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Abstract

We present empirical evidence indicating the exis-
tence of a description/experience gap for decisions
under uncertainty. The nature of the gap is differ-
ent than the one arising in the case of risk but both
phenomena depend essentially on the use of limited
sampling in experience. While subjects are ambigu-
ity averse in description they are robustly ambiguity
seeking in experience. A probabilistic explanation of
this effect is provided as well as conjectures about the
possibility of studying the effect with descriptive the-
ories like Cumulative Prospect Theory.

Keywords. uncertainty, descriptive, normative, ex-
perience, description

1 Background

Traditionally, beliefs and desires are represented by
subjective probabilities and utilities, respectively, and
these subjective probabilities and utilities are com-
bined in the calculation of expectations. This ex-
pected utility tradition is dominant within the deci-
sion sciences, extending from cases of decision making
under risk, where objective probabilities are available
to the decision maker, to cases of decision making
under uncertainty, where information about objective
probabilities is scarce [17].

The familiar axiomatizations of the expected util-
ity hypothesis, from von Neumann-Morgenstern to
Anscombe-Aumann to Savage (see [15] for an intro-
ductory presentation), are usually interpreted norma-
tively, but they also serve as a diagnostic tool in that
systematic deviations from their requirements are in-
terpreted as pathology exhibited in human behavior
and in need of explanation. The following example,
one among a class of examples made famous by Allais
[1], serves to illustrate the point: The subject is pre-
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sented with two decision problems, each consisting of
a pair of risky alternatives. In the first problem the
subject is given a choice between a lottery A that pays
$4000 with probability 0.8 and $0 with probability 0.2
and a lottery B that pays $3000 with probability 1.
In the second problem the subject is given a choice
between a lottery C that pays $4000 with probability
0.2 and $0 with probability 0.8 and a lotter! y D that
pays $3000 with probability 0.25 and $0 with prob-
ability 0.75. It has been observed that a significant
number of subjects choose B in the first decision prob-
lem and C in the second decision problem. Assuming
that such choices reveal strict preferences they are in-
compatible with the expected utility hypothesis: if B
is strictly preferred to A, then the expected utility hy-
pothesis requires a strict preference for the compound
lottery that rewards B with probability 0.25 and $0
with probability 0.75 over the compound lottery that
rewards A with probability 0.25 and $0 with proba-
bility 0.75 and, moreover, the expected utility max-
imizer must be indifferent between the first of these
compound lotteries and D as well as between the sec-
ond of these compound lotteries and C.

How are these observed deviations from expected util-
ity theory to be interpreted? More generally, what is
the significance of such deviations? According to one
important class of interpretations such observed de-
viations are evidence that the normative theories at
issue are not adequate when it comes to describing
the decisions of human agents – but remain nonethe-
less valid normatively. According to another class of
interpretations such deviations can be evidence that
the theory being violated is inadequate as a norma-
tive theory of decision making – this is essentially the
sort of interpretation that Ellsberg took in response to
the violations that he made famous in connection with
Savage’s theory [6]. For now we will focus on the first
class of interpretations that was mentioned. Work on
this class of has been dominated by two schools. Es-
sential examples of the first of these schools can be
found in the previously mentioned work of Simon [18]



and Gigeren! zer [11]. A basic theme of such work is
that deviations from a normative theory such as ex-
pected utility maximization are often just the result
of computational limitations and that such deviations
are not necessarily a sign of irrationality. Essential
examples of the second of these schools is provided
by the work of Kahneman and Tversky [14]. A basic
theme of such work is that human decision processes,
much like human senses, are subject to illusions and
that these illusions lead to systematic deviations from
expected utility and related norms. Work done in
both these schools is potentially significant. For now
we will focus on work done in the second of the two
schools that were mentioned.

Let us consider what is perhaps the most well-known
theory from this second school that attempts to ad-
dress deviations from expected utility theory such as
those associated with the Allais-type example men-
tioned previously. Roughly, prospect theory posits two
phases of decision making. The first of these is an
editing phase during which various operations (e.g.,
coding) are applied to the information that is available
to the decision maker so that it can be arranged into
an appropriate form. The second phase is concerned
primarily with evaluation. The basic idea is that the
various alternatives are assessed in terms of an index
that is similar to expected utility but with “decision
weights” replacing the probabilities and a “value func-
tion” replacing the utilities. The decision weights can
be represented in terms of a weighting function π on
the objective probabilities that are assumed to be ac-
cessible to the decision maker in the context of de-
cision making un! der risk. According to Kahneman
and Tversky, “decision weights measure the impact of
events on the desirability of prospects, and not merely
the perceived likelihood of these events.” [14]. Pre-
sumably, according to this view there are a significant
number of cases where differences between π(p) and
p indicate a pathology of systematic deviations from
the expected utility hypothesis. Through an appeal
to empirical and theoretical considerations, Kahne-
man and Tversky argue that these decision weights
satisfy certain structural requirements, e.g., the over-
weighting of small probabilities. They also provide
arguments, both theoretical and empirical, to show
that the value function v of prospect theory, which is
defined on “changes in wealth or welfare, rather than
final states” satisfies certain structural requirements,
e.g., concavity for gains.

We now turn to an example that illustrates the man-
ner in which prospect theory is tested in [13]. Re-
call from the previous discussion that prospect theory
predicts the overweighting of small probabilities, i.e.,
π(p) > p for small p. Kahneman and Tversky perform

the following experiment to test this prediction: Each
subject in the study is asked to choose from a pair
of alternatives. One of these alternatives is a lottery
that pays $5000 with probability 0.001 and pays $0
with probability 0.999. The other alternative pays $5
with certainty. Kahneman and Tversky [14] report
that a majority of subjects have a strict preference
for the first of the two alternatives just described.
Consider a subject who demonstrates these prefer-
ences. Such preferences are representable in prospect
theory just in case there are π and v such that
π(.001)v($5000) + π(.999)v($0) > v($5). Following
Kahneman and Tversky we set v($0) = 0 so that the
! previous inequality simplifies to π(.001)v($5000) >
v($5), which implies that

π(.001) >
v($5)

v($5000)
. (1)

Finally, since v is assumed to be concave for gains it
follows that

v($5)

v($5000)
≥ .001. (2)

Combining inequalities (1) and (2) yields π(.001) >
.001 as predicted.

In the experiment discussed in the previous paragraph
subjects were presented with a menu of alternatives
and a description of the relevant probabilities. Use
of this sort of empirical methodology is widespread
among work on the psychology of decision making.
But to what extent does empirical support, such as
that which was just discussed in connection with the
overweighting of small probabilities, depend on this
methodological choice? One might respond by main-
taining that such a question presupposes that there
are other plausible methodologies. An important ex-
ample of an alternative methodology is the “sampling
paradigm” that is used in more recent work such as
[13]. For our purposes, the essential difference be-
tween this alternative methodology and the sort of
approach that was taken in [14] is that in the for-
mer subjects get their information about the relevant
probabilities through sampling rather than by reading
a text description.

To illustrate the difference between the two ap-
proaches that were just mentioned, consider the fol-
lowing type of experiment from [13]: Divide the sub-
jects into two groups. Subjects in the first group are
given the previously discussed task from [13] in con-
nection with the underweighting of small probabili-
ties. That is, subjects in this first group are asked to
choose between A, a lottery that pays $5000 ($0) with
probability 0.001 (.999), and B, an alternative that
pays $5 with certainty. Subjects in the second group
are asked to choose between pressing one of two but-
tons, A and B, on a computer screen. Although the



subjects in this group are never given such informa-
tion, A is a chance setup that rewards either $5000 or
$0 at the end of each trial and, furthermore, the objec-
tive probabilities (i.e., limiting frequencies) that are
associated with A are .001 and .999 for $5000 and $0,
respectively. Similarly, button B i! s a chance setup
that rewards $5 with probability 1. Finally, although
subjects in the second group are not told the proba-
bilities associated with A and B, they are permitted
to sample both buttons as many times as they desire
before making their decision between the two alterna-
tives. It should be clear that the crucial distinction
between the task that is given to the first group of
subjects and the task that is given to the second is es-
sentially the aforementioned distinction between first
and second of the two empirical methodologies under
consideration.

Let us assume that the subjects in the first group
reveal preferences that are consistent with what Kah-
neman and Tversky observed in connection with the
underweighting of small probabilities. Do we expect
that the preferences that are revealed in the second
group to essentially parallel those that are revealed
in the first? Hertwig et al. have argued that we
should not. Indeed, Hertwig et al., through exper-
iments of the sort just mentioned, have shown that
certain psychological effects – e.g., the overweighting
of rare events – are not preserved when one changes
from a description-based approach to an experience-
based approach, and this lack of preservation is known
as experience-description gap – as a matter of fact
rare events are underweighted in experience. The gap
is difficult to explain by appealing to theories like
Prospect Theory.

Fox and Hadar have recently expressed criticisms in
[10] about some of the claims presented in [13] con-
cerning a possible experience-description gap. We
will now consider two of the main theoretical criti-
cisms that are discussed in [10]. First, Fox and Hadar
do not believe that Hertwig et al. were sufficiently
clear about what counts as experienced-based decision
making [EBDM]: “The generalization that EBDM dif-
fers from DBDM is difficult to evaluate because, sur-
prisingly, no one has yet defined ‘experience-based de-
cision making.” [10] 1 Noting this lack of an adequate
definition of experienced-based decision making, Fox
and Hadar offer what they take to be an adequate
characterization of EBDM. The upshot of their anal-
ysis is that “[. . .] EBDM applies to any situation in
which there is uncertainty and learning through sam-
pling.” This point, which is significant, will be dis-
cussed later in this paper. For now, we turn to a

1DBDM of course refers to description-based decision mak-
ing.

matter that is more directly related to the Fox and
Hadar’s charge that EBDM had not been given an
adequate definition.

We think that the analysis of EBDM given in [10]
is not well-suited to a study of the experience-
description gap as understood in [13]. In particular,
the analysis that is supplied in [10] does not say any-
thing about what it means to be an experience-based
counterpart to a given description-based task, some-
thing which is crucial to the interpretation of the work
that is reported in [13]. In light of this, Arló-Costa
and Helzner [2] proposed the following analysis of this
counterpart relation that is essential if one is to exam-
ine how well a given psychological effect travels across
experience-description gap:

• In a decision from description the subject is pre-
sented with a specification of the type of chance
mechanism.

• In a decision from experience the subject is not
presented with such a specification but rather is
allowed to observe the behavior of a chance mech-
anism that has the specified type.

In [2], Arló-Costa and Helzner suggest that this anal-
ysis might be useful in examining the extent to which
an experience-description gap exists for certain psy-
chological effects associated with decision making un-
der uncertainty. The argument that was given in [2]
on behalf of this suggestion is that, while classical
descriptions of uncertainty – e.g., the Ellsberg urn
– have no experiential counterparts, since the rele-
vant uncertainties in such cases are epistemic, one
can specify mechanisms that, at least psychologically,
approximate descriptions of uncertainty and, more-
over, have an experiential counterpart in the sense of
Arló-Costa and Helzner’s analysis of the counterpart
relation. In the next section we will examine recent
experimental work concerning the way effects asso-
ciated with these approximations of uncertainty can
vary as one moves from EBDM to DBDM. It is worth
noting that the present article may be seen as build-
ing on the approach considered in [21] and [5]. In a
more recent paper Yoram Halevy [12] makes a force-
ful case for establishing a strong correlation between
ambiguity neutrality and the reduction of compound
objective lotteries. Halevy concludes that his results
suggest that failure to reduce compound (objective)
lotteries is the underlying factor of the Ellsberg para-
dox. We do not want to make such a strong claim
but we rely on the idea that a chance setup like B∗,
as described in what follows, can be treated as an
operational approximation of uncertainty.



2 Experimental Work

Example 1 (Ellsberg’s two-color problem [6])
Consider the following two cases:

Urn A contains exactly 100 balls. 50 of these balls are
solid black and the remaining 50 are solid white.

Urn B contains exactly 100 balls. Each of these balls is
either solid black or solid white, although the ratio
of black balls to white balls is unknown.

Consider now the following questions: How much
would you be willing to pay for a ticket that pays $25
($0) if the next random selection from Urn A results
in black (white) ball? Repeat then the same question
for Urn B.

It is well known that subjects tend to offer higher
maximum buying prices for urn A than for urn B.
This seems to be so even in non-comparative cases
(see [4] and [3]) contrary to the so-called comparative
ignorance hypothesis formulated in [9]. On the other
hand, consider the following description of a chance
setup:

B∗: First, select an integer between 0 and 100 at ran-
dom, and let n be the result of this selection.
Second, make a random selection from an urn
consisting of exactly 100 balls, where n of these
balls are solid black and 100− n are solid white.

In a previous ISIPTA paper Arló-Costa and Helzner
reported experimental results indicating that maxi-
mum buying prices for B∗ are intermediate with re-
spect to the ones for A and B. This confirms pre-
vious results reported in [21] and [5]. In a more re-
cent paper Yoram Halevy [12] makes a forceful case
for establishing a strong correlation between ambigu-
ity neutrality and the reduction of compound objec-
tive lotteries (that would lead to treat urns A and
B∗ equally). He therefore concludes that his results
suggest that failure to reduce compound (objective)
lotteries is the underlying factor of the Ellsberg para-
dox. We do not want to claim something as strong as
that but we rely on the idea that B∗ can be treated
as an operational approximation of urn B. The inter-
est of this move is that B∗ is easily implementable in
experience while it is notoriously difficult to find an
experiential counterpart of B. The main ex! perimen-
tal finding reported below is that while in description
subjects are averse to ambiguity (they prefer C over
B∗ and B) in experience this effect is reversed and
subjects are ambiguity seeking (they prefer B∗ over
C – B has no experiential counterpart). This shows
that the description-experience gap also appears (in a
different form) for decisions under uncertainty.

3 Method: First Experiment

One hundred and nineteen students at Carnegie Mel-
lon University (Pittsburgh, USA) were presented with
the three decision problems presented below. Maxi-
mum buying prices for these games were requested.
The options C, B∗ and B described above were im-
plemented in the following way:

C: A fair chance setup with possible outcomes
{1, 2, . . . , 99, 100} has been constructed. If the
outcome on the next run of this setup is less than
or equal to 50, then you win $25. Otherwise, you
get $0.

B∗: Two fair chance setups, I and II, have been
constructed. Setup I has possible outcomes
{0, 1, . . . , 99, 100}. Setup II has possible out-
comes {1, . . . , 99, 100}. The game is played by
first running setup I and then running setup II.
If the outcome of the run of setup II is less than
or equal to the outcome from the run of setup I,
then you win $25. Otherwise, you get $0.

B: An integer n has been selected from the set
{0, 1, . . . , 99, 100}. Nothing is known about
the mechanism by which n has been selected.
A fair chance setup with possible outcomes
{1, . . . , 99, 100} has been constructed. If the out-
come on the next run of this setup is less than or
equal to n, then you win $25. Otherwise, you get
$0.

3.1 The Description Condition

Fifty eight students from the pool of one hundred and
nineteen students mentioned above faced the descrip-
tion condition for the first experiment. We have two
types of trials. In the first type we consider gains.
The subjects face a computer window with two rect-
angles containing the text used above to describe the
options C and B∗. The subjects in this condition are
asked the following question: Which one out of the
two games will you choose to play?. They then
have three possible options for a response:

Left Button: You were indifferent between the two
alternatives. (A)

Middle Button: You had a strict preference for one
of the alternatives. (B)

Right Button: Neither (A) nor (B) reflect my atti-
tudes

The second type of trials involved losses. For ex-
ample the loss version of the C-option is: ‘A fair



chance setup with possible outcomes {1, . . . , 99, 100}
has been constructed. If the outcome on the next run
of this setup is less than or equal to 50, then you lose
25. Otherwise, you get 0.’

3.2 The Experience Condition

Sixty one students from the pool of one hundred and
nineteen students mentioned above faced the experi-
ence condition for the first experiment. In the experi-
ence condition the subjects faced two rectangles con-
taining the labels C and V . They can sample these
options by clicking on them. Clicking the option C
triggers a random selection from {1, 2, . . . , 99, 100}.
If the outcome is less than or equal to 50, then the
subject is told that he won $25. Otherwise, he is told
that he got $0. So, this option corresponds to op-
tion C in description. Clicking the option V yields
an output obtained by triggering the double sampling
procedure B∗ presented in description. For example,
if one clicks on V a number is selected at random
in the set {0, 1, . . . , 99, 100} and then another from
{1, 2, . . . , 99, 100}. If the outcome of the run of second
selection is less than or equal to the outcome from the
first selection, then the subject is told t! hat he won
$25. Otherwise, he gets $0. So, button V is the expe-
riential counterpart of option B∗. The subjects can
sample as much as they want, and then they make a
final selection of the C or V button. Sampling is used
as follows: after the subject presses V , for example,
she has the option of sampling again the same game
selected at the second stage. The sampling option is
also available for the C button. Of course, in this
case one continues to sample the unique game imple-
mented for this button (another random number will
be generated from {1, 2, . . . , 99, 100} and if the out-
come is less than or equal to 50, then the subject is
told that he won $25. Otherwise, he is told that he
got $0.

As in the description condition the subjects have three
buttons at their disposal to respond to. Clicking the
middle button, as before, reveals a strict preference
for one of the two options. A gain and a loss version
of C and B∗ were implemented.

4 Results: First Experiment

At the end of the experiment subjects were asked to
provide maximum buying prices for options C, B and
B∗ as presented in the description condition. This
was done for the subjects in the experience condi-
tion and for the subjects in the description condition.
So, it makes sense to pool subjects from both condi-
tions in order to compute results. Confirming previ-
ous results presented in ISIPTA (see [4] and [3]) there

is a significant difference between maximum buying
prices for options C and B even when the subjects
do not compare vague and clear options. And con-
firming results reported in [2] option B∗ appears as
an intermediate option between options C and B. A
few remarks are in order before presenting the results
from this first experiment: First, although we recog-
nize that doing multiple comparisons to test for inde-
pendent hypotheses might inflate the Type 1 error, it
is important to note that we only compare experience
! with description (a single hypothesis) in different
ways (for gain, for loss, and for pooled gain and loss).
Thus, we do not consider multiple hypotheses and do
not need the Bonferroni correction of α = .05

3 = 0.02
(to reduce the inflation in Type 1 error). Second, it
is important to note that we are not using a normal
approximation on small samples. We tested for nor-
mality of the data and we found the data to be non-
normal in both experience and description conditions
of experiments 1 and 2 using separate Shapiro-Wilk
tests. For example, the data were non-normal in both
the experience and description conditions (experience:
D(124) = .64, p < .001; description: D(122) = .63,
p < .001). Again, the data was non-normal in both
experience and description conditions in experiment
2. Therefore, we used non-parametric Mann-Whitney
tests to evaluate significant differences between expe-
rience and description conditions. In fact, a binomial
distribution assump! tion, as the one anonymous ref-
eree suggested, might also not b! e a correct assump-
tion. Therefore, the safest thing for us to do was
to report non-parametric statistics, as we do in the
current paper. The Z-score that we report as part
of the statistics belongs to this Mann-Whitney non-
parametric test.

The following results were obtained.

Condition Alternative Max. Buying Price
Exp. + Desc. B 4.93 (n = 119)
Exp. + Desc. B∗ 6.36 (n = 119)
Exp. + Desc. C 7.04 (n = 119)

Table 1

Alternative C is significantly greater than alternative
B∗, with T=622, Z=-2.329, p < .05, Effect Size =
-0.15. Alternative C is significantly greater than Al-
ternative B , with T=527, Z=-4.751, p < .001, Effect
Size = -0.31. Alternative B∗ is significantly greater
than Alternative B, with T=411, Z=-3.716, p < .001,
Effect Size = -0.24. So, as we explained above, al-
ternative B∗ can be used as an operational proxy of
condition B in experience.



4.1 The Description condition: Results

The main hypothesis here is that subjects will be am-
biguity averse (will significantly prefer C to B∗). The
numbers in the tables are the number of subjects click-
ing the corresponding buttons for each alternative.
The boldfaced results for the pooled population show
the magnitude of the effect.

Alternative Left Button Middle B. Right B.
B∗ 10 11 6
C 11 18 5

Table 2. Gain Trials (Description)

Alternative Left Button Middle B. Right B.
B∗ 8 14 5
C 7 20 7

Table 3. Loss Trials (Description)

Alternative Left Button Middle B. Right B.
B∗ 18 25 11
C 18 38 12

Table 4.Gain and Loss Trials (Description)

4.2 The Experience condition: Results

Here the hypothesis is the subjects will be ambiguity
seekers. The hypothesis is confirmed by the following
results.

Alternative Left Button Middle B. Right B.
B∗ 10 17 4
C 14 11 6

Table 5. Gain Trials (Experience)

Alternative Left Button Middle B. Right B.
B∗ 16 15 2
C 10 12 7

Table 6. Loss Trials (Experience)

Alternative Left Button Middle B. Right B.
B∗ 26 32 6
C 24 23 13

Table 7. Gain and Loss Trials (Experience)

One index that seems interesting is based on comput-
ing the proportion of subjects who expressed a strict
preference for C, both in Description and Experience.
These are the subjects who clicked the Middle But-
ton and C in experience or the subjects who clicked
the Middle Button in description expressing a strict

preference for the ‘clear’ 50-50 lottery. We will refer
indistinctly to these subjects as ‘Middle & C’ subjects.
The analysis reveals the following:

Gain Trials: Proportion Middle & C buttons (De-
scription) (18/29 = .62) = Proportion Middle &
C buttons (Experience) (11/28 = .4), with U=314,
Z=-1.705, p = .09, Effect Size = -0.23.

Loss Trials: Proportion Middle & C buttons (De-
scription) (20/34 = .58) = Proportion Middle &
C buttons (Experience) (12/27 = .4), with U=393,
Z=-1.108, p = .27, Effect Size = -0.14.

Gain and Loss Trials: Proportion Middle & C but-
tons (Description) (38/63 = .6) > Proportion Mid-
dle & C buttons (Experience) (23/55 = .4), with
U=1412, Z=-1.998, p ¡ .05, Effect Size = -0.18.

It is very interesting to notice that the proportions of
Middle & C subjects in Description remains almost
constant for both gain and loss trials (minimum and
maximum values are, respectively, .58 and .62). By
the same token the proportion of Middle & C sub-
jects in Experience remains exactly constant with a
value of .4. The constancy of the proportions across
conditions is clearly depicted in Figure 1 below. Nev-
ertheless the proportion of Middle & C subjects in
Description is not significantly different from the pro-
portion of Middle & C subjects in Experience for both
the gain and loss trails takes separately. But when the
two types of trials are pooled the proportion of Mid-
dle & C subjects in Description is indeed significantly
greater than the proportion of Middle & C subjects
in Experience.

We believe that the reason why significant results are
not obtained for gain or loss trials separately is be-
cause we do not have enough subjects in these type
of trials taken separately. But it seems that pooling
the data for these two type of trials makes sense given
that the proportions remain constant across the dif-
ferent types. In other words, the effect seems to have
the same polarity in both types of trials.

The analysis of the pooled data reveals that subjects
were more ambiguity-averse in the description condi-
tion than in the experience condition. To put this in
other terms, if we compute the ratio RD of the num-
ber of Middle & C subjects in Description divided by
the number of Middle & B∗, and we compute the cor-
responding ratio RE in Experience, we have that RD

= 1
RE

.

We collected additional experience data in a second
experiment in order to see whether we can observe
significant effects not only for the pooled population



but also for gains and losses. The results are reported
in the next secion.

5 Method: Second Experiment

Thirty students at Carnegie Mellon University (Pitts-
burgh, USA) participated in a second experiment.
They faced an experiential version of the first part
of the experiment. Of course in this case we can only
implement C and B∗.

6 Results: Second Experiment

Since we already had data for description we selected
at random thirty subjects from the first experiment.
First we report the maximum buying prices for the
conditions C, B∗ and B in description for the se-
lected subjects of the first experiment and for the
experiential version of B∗ and C in experience. In
this experiential version the subjects face the V and
C buttons used in experience. There is a preparatory
phase where they can see results from each button
and then maximum buying prices for each alternative
are requested.

Condition Alternative Max. Buying Price
Description C 5.38 (n = 30; SD = 3.61)
Description B∗ 4.71 (n = 30; SD = 3.81)
Description B 3.57 (n = 30; SD = 3.39)
Experience C 6.25 (n = 30; SD = 4.05)
Experience B∗ 5.75 (n = 30; SD = 4.75)

Table 8

Although in description the maximum buying prices
for B∗ also occupy an intermediate position between
prices for B and C, the difference between C and B∗

is not statistically significant (T=118, Z=-1.401, p =
.16, Effect Size = -0.18). But this seems to be due to
the fact that the effect verified in the larger population
of the first experiment is not verified in this arbitrarily
selected sub-population.

There is a clear effect verified in the first experiment
and in a previous paper [2] according to which in de-
scription the mean maximum buying prices for C are
higher than the mean maximum buying prices for B∗.
Moreover the values for B∗ appear as intermediate
between C and B. This effect seems to disappear
or suffer a complete inversion in experience.This is
partly verified by considering mean maximum buy-
ing prices. In fact, mean maximum buying prices for
B∗ and C cannot be distinguished statistically in ex-
perience (T=172, Z=-1.037, p = .30, Effect Size =

-0.13). A more clear reversal is verified in the follow-
ing experiments for gains and loses. This manipula-
tion repeats the design used in the first experiment.
Rather than providing buying prices the subjects ex-
press preferences for the different buttons displayed
in their screens.

6.1 The Experience condition: Results

The following results were observed for gain and loss
trails for experience:

Alternative Left Button Middle B. Right B.
B∗ 4 11 3
C 5 4 3

Table 9. Gain Trials (Experience)

Now here we can see the first clear reversal for ex-
perience of the pattern B∗ < C for description. In
fact we verify here that B∗ > C is indeed statistically
significant in spite of the relatively small size of the
population (p < .001, Effect Size =- 0.47).

Alternative Left Button Middle B. Right B.
B∗ 6 12 5
C 3 2 2

Table 10. Loss Trials (Experience)

It is interesting to see that the pattern gets repeated
here also for losses and with a similar ratio. We do
have as above B∗ > C is indeed statistically signifi-
cant (p < .01, Effect Size =- 0.71).

Alternative Left Button Middle B. Right B.
B∗ 10 23 8
C 8 6 5

Table 11. Gain and Loss Trials (Experience)

And, of course, we do have the same effect verified for
the pooled population. B∗ > C is indeed statistically
significant (p < .001, Effect Size = -0.58). Moreover
now we have an even nicer result paralleling the one
obtained in the first experiment:

Gain Trials: Proportion Middle & C buttons (De-
scription) (17/24) > Proportion Middle & C buttons
(Experience) (4/11), with U=101, Z=-2.657, p < .01,
Effect Size = -0.45.

Loss Trials: Proportion Middle & C buttons (De-
scription) (14/26) = Proportion Middle & C buttons
(Experience) (2/14), with U=110, Z=-2.405, p < .05,
Effect Size = -0.38.



Gain and Loss Trials: Proportion Middle & C but-
tons (Description) (31/50 = .62) > Proportion Mid-
dle & C buttons (Experience) (6/29), with U=426,
Z=-3.524, p < .001, Effect Size = -0.40.

So, the second experiment verifies the effect (the fact
that subjects are ambiguity seeking in experience)
seen in the first experiment for the pooled popula-
tion. In addition the effect also holds for gains and
loses separately and it holds with similar intensity in
both conditions.

7 Discussion

It is tempting to reason as follows: a play in the
chance set up B∗ is equivalent to a play on chance
set up C. The line of reasoning is roughly as follows:
The random selection in the first stage of B∗ entails
that, for each integer i, where 0 ≤ i ≤ 100, there is
a probability of 1

101 that the urn sampled in the sec-
ond stage consist of i black balls and 100 − i white
balls. Moreover, according to this line of reasoning
the random selection in the second stage entails that
if i is selected in the first stage, then the probability
of selecting a black ball in the second stage is i

100 .
This line of reasoning then continues by combining
the first and second stage probabilities to conclude
that the probability of getting a black ball on a trial
of B∗ is 1

101 (
∑100

i=0
i

100 ) = 1
2 , as in the case of chance

set up C. First note that if this line of reasoning
were correct then th! e results presented in this pa-
per would be rather surprising. Perhaps B∗ and C
can be distinguished in description (due to cognitive
limitations of the players), but the two chance set
ups should not be distinguishable in experience ac-
cording to such an argument. However, arguments
of the given sort are mistaken as they fail to account
for the interaction between the subject’s choices and
the frequencies that are observed. For example, con-
sider the following set up which is basically equivalent
to the one we implemented. Suppose that you have
a sequence of 101 possible urns with black and white
balls. Each urn contains 100 balls in total but the pro-
portion of white and black changes in each case. The
subject could generate output from B∗ by employ-
ing a strategy where according to which she samples
from the current urn until she sees a white ball and,
upon seeing a white ball, advances to the next urn
in the arrangement. This strategy should eventually
s! tabilize on the all black urn so that the observed
frequencies! converge to those associated with the all
black urn.

7.1 Prospect Theory and its capacity to
model the gap experience-description

We explained above that Fox and Hadar offered in
[10] an ingenious explanation of the gap experience-
description by appealing to a version of Prospect The-
ory applicable to decisions under uncertainty rather
than risk. This version of Prospect Theory is pre-
sented in detail in the recent (and excellent) book by
Peter Wakker on Prospect Theory [16] (the theory
was presented first in [20]). The central idea of the
theory is to use event-decision weights rather than
probability-based decision weights. In fact if P is the
probability used for risk we can define a function W
on events by applying decision weights to P . So we
have that W (E) = w(P (E)). Since w can be non-
linear, W need not be additive. The corresponding
function has the properties of a capacity.

The idea that Fox and Hadar considered in the afore-
mentioned paper is to apply the decision weight w to
judged probabilities rather than the objective proba-
bilities of the lotteries considered in the case of risk.
This ingenious move fits the data reasonably well. So,
one can claim that decisions form experience are es-
sentially decisions under uncertainty and one can ap-
peal to Cumulative Prospect Theory to analyze the
data. The event-decision weights are calculated by
appealing to judged rather than risky probabilities.
These judged probabilities are estimated in terms of
observed frequencies through sampling.

Is it possible to do something similar in the case we
are studying? Perhaps there is a possible strategy
one can use to test the predictive power or Cumula-
tive Prospect Theory in this setting. To see the point
it is important to stress that we do agree with Hadar
and Fox about the fact that decisions from experience
are cases of decisions under uncertainty. Let’s fist see
how this applies to our experiment. For each partic-
ular play of V the subject can do some sampling and
obtain a judged probability in the sense of Hadar and
Fox. So, it seems that one does not have any alter-
native except representing the subjects playing V as
entertaining a set of judged probabilities. The only
thing that the subjects know is that there is s chance
set-up that is producing a set of probabilities that he
can estimate by repeated sampling. But he knows
nothing about the nature of the chance set up that
produces this set of probabilities. In particular the
chance set up that ! is producing the set of probabili-
ties need not obey the law of large numbers as in the
experimental set up used by Stecher at al. [19]. In
this case even the computation of wining frequencies
would lead to erroneous estimation of the chances of



the chance set up that generates the probabilities.2.

So, when one implements B∗S in experience by fixing
a sampling rule various types of indeterminacy arise.
First the implemented game does not have a single ob-
jective long run frequency associated to it. Subjects
can employ different playing strategies that are as-
sociated with different long run frequencies. Second,
under the point of view of the subject who plays his
probabilities are indeterminate also. He only knows
that there is a chance set up that produces sets of
probabilities that he can eventually estimate. A so-
phisticated player can learn that the set of probabil-
ities associated with C are produced by a chance set
up of objective probability 0.5.3 And if the subject
has a fixed play! ing strategy he can perhaps learn
the objective probability corresponding to this strat-
egy. But most players will not use a fixed strategy
and in this case it seems that there is no learnable
objective chance associated to the chance set up that
produces the set of probabilities associated with B∗S .

So, the probabilities of the subjects remain undeter-
mined. This is so even if we guarantee that the win-
ning frequencies of the two chance set ups converge
to the same number (for example by guaranteeing fair
sampling procedures for plays of B∗), in the short run
agents cannot but remain uncertain about the prob-
abilities of the two chance set ups in experience.

Is there a way of connecting this set of priors with
event-decision weights? Here is a possible way of do-
ing it. Call the set of priors C. Then for each event
E we have the interval IE = {P (E) : P ∈ C}.
Now, one can define an event-decision weight W as
W = inf(IE) or W = sup(IE). Is it possible to ap-
proximate out empirical results via this procedure?
We propose a careful investigation of this issue for
future work. 4

We can point out here that a theory like Cumulative
Prospect Theory will tend to predict asymmetries re-
garding ambiguity for gains and loses. The major-
ity of the existing evidence seems to indicate, for ex-
ample, that subjects are ambiguity seeking for losses
while they are ambiguity averse for gains (see the ev-
idence and references in [16]). This patterns does not

2The main idea in the aforementioned paper is to use a
chance set up that cannot be learned in experience. Assum-
ing that fair sampling procedures could be used to play B∗

then its objective chance could be learned by observing enough
data. But in the short run the agents cannot but remain uncer-
tain about the determinate or indeterminate chances associated
with the chance set up producing the given set of probabilities.

3Notice that the subject does not even know that C is based
on single-sampling. For each time the they play C again they
do not know whether they are sampling the same risky lottery.
So, they have to entertain as well a set of probabilities for C.

4See [7] and [8] for earlier discussions along these lines.

seem to arise in our experiment. At least in the sec-
ond experiment it is clear that subjects are equally
ambiguity seeking for gains and losses.

The presentation of Cumulative Prospect Theory in
[16] makes clear that the main idea of extending
Prospect Theory to uncertainty is to avoid the repre-
sentation of uncertainty via multiple priors. Wakker
is quite explicit about rejecting this strategy which he
sees as problematic for various reasons that have to
do with measurement and elicitation. But it seems
that there are experimental situations of the sort we
presented in this article where the use of multiple pri-
ors seems unavoidable. In spite of this aversion to use
multiple priors there might be ways of finding a con-
nection with the way in which Cumulative Prospect
Theory represents uncertainty. If this were possible
a second step would consist in testing the predictive
power of the extended version of Prospect Theory to
uncertainty. We also propose to tackle this issue in
future work.
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