case of the expression for likQf given
in Subsection 3.1, and the second one can be proved anal-
ogously.
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