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Abstract

Decision theory is used to choose a portfolio. Elicita-
tion methods was used based on the utility function
and from expert opinion thus, enabling the creation
of a utility function for the investor and another for
the a priori distribution on economic indicators. The
model chosen for an investment portfolio was formu-
lated based on decision theory, incorporating aspects
of systematic and unsystematic risk. The model was
developed so as to structure an efficient way to under-
stand the application of decision theory in the finan-
cial market as well as the application of the Imprecise
Dirichlet Model-IDM. The IDM allows the use of im-
precise probability. Finally, the IDM was compared
to the Markowitz method and also, to the decision
model, using only expert opinion, considering an al-
location over time to verify which of the three models
was the best one. The final conclusion is that expert
opinion should not be neglected in her compiling a
portfolio.

Keywords. Linear Programming, Elicitation, Port-
folio Selection, Financial.

1 Introduction

In the financial market, the portfolio selection prob-
lem consists of distributing the total amount available
for investment among the financial “products” in the
market. Hitherto, the Markowitz portfolio selection
procedures, in [10], use ad hoc procedure. One of
the numbers used most frequently as a guide, was the
average value of the investment payback, usually es-
timated from past data. The Markowitz procedure
is essentially a trade-off between the average and the
standard deviation of the (future) payback. It is im-
plemented as a quadratic programming problem: ei-
ther one minimizes the standard deviation (risk, in
the jargon) subject to the constraint that the aver-
age must be greater than some previously determined
value (usually taken to be zero), or one which maxi-

mizes the average payback, subject to an upper bound
constraint on the risk. This article suggests using de-
cision theory in the portfolio selection problem. It is
divided into five sections. Introduction sets the con-
text and present of the other sections. The second
is a brief review of articles related to portfolio selec-
tion and imprecise probability. The third presents a
decision model that incorporates elements of the econ-
omy, such as indicators of economic scenarios that re-
sult in the compiling the portfolio. The fourth section
presents methods to elicit the utility function and ex-
pert knowledge. the measures are used in comparison
with the Imprecise Dirichlet Model – IDM. Finally,
some conclusions are drawn from the main results.

According to [8] “Developments in portfolio are stim-
ulated by two basic requirements: (1) adequate model-
ing of utility functions, risks and constratints; (2) effi-
ciency, i.e., ability to handle large numbers of instru-
ments and scenarios.” This paper presents a model
that satisfies both conditions.

2 A Review of the Literature

Markets in which the price reflects the available in-
formation are called efficient markets. The idea of
efficient markets is the premise for the Markowitz
method. The estimated average return, R(A) and
the estimated risk σ̂ of an asset, are expressed by
the mathematical expectation of past returns and its
standard deviation. The equations below represent
the estimate of the expected return and risk of an
asset:

R(A) =
∑n
t=1Rt
n

(1)

σ̂(A) =
∑n
t=1(Rt −R(A))2

n− 1
(2)

The number of observations is represented by n, and



Rt represents the return at time t.
Markowitz method is based on the formation of an as-
set portfolio so that the risk attributed to each asset
can be minimized. This risk is called unsystematic
risk. In the Markowitz method, the risk that is not
being considered is the market risk, known as system-
atic risk. Markowitz idea consists is to diversify risk.
Thus, the portfolio comprises assets with a negative
correlation. Therefore, to the extent that one asset
generates losses for the portfolio, another will gener-
ate earnings. The average return R(P ) and average
risk σ(P ) of a portfolio are expressed by the following
equations:

R(P ) =
n∑
j=1

RjWj (3)

σ(P ) =

 n∑
i=1

n∑
j=1

WiWjρi,jσiσj

1/2

(4)

where

• The percentage of investment in each asset is Wj ;

• σj represents the risk of each asset;

• ρi,j are the coefficients of correlation between the
return of two assets.

To obtain the percentage of investment in each asset
the nonlinear programming method is used, in which
the variables of choice are: the percentages of applica-
tion. The functional objective is the risk of the Port-
folio and the restrictions are quite logical. Given that
the percentage of implementation is a probability, it
will be positive and the sum of the percentages will
be equal to one. The problem is expressed as follows:

min
Wj

σ(P )

s.a∑
Wj = 1 , Wj > 0

2.1 Probability in Finance Theory

An increasing number of studies are being developed
in order to apply imprecise probability to portfolio
models. At first, the models attempt to introduce the
concept of fuzziness into the necessary measures for
implementing Markowitz model. Examples of fuzzy
being applied to the development of a portfolio are

[13], [6] and [2]. Another application of imprecise
probability in portfolio management is to seek con-
ditions for separations of the investment fund. In [7]
there is an introduction of classical conditions in or-
der to divide funds, and in [12] there is an application
subadditive probabilities, where the possibility of in-
ertia in the choice of optimal portfolios is proved. The
studies by applying imprecise probability to the econ-
omy, but the ideas are going in the direction of finding
coherent risk measures and/or price arbitrage of as-
sets.

3 The Decision Model

The model was proposed in [1], which used a simple
characterization of the economic scenario, by reducing
it to a unique economic indicator θ ∈ [0, 1]. The obser-
vations x (time series data) were modeled in the same
way as economic scenarios. For example, if four eco-
nomic indicators were used, one of them would have
16 scenarios. These scenarios were ordered from worst
to best, and an integer number was attached to each
of them. The better the scenario, the larger the inte-
ger. So, the likelihood function is, for that model, a
binomial distribution.

P (x|θ) =
(
n

x

)
θx(1− θ)n−x

The prior distribution of θ is the Beta distribution

π(θ) =
Γ(α+ β)
Γ(α)Γ(β)

θα−1(1− θ)β−1.

3.1 The elements of the problem

The notation is as follows:

ξi = ith financial product (ithasset);

ai = fraction of the available initial capital to be in-
vested in asset ξi;

p = net return (payback) of the portfolio , p ∈
[−M,M ], M > 0;

GIPt = gross internal product in period t;

IRt = inflation rate in period t;

PRt = prime rate in period t;

UNt = Unemployment in period t;

The states of nature are defined as follows. First, one
defines an intermediate variable ωi:

Let Xt be an economic indicator, if Xt+1 is better
for the economy than Xt, one then writes ωt+1 = 1;



otherwise, ωt+1 = 0. Since there are four economic
indicators (GIPt,IRt, PRt, URt) there will be 16 eco-
nomic scenarios for each period (one month). Table 1
shows the 16 scenarios which will constitute the states
of nature in the decision theory model.

Table 1: The Possible 16 Scenarios.
Scenarios ω1 ω2 ω3 ω4

θ1 0 0 0 0
θ2 0 0 0 1
θ3 0 0 1 0
θ4 0 0 1 1
θ5 0 1 0 0
θ6 0 1 0 1
θ7 0 1 1 0
θ8 0 1 1 1
θ9 1 0 0 0
θ10 1 0 0 1
θ11 1 0 1 0
θ12 1 0 1 1
θ13 1 1 0 0
θ14 1 1 0 1
θ15 1 1 1 0
θ16 1 1 1 1

So, Θ = {θ1, θ2 . . . θ16}.

Scenarios θ1 and θ16 are the worst and the best, re-
spectively, for economy. The remaining ones are not
naturally orderable, since the effects they have in the
economy will depend upon a series of other charac-
teristics of the specific country. Thus, the θjs are
essentially categorical.

3.2 Data

A time series of the 100 months is available for each
of the four economic indicators, as well as for the fi-
nancial assets to be used in the portfolio. It was thus
possible to establish the evolution of the scenarios.
These observations, xj , correspond to a sample of a
multinomial probability distribution:

P (x|θ) =
n!

16∏
j=1

(xj !)

θ
xj

j

Table 2 shows the number of times that each of the
scenarios occurred.

3.3 Dirichlet Prior Distribution

To incorporate expert opinion in this model, it is natu-
ral to use the conjugate prior distribution of the multi-

Table 2: scenarios occurring.
x1 x2 x3 x4 x5 x6 x7 x8

1 4 8 7 4 6 9 4
x9 x10 x11 x12 x13 x14 x15 x16

6 6 4 13 6 5 6 11

nomial, which is the Dirichlet prior. The Dirichlet
prior density then is:

γ(θ) =
Γ(ν)

16∏
j=1

Γ(αj)

16∏
j=1

θ
αj−1
j

where ν =
∑
αj , αj > 0,

∑
θj = 1.

The parametrization used in [15] will also be used
here:

π(θ) =
Γ(ν)

16∏
j=1

Γ(stj)

16∏
j=1

θ
stj−1
j

where ν = s
∑
tj ,
∑
θj = 1, s > 0; s is called a

hyperparameter.

3.4 Dirichlet Posterior Distribution

When combined, by Bayes rule, with the multinomial
likelihood function P (x|θ), the Dirichlet prior density
generates density function a posteriori

π(θ|x) =
Γ(υ)

k∏
j=1

Γ(αj + xj)

k∏
j=1

θ
αj−1+xj

j ,

where υ =
∑
αj + xj . The set of all distributions a

posteriori is defined by:

t∗ =
nj + stj
N + s

. (5)

3.5 The Action Space

The investment alternatives constitute the action
space A = {a}. Each a is a mix of financial assets,
and is a vector of nonnegative numbers that add up
to one. The following assets were used:

• Bank Certified Deposit (CDB) (30 days rentabil-
ity average);



• Gold - percentage of monthly variation;

• Ibovespa - Sao Paulo Stock Monthly Average
Growth Rate;

• Financial Assets Fund (FAF) - Accumulated
monthly rentability.

Table 3 shows a descriptive statistics of those assets,
as well as the result of applying of the Markowitz
portfolio (MP) selection procedure. In this procedure,
the optimal action corresponds to CDB -0.9638, Gold
- 0.0106, Ibovespa - 0.0049 and FAF - 0.0205.

The available series corresponds to the same period as
those of the economic indicators, and were obtained
from the Brazilian Central Bank.

Table 3: Descriptive Statistics.
Assets Mean Min Max Std. Dev.

CDB 2.06 1.15 5.20 0.91

GOLD 1.43 -16.40 70.00 8.95

IBOVESPA 1.73 -39.55 28.02 11.54

FAF 1.61 -17.98 17.07 5.67

MP 2.04 0.89 5.24 0.92

3.6 The Consequence Function

In [3], the choice of the analytical expression of the
consequence function considers some aspects:

• States of nature and actions are merged in the
right sense; θ and a work independently of each
other, but they are merged to make up the prob-
ability distribution of p;

• It represents the behavior which is usually ob-
served in the investment payback: unimodality,
and bounded variance and asymmetry; some ro-
bustness is desirable, i.e., the persistence of a dis-
tribution’s characteristic behavior under pertur-
bations in the paraments;

• It should be analytically tractable when in asso-
ciation with the other analytical expressions the
decision rule when calculating.

In the portfolio selection model [3] the following con-
sequence function was suggested:

f(p|θ, a) = [M(1 +R(a))θ(1− θ)]−1 if (6)

M(1 +R(a))
[
θ

2
(3 + θ)− 1

]
+ µ(a) ≤ p and

p ≤M(1 +R(a))
[
θ

2
(5− θ)− 1

]
+ µ(a);

f(p|θ, a) = 0, otherwise,

where a = [aj ] is the vector of fractions attributed
to each asset; this corresponds to an action; µ(a) =
average value of the portfolio, R(a) =

(
1− µ(a)

µ(a)+σ(a)

)
a measure of the risk of the portfolio. It is important
to look at the consequence function (equation 6). A
closer look will shed some light in the behavior of
this function: the larger the value of θ, the better the
economy. For θ = 1

2 one has:

θ

2
(3 + θ)− 1 = −1

8
and

θ

2
(5− θ)− 1 =

1
8

.

If µ(a) = 0 then one has a uniform distribution be-
tween −(1/4)M and (1/4)M . For any portfolio, a has
a uniform distribution between −(1/8)M(1+R(a))+
µ(a) and (1/8)M(1 +R(a)) + µ(a)

In this model, the generalization of the consequence
function is:

f(p|θ, a) =
[
2M(1 +R)τ

∏
θj

]−1

if

M(1 +R)
[∑

njθj + τ
∏

θj

]
+ µ ≥ p and

M(1 +R)
[∑

njθj − τ
∏

θj

]
+ µ ≤ p ;

f(p|θ, a) = 0 otherwise,

where τ is a proportionality constant and nj repre-
sents the impact of each θj in the consequence func-
tion.

3.7 Loss Function

Consider the quadratic utility function:

v(p) = k0 + k1p− k2p
2.

The loss function is denoted by L(θ, a). It is defined
as:



L(θ, a) = −k0 − k1

[
M(1 +R)

[∑
njθj

]
+ µ

]
+k2

[
M(1 +R)

[∑
njθj

]
+ µ

]2
+

+
1
3
k2

[
M(1 +R)τ

∏
θj

]2
3.8 The Bayes risk

To apply of the Bayes rule the following calculations
are necessary:

1.
u(f(p|θ, aj)) =

∫
u(p)f(p|θ, aj)dp.

2.
L(θ, aj) = −u(f(p|θ, aj)).

3.
Rd(θ) =

∑
x

P (x|θ)L(θ, d(x)).

4.

rd =
∫ 1

0

π(θ)Rd(θ)dθ (Bayes risk).

5.

rd =
∫ 1

0

[∑
x

π(θ)P (x|θ)L(θ, d(x))

]
dθ.

6.

rd =
∫ 1

0

[∑
x

π(θ|x)P (x)L(θ, d(x))

]
dθ.

7.

rd =
∑
x

P (x)
∫ 1

0

π(θ|x)L(θ, d(x))dθ.

8. To minimize rd by a choice of d, which is the
same as to minimize, for each x, the term∫ 1

0

π(θ|x)L(θ, d(x))dθ,

by a choice of d(x).

To facilitate the calculations one denotes
Γ(ν)

k∏
j=1

Γ(αj+xj)

= ω

rd =
∫ 1

0

−ω[
k∏
i=1

θαi−1+xi
i ]×

×[k0 + k1

[
M(1 +R)

[∑
njθj

]
+ µ

]
−k2

[
M(1 +R)

[∑
njθj

]
+ µ

]2
×

×1
3
k2

[
M(1 +R)τ

∏
θj

]2
dθ

∴ rd = −[k0ω

∫ 1

0

∏
θ
αj−1+xj

j dθ+

−
∫ 1

0

k1[M(1 +R)
∑

njθj + µ]ω
∏

θ
αj+xj−1
j dθ−

−
∫ 1

0

k2[M(1 +R)
∑

njθj + µ]2ω
∏

θαj−1+xjdθ+

+
1
3
k2ωM

2(1 +R)2

∫ 1

0

τ
∏

θ2
j

∏
θ
αj−1+xj

j dθ

One thus obtains the expression of the risk of adopting
a decision rule:

rd = −{k0 + k1M(1 +R)ω×

k∑
i6=j

[
nj

(αj + xj + 1)Π(αi + xi)

]
+

k1µ− k2[M2(1 +R)2ω× k∑
i6=j

n2
j

(αj + xj + 1)Π(αi + xi)

+

2
k∑

j=1;i<j

njni(
∏

t:t 6=j 6=i
(αt + xt))−1

(αj + xj + 1)(αi + xi + 1)
+

M(1 +R)ω
k∑

j=1 ;j 6=i

nj(
∏

(αi + xi))−1

(αj + xj + 1)
+ µ]+

1
3
τωM2(1 +R)2k2

k∏
j=1

1
(αj + xj + 1)

}



4 The Expert Versus The IDM

4.1 Utility

The elicitation of the utility by the original method
developed by Von Neumann and Morgenstern occurs
when an individual responds to only one question
about the likelihood such that he becomes such indi-
vidual indifferent between a consequence, P , or about
a game with a probability λ to win P or (1−lλ) to get
P . The questions are put in the form game or lottery.
Game layout can also vary depending on operational
convenience to applied method.

An elicitation protocol (some questions) was applied
to the individual in order for him to declare the value
of λ for which he feels indifferent between a certain
amount and a game (lottery). It should be noted that
there is no “right answer” for each question. However,
it is necessary to be careful about obtaining a good
insight in order to obtain good accuracy. The answers
are individual and must be tailored to the individual
psychology of risk. There will never be perfect accu-
racy; one must not confuse rationality with perfection.

The assumption for use of a von Neumann-
Morgenstern weak cardinal utility function is that
these are two goods, one of them more desirable,
P , and the other one is less desirable, P , which as-
signs two arbitrary utilities. When these values P
and P are distant from each other, it is very diffi-
cult to choose the value of λ for a given value P ,
where P < P < P . Thus, we must ask what is the
value of λ which makes P indifferent to a lottery be-
tween P and P in different overlapping limits. Later,
as the utility function is an interval measure, λ val-
ues must be passed to the same. It is intended to
elicit the utility function of money in a range from
- R$ 95,000.00 (minus ninety-five thousand reais) to
R$ 95,000.00 (ninety-five thousand reais). After the
questions, a regression is used to infer the error of the
the decision-maker when Like answered the questions.
A quadratic function expression was used. In which
the were parameters k0 = 0.7025, k1 = 0.0047, and
k2 = 1.7608× 10−5, for one individual (an investor).

4.2 The Expert

Keynes, at the beginning of his book, Treatise on
Probability, cites Leibniz, who is already tired of say-
ing that there is a new logic that deals with degrees of
probability. Keynes advocates the hypothesis that in
the long term, we’ll all be dead and that a historical
series, that would make predictions about our future,
would when Like answered exist. When there are few
data or no data, the a priori knowledge of the expert
should be used. A new elicitation procedure of a pri-

Figure 1: The Decision Maker’s utility function.

ori knowledge of the expert was presented in [5] and
[11].

The method used to elicit of the expert’s prior dis-
tribution has the basic assumption that the expert
has a vague knowledge about the state of nature, θ;
It is assumed he can only make a finite amount of
comparative probabilistic assertions when answering
questions about the likelihood of the event belonging
to one of two given ranges, IA or IB . For example, the
expert will respond if it is more likely theta belongs
to IA = [θ1, θ2, θ3] or I − B = [θ4, θ5]. This method
expresses the expert’s knowledge using a family of
probability. Using this method allows, among other
things, to make inferences about facts that cannot be
presented by a historical series, but the facts there are
and the probability of their occurrence is very high.
These events change the decision on whether to invest
or not in a financial asset. However, how significant
is this change?

The model for solving two linear programming prob-
lems, mathematically, is expressed as follows: First of
all, it is necessary to solve the maximization problem
and later the minimization problem. Both are subject
to the same set of constraints. These problems can be
expressed as follows:

max(min)θj

2n∑
j=1

cjθj (7)

subject to:

aik

k∑
j=i

θj − alm
m∑
j=l

θj ≤ bs (8)



αjθj ≤ θj+1, j = 1, 2, . . . , 2n− 1, α > 0 (9)

βjθj+1 ≤ θj , j = 1, 2, . . . , 2n− 1, β > 0 (10)

θj ≥ 0, j = 1, 2, . . . , 2n (11)

2n∑
j=1

θj = 1 (12)

The values of cj were randomly determined in order to
allow a random search process. The restriction 8 be-
comes a questions in a questionnaire where the expert
must answer them, and depending on the responses
the signal may be ≤ or ≥.

Depending on the combination of parameters aik, alm
e bs, the expert’s opinion can be collected in various
ways. Constraints 9 and 10 are used when one wants
to use a a priori distribution, so that such distribu-
tion may be as informative as possible. Otherwise, a
good option is to suppress these restrictions. The re-
maining restrictions are considered the basic ones ac-
ceded to obtain a probability distribution. To obtain
the probability distributions from an expert’s opin-
ion, he/she must be consistent in his/her responses.
If a response is not consistent with all the other ones,
the feasible set of restrictions will be empty. The ex-
pert must not answer these questions. The expert
does not answer the questions when he/she cannot
say anything about the fact of the likelihood of θ be-
longing or not belonging to one of the existing inter-
vals. The questions which the expert does not answer
will not enter the constraints of the linear program-
ming problem. Questions will be displayed accord-
ing to the indicators shown in [5]. The model defines
new constructs such as vagueness, precision, concor-
dance, overall vagueness, conflicts, decidability, har-
mony, quality of inference and amount of information.
The elicitation method for linear programming also
allows the combination of bodies of evidence.

After analysing a questionnaire referring to the 16
scenarios presented in Table 1 and solving the linear
programming problem above, for different values of
cj , the result shown in Table 4 was obtained. This re-
sult can be interpreted as a convex set of probabilities
within a range with an upper and lower probability
for each state of nature. Any combination of values
within the ranges can be used as a prior distribution
of the expert.

Table 4: Expert opinion.
Scenarios π(θ) π(θ)

θ1 0,00% 6,25%
θ2 0,00% 1,67%
θ3 5,00% 5,00%
θ4 4,58% 5,00%
θ5 1,67% 5,00%
θ6 1,67% 3,33%
θ7 3,33% 3,33%
θ8 0,00% 2,50%
θ9 3,33% 4,17%
θ10 7,08% 8,33%
θ11 10,83% 12,50%
θ12 3,33% 6,67%
θ13 5,83% 6,67%
θ14 6,67% 7,50%
θ15 7,50% 9,17%
θ16 25,83% 26,25%

4.3 Imprecise Dirichlet Model

One of the hypotheses of the model is the existence of
a prior distribution, π(θ). In [15] a way is presented
for obtaining posterior distributions without having a
prior distribution. This model is known as the impre-
cise Dirichlet model (IDM). From the set of posterior
Dirichlet distributions, one obtains upper and lower
probabilities for the event θj . The lower probability is
obtained by making tj → 0 and the upper probability
is obtained by making tj → 1 in Equation 5. One will
then get:

P (θj |x) =
nj + s

N + s
, and

P (θj |x) =
nj

N + s
.

where N is the number of observations about θ. In
the example, N = 100. As discussed in [15], s = 1
corresponds to a frequentist outlook, and s = 2 to
a cautious Bayesian. Table 5 shows the results that
were obtained by the IDM in these two cases.

4.4 Comparisons

The comparison among the three forms of selecting a
portfolio is considering the time in which information
is available. The criterion of minimizing the maxi-
mum risk will be used; This result is obtained by cal-
culating the lowest upper risk. Using the upper pos-
terior distributions and the upper probabilities of the
expert, the Monte Carlo method was used to calculate
which is the action of lowest and highest risk. During



Table 5: Upper and Lower Probability.
s s = 1 s = 2

P (θ|x) P P P P
P (θ1|x) 0.0099 0.0198 0.0098 0.0294
P (θ2|x) 0.0396 0.0495 0.0392 0.0588
P (θ3|x) 0.0792 0.0891 0.0784 0.0980
P (θ4|x) 0.0693 0.0792 0.0686 0.0882
P (θ5|x) 0.0396 0.0495 0.0392 0.0588
P (θ6|x) 0.0594 0.0693 0.0588 0.0784
P (θ7|x) 0.0891 0.0990 0.0882 0.1078
P (θ8|x) 0.0396 0.0495 0.0392 0.0588
P (θ9|x) 0.0594 0.0693 0.0588 0.0784
P (θ10|x) 0.0594 0.0693 0.0588 0.0784
P (θ11|x) 0.0396 0.0495 0.0392 0.0588
P (θ12|x) 0.1287 0.1386 0.1275 0.1471
P (θ13|x) 0.0594 0.0693 0.0588 0.0784
P (θ14|x) 0.0495 0.0594 0.0490 0.0686
P (θ15|x) 0.0594 0.0693 0.0588 0.0784
P (θ16|x) 0.1089 0.1188 0.1078 0.1275

the data series, the portfolio with lowest upper risk
was calculated while the information was obtained.
The return that an investor would obtain over the 100
months by using the Markowitz method for compiling
a portfolio was calculated as well. The cumulative re-
turn by the IDM during the period analyzed was the
following: for s = 1 it was 557.71%, for s = 2, it was
519%. If the investor had used the Markowitz method
the cumulative return would be 754.98%. The return
would have been 820 % if the expert’s opinion had
been used.

5 Conclusions

An interesting point regarding the model is that the
formulation is general, broad and flexible. Thus, there
is the option of using other analytical expressions.
Another more general observation is that the better
the economic theory being used in the preparation of
constructs, the better the results should be. The main
conclusions of this article are the following:

• Subjective aspects can be used such as: the util-
ity of the investor and expert’s opinion can be
measured and used to guide the decision-making
in the financial markets;

• The expert’s opinion about uncertain states of
the world can be used as a measure of system-
atic risk. Thus, uncertainty about events like
the presidential election, agreements and interna-
tional wars are measured and incorporated into
the problem of choosing the investment;

• The imprecise Dirichlet model presents an impor-
tant advanced in making the decisions with insuf-
ficient information. Besides, this model should
be used in problems involving the choice of in-
vestment portfolios. It is possible to incorporate
the expert’s opinion. Moreover, information from
these bodies of evidence should be used together,
since the result of the application shows that it
is not correct to disregard the expert opinion;

• The use of analytical models can lead to theoret-
ical conclusions about the investor’s behavior;

• Analytical models are also easy to implement:
they can be used in a spreadsheet or a calculator.

The Consequence Function is perfect for the imple-
mentation of models based on Condicional Value-at-
Risk (CVAR) [14] and [8]. Comparisons between the
model presented in this article and CVAR are objects
of future works.
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