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Abstract

This paper proposes the use of Binary Probability
Trees in the propagation of credal networks. Stan-
dard and binary probability trees are suitable data
structures for representing potentials because they al-
low to control the accuracy of inference algorithms by
means of a threshold parameter. The choice of this
threshold is a trade-off between accuracy and com-
puting time. Binary trees enable the representation
of finer-grained independences than probability trees.
This leads to more efficient algorithms for credal net-
works with variables with more than two states. The
paper shows experiments comparing binary and stan-
dard probability trees in order to demonstrate their
performance.
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1 Introduction

A Bayesian network (BN) is a probabilistic graphical
model where precise assessments for the conditional
probability mass functions of the variables in the net-
work given the values of their parents are used. A
credal network (CN) is also a graphical structure (a
directed acyclic graph (DAG) [13]) which is similar
to a BN [17], but now the conditional mass functions
belong to convex sets of mass functions (credal sets).

There has been an increasing interest in propagation
algorithms for CNs in the last years. Different algo-
rithms have been proposed for propagation in CNs
using standard probability trees (SPTs) [11, 10, 7].
In this paper we propose to apply binary probability
trees (BPTs) [8] to propagate in CNs with the variable
elimination (VE) algorihtm.

The remainder of this paper is organized as follows:
In Section 2 we introduce Bayesian and credal net-
works, and the problem of inference on them. Section

3 explains the use of standard and binary probabil-
ity trees to obtain compact representations of poten-
tials and presents how they can be approximated by
pruning them. Section 4 explains how to use the VE
algorithm to propagate in CNs using BPTs. Section
5 provides details of the experimental work. Finally,
Section 6 gives the conclusions.

2 Inference in Credal Networks

Bayesian and credal networks are based on a set of
random variables X = {X1, . . . ,Xn} and a directed
acyclic graph (DAG) G, whose nodes are associated
with the variables of X. Let us assume that each
variable Xi takes values on a finite set of states ΩXi

(the domain of Xi). We shall use xi to denote one
of the values of Xi, xi ∈ ΩXi

. If I is a set of in-
dices, we shall write XI for the set {Xi|i ∈ I}. The
Cartesian product ×i∈IΩXi

will be denoted by ΩXI
.

The elements of ΩXI
are called configurations of XI

(represented as xI). We use |Ω| to denote the cardi-

nality of a set Ω. We denote by x
↓XJ

I the projection
of the configuration xI to the set of variables XJ ,
XJ ⊆ XI . We denote by Πi the set of parents of
Xi in G and πi ∈ ΩΠi

a configuration for the vari-
ables in Πi. P (Xi) is the mass function for Xi and
P (xi) the probability that Xi = xi. P (Xi|πi) denotes
the probability mass function for Xi conditional on
Πi = πi. A mapping from a set ΩXI

into R
+
0 will be

called a potential p for XI . The process of inference in
probabilistic graphical models requires the definition
of two operations on potentials: combination p1 ⊗ p2

and marginalization p↓XJ . If p1 and p2 are potentials
for XI and XJ respectively then p1⊗p2 is a potential
for XI∪J that can be obtained by pointwise multipli-
cation. If p is a potential for XI , and J ⊆ I then
p↓XJ is a potential for XJ that can be obtained by
summing out all the variables not in XJ .

In a BN, each node labelled with a variable Xi

has attached a conditional probability distribution



P (Xi|Πi), that defines a conditional mass function
P (Xi|πi) for Xi given each πi ∈ ΩΠi

. A BN deter-
mines the following joint probability distribution:

P (x) =

n∏

i=1

P (xi|πi) ∀x ∈ ΩX (1)

where xi and πi are the projections of x to Xi and
Πi respectively. Let be E ⊂ X the set of observed
variables and e ∈ ΩE the instantiated value. Each
observation, Xi = ei, can be represented by means of
a Dirac function defined as δXi

(xi; ei) = 1 if ei = xi,
xi ∈ ΩXi

, and δXi
(xi; ei) = 0 if ei 6= xi. An algorithm

that computes the a posteriori distribution P (xq|e)
for each xq ∈ ΩXq

, Xq ∈ X \E, (Xq is a queried vari-
able) by making local computations is called a propa-
gation algorithm. This distribution verifies:

P (xq|e) ∝
∑

XR

∏

Xi∈X

P (xi|πi)
∏

Xi∈E

δXi
(xi; ei) (2)

where XR = X \ {{Xq},E}. In fact, the previous
formula is the expression for P (xq, e). P (xq|e) can be
obtained from P (xq, e) by normalization.

CNs relax the precise probability assessments of BNs.
In this work we suppose that the conditional mass
functions of a CN are required to belong to a credal
set defined as follows. A credal set for a variable Xi

is a convex, closed set of probability distributions and
shall be denoted by K(Xi). We assume that every
credal set has a finite number of extreme points (also
called vertices), although it may contain an infinite
number of mass functions. A credal set can be iden-
tified by enumerating its vertices.

An extensive conditional credal set [14] about Xi given
the set of parent variables Πi will be a closed, convex
set K(Xi|Πi) of mappings P : Xi ×Πi −→ [0, 1], ver-
ifying

∑
xi∈ΩXi

P (xi, πi) = 1, ∀πi ∈ ΩΠi
. Again, an

extensive conditional credal set can be determined by
its set of extreme points which we assume to be finite:
Ext[K(Xi|Πi)] = {P1, . . . , Pl}. In a CN each vari-
able is associated with an extensive conditional credal
set K(Xi|Πi). In this paper, we suppose that a local
credal set K(Xi|Πi = πi) is given for each πi of Πi.
This is described by Rocha and Cozman [19] as sepa-
rately specified credal sets. For example Fig. 1 shows
a CN with two variables (X and Y ). Conditional in-
formation for X is given by two separately specified
credal sets (K(X|Y = y1) and K(X|Y = y2)). From
the separately specified credal sets, we obtain the ex-
tensive conditional credal set with:

K(Xi|Πi) = {P |P (xi, πi) ∈ K(Xi|Πi = πi),

∀πi ∈ ΩΠi
} (3)

X

Y

K(Y ) y1 y2

r1 0.1 0.9
r2 0.2 0.8

K(X|Y = y1) x1 x2

p1 0.2 0.8
p2 0.3 0.7

K(X|Y = y2) x1 x2

q1 0.4 0.6
q2 0.6 0.4

Figure 1: A simple credal network

Table 1 shows the extensive conditional credal set
K(X|Y ) obtained from the separately specified credal
sets K(X|Y = y1) and K(X|Y = y2) of Figure 1.

K(X|Y ) x1, y1 x2, y1 x1, y2 x2, y2

p1, q1 0.2 0.8 0.4 0.6
p1, q2 0.2 0.8 0.6 0.4
p2, q1 0.3 0.7 0.4 0.6
p2, q2 0.3 0.7 0.6 0.4

Table 1: An extensive conditional credal set

As in BNs, the topology G, of a CN represents in-
dependence relations between variables using the d-
separation criterion. The meaning of such indepen-
dences depends on which concept of independence for
credal sets is adopted. This paper uses the concept
of strong independence [13, 12]. The strong extension
K(X) of a CN is the largest joint credal set such that
every variable is strongly independent [13, 12] of its
nondescendants nonparents given its parents. It is
the joint credal set that contains every possible com-
bination of vertices for all credal sets in the network,
where the vertices are combined by multiplication as
in Expression 1 [13]. That is, the strong extension
K(X) of the CN is the convex hull (CH) of the col-
lection of joint mass functions that can be obtained
with every possible combination of the vertices of the
separately specified credal sets K(Xi|πi):

K(X) = CH{P (X) : P (x) =

n∏

i=1

P (xi|πi),

∀x ∈ ΩX,∀πi ∈ ΩΠi
, P (Xi|πi) ∈ K(Xi|πi)} (4)

A CN can be regarded as a collection of BNs [1] where
the topology is given by G. The joint probability of
each BN is defined by one of the vertices of K(X).
So, the CN defines the following collection of joint
probabilities:

P(X) = {Pk(X)}nv

k=1 (5)

where nv is the number of vertices in Ext[K(X)].

This paper is dedicated to inference in the strong ex-
tension of a CN, in particular, to the computation of



tight bounds for the probability values of a queried
variable Xq given a set of observed variables E.

The combination of two credal sets is the convex hull
of the set obtained by multiplying a mapping of the
first credal set with a mapping of the second credal set
(repeating the probabilistic combination for all pairs
of vertices of the two credal sets). The marginaliza-
tion of a credal set is defined by marginalizing each
mapping of the credal set. A more detailed descrip-
tion of these operations can be found for example in
[9]. With these operations, we can carry out the same
propagation algorithms as in the probabilistic case.

K(X) can also be defined as the multiplication (com-
bination) of all the (extensive) conditional credal sets
K(Xi|Πi) in the credal network:

K(X) =
n∏

i=1

K(Xi|Πi) (6)

The computation of the a posteriori credal set
K(Xq|E) for a queried variable Xq given some evi-
dence E can be done in similar way as in Bayesian
networks (expression 2) by calculating K(Xq,E).

K(Xq,E) = (K(X)
∏

Xi∈E

δXi
(xi; ei))

↓Xq (7)

The vertices in K(Xq,E) are mappings from ΩXq

in [0, 1]. K(Xq|E) can be calculated by normaliz-
ing the vertices in K(Xq,E). If Ext[K(Xq,E)] =
{Pk(Xq)}

nv

k=1 is the set of vertices of K(Xq,E), then
the computation of tight bounds for the a posteriori
probabilities of Xq given the evidence E can be done
with:

P (xq|e) = min
k=1,...,nv

Pk(xq)∑
xq

Pk(xq)

P (xq|e) = max
k=1,...,nv

Pk(xq)∑
xq

Pk(xq)
(8)

Exact computation in CNs has a high complexity [5],
much more than in BNs. It could be done by propa-
gating in the nv BNs defined by the CN.

3 Standard and Binary Trees

Probability trees [20] and binary probability trees
[8] have been used as flexible data structures that
enables the specification of context-specific indepen-
dences (see [4]) and provides exact or approximate

representations of probability potentials. SPTs and
BPTs are usually a more compact representation of
potentials than tables, because they allow inference
algorithms to take advantage of context-specific in-
dependences. In previous works we have defined de-
tailed algorithms [20, 8] for making the basic oper-
ations (combination, marginalization and restriction)
on potentials, directly over SPTs and BPTs.

3.1 Probability Trees

A standard probability tree T is a directed labelled
tree, in which each internal node represents a variable
and each leaf represents a non-negative real number.
Each internal node has one outgoing arc for each state
of the variable that labels that node; each state labels
one arc. The size of a tree T , denoted by size(T ), is
defined as its nodes count.

A subtree of T is a terminal tree if it contains only
one node labelled with a variable name, and all the
children are numbers (leaf nodes).
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Figure 2: Potential p, its representation as a proba-
bility tree and its approximation after pruning

Figure 2 displays a potential p and its representation,
using a SPT. This tree shows that the potential is
independent of the value of A in the context {B =
b1, C = c2} (the value in the potential is 0.5 for {A =
a1, B = b1, C = c2} and {A = a2, B = b1, C = c2}).
The tree contains the same information as the table,
but only requires five values, while the table contains
eight values. Furthermore, SPTs enable even more
compact representations. This is achieved by pruning
certain leaves, replacing them with the average value,
as shown in the second tree shown in Fig. 2. The
trade-off is a loss of accuracy.

3.2 Binary Probability Trees

A binary probability tree BT is similar to a SPT. It
can also be defined as a directed labelled tree, where
each internal node is labelled with a variable, and
each leaf is labelled with a non-negative real number.
But in this case, each internal node has always two
outgoing arcs, and a variable can label several nodes
in the path from the root to a leaf node. Another



difference is that, for an internal node labelled with
Xi, the outgoing arcs can generally be labelled with
more than one state of the domain of Xi, ΩXi

. The
size of a BPT (i.e., the number of nodes) is equal to
twice the number of leaves minus one.

For example, Fig. 3 (ii) shows a BPT for the table
in (i). In the figure, we use a superscript number at
each node of the tree, in order to easily identify it.
The domain of A, ΩA, is {a1, a2, a3}, and the domain
of B, ΩB , is {b1, b2, b3}. This potential can also be
represented with the SPT shown in Fig. 3 (iii). It
can be seen that the BPT contains only five leaves,
whereas the SPT contains seven. The SBT shown in
Fig. 3 (iii) is able to capture a context-specific inde-
pendence: the potential does not depend on B when
A = a1. The BPT in Fig. 3 (ii) captures the previ-
ous independence, but it is also able to capture other
fine-grained independences. For example, the poten-
tial does not depend on B when A = a2 and B 6= b3

(B = b1 or B = b2). This independence cannot be
represented with the SPT of Fig. 3 (iii).
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Figure 3: Potential P (A|B) as table, BPT, and SPT

3.3 Constructing standard and binary trees

In [20] and [8] we have proposed a methodology for
constructing a SPT T or a BPT BT from a potential
p. These methods were inspired by the methods for
inducing classification trees, such as Quinlan’s ID3
algorithm [18], which builds a decision tree from a set
of examples. But the measure used as the splitting
criterion in SPTs and BPTs was specifically adapted
to probabilities. Here we summarize the procedure
for BPTs. For SPTs, a similar procedure is used.

Let p be a potential for a set of variables XI . It is
generally possible to obtain several BPTs for p, de-
pending on the order assigned to the variables of XI

in the internal nodes of the tree, and the distribution
at each internal node of the available variable states
over its outgoing arcs.

The process begins with a BPT BT 0 with only one
node (a leaf node) labelled with the average of the
potential values: Lt =

∑
xI∈ΩXI

p(xI)/|ΩXI
|.

A greedy step is then applied successively until we
obtain an exact BPT, or until a given stop criterion is
satisfied. At each step, a new BT j+1 is obtained from

the previous one, BT j . The greedy step requires the
choice of a splitting criterion. It consists of expanding
one of the leaf nodes t in BT j with a terminal tree
(with t rooting the terminal tree, and two new nodes
tl and tr as children of t). Node t will be labelled
with one of the candidate variables. Suppose Ωt

Xi
,

Ωt
Xi

⊆ ΩXi
, is the set of availabe states of Xi at node

t. It is also necessary to distribute the set of available
states Ωt

Xi
of the chosen candidate variable Xi into

two subsets, Ωtl

Xi
and Ωtr

Xi
, to label the two outgoing

arcs (left and right) of t. This process is illustrated
in Fig. 4, where the terminal node t in tree BT j is
expanded using variable B. The set of available states
of B at node t, Ωt

B = {b1, b2, b3} was partitioned into
the sets Ωtl

B = {b1} and Ωtr

B = {b2, b3}. After applying
this process, we say that the leaf node t has been
expanded with variable Xi and the sets of states Ωtl

Xi

and Ωtr

Xi
.

t

a1
A

0.3

a2, a3

b1
B

A

tl tr

a2, a3

b2, b3

a1

0.3

BT j+1

BT j

Figure 4: Expansion of the terminal tree t with B

The choice of the splitting criterion requires a distance
to measure the goodness of the approximation of a
BPT BT for a given potential p. If we denote by
BT and p the probability distributions (normalized
potentials) proportional to BT and p, respectively,
then the distance from a BPT BT to a potential p is
measured using the Kullback-Leibler divergence [16]:

D(p,BT ) =
∑

xI∈ΩXI

p(xI) log
p(xI)

BT (xI)
(9)

Kullback-Leibler’s divergence is always positive or
zero. It is equal to zero if BT provides an exact rep-
resentation of the potential p. It is a standard diver-
gence used in information theory to measure the dif-
ference between two probability distributions. Here
we use it to measure differences between potentials
that are not really probability distributions (they rep-
resents conditional credal sets containing transparent
variables), but experiments show that its use is a good
heuristic procedure applied when reordering the vari-
ables of a tree or when pruning leaf nodes.

In [8] we proposed as splitting criterion to choose the
partition that maximizes the information gain ob-
tained for the current BPT BT j after performing the
mentioned expansion on leaf node t. For SPTs the
information gain is calculated with:



I(t,Xi) = D(p, Tj) − D(p, Tj(t,Xi)) (10)

where Tj(t,Xi) is the SPT Tj after expanding node t
with the variable Xi.

For BPTs the information gain obtained after expand-
ing node t is calculated with:

I(t,Xi,Ω
tl

Xi
,Ωtr

Xi
) = D(p,BT j)

−D(p,BT j(t,Xi,Ω
tl

Xi
,Ωtr

Xi
)) (11)

where BT j(t,Xi,Ω
tl

Xi
,Ωtr

Xi
) is BT j after expanding

node t with variable Xi and a partition of its available
states Ωt

Xi
into sets Ωtl

Xi
and Ωtr

Xi
.

It is immediate to see that I(t,Xi,Ω
tl

Xi
,Ωtr

Xi
) ≥ 0. By

maximizing I(t,Xi,Ω
tl

Xi
,Ωtr

Xi
) in the current greedy

step, we manage to minimize Kullback-Leibler’s dis-
tance to potential p in that step.

The information gain (expressions 10 and 11) ob-
tained by expanding node t, can be efficiently calcu-
lated in SPTs and BPTs (see Proposition 1 in [20, 8]).

The methodology explained in this section for build-
ing a SPT or BPT can also be used to reorder the
variables (or the split sets) of a SPT or BPT resulting
from an operation of combination or marginalization.
This enables us to move the most informative vari-
ables to the upper levels of the tree. So, if a pruning
operation is applied, only the less informative vari-
ables will be removed. The process to reorder a BPT
BT is the same as the one for building a BPT from
a potential p. Here, p is the potential that BT repre-
sents. So, we can build a new BPT applying the same
procedure explained in this section.

3.4 Pruning standard and binary trees

During the inference process it is possible that some
trees have a large size, making it impossible to obtain
any result with the available memory of our computer.
Pruning of SPTs [20] was proposed as a way to con-
trol the size of trees during the propagation process.
This operation has also been extended to BPTs [8].
In this way, we can obtain a result from an inference
algorithm although it will be approximate. Basically,
a pruning in a SPT or BPT consists of replacing a
terminal tree by the average of values that it repre-
sents. For example, if we wish to prune the terminal
tree rooted by node (4) in the BPT of Fig. 3 (ii),
we must replace it by (0.45 + 0.45 + 0.2)/3. In [6]
we demonstrated that the pruned tree obtained with
the previous procedure is the tree that minimizes the

Kullback-Leibler divergence between the exact poten-
tial and all the trees with the same structure as that
pruned tree.

In [20, 8] it is proposed to repeat the pruning process
until the tree contains no terminal tree which infor-
mation loss is under a given threshold ∆. The infor-
mation loss is also calculated with the difference of the
Kullback-Leibler’s distances, before and after pruning
(expressions 10 and 11). The goal of the pruning of
a tree involves detecting leaves that can be replaced
by one value without a big increment in Kullback-
Leibler’s divergence of the potential represented by
that tree, before and after pruning.

Again, the information loss can be locally computed
at node t in the current SPT or BPT.

4 Propagating credal sets using

binary probability trees

The simpler approximate algorithm for propagating
credal sets using SPTs is based on the Variable Elim-
ination algorithm [11]. VE is one of the most pop-
ular algorithms for computing a posteriori informa-
tion in probabilistic graphical models using local com-
putations. It was independently proposed by Shafer
and Shenoy [21], Zhang and Poole [22] and Dechter
[15]. The input of this algorithm is a set of potentials
and a queried variable. It iteratively eliminates vari-
ables from the set of potentials by using combination
and marginalization until only the queried variable
remains in the set of potentials.

In this paper, we propose to use also the VE algorithm
to propagate in CNs, but using BPTs (see Algorithm
1) to represent the credal sets K(Xi|Πi). In CNs,
all the variables should be removed (by marginaliza-
tion) except the queried variable and the transparent
variables (see bellow for an explanation of transpar-
ent variables). Here, the set of potentials is the set
{K(Xi|Πi)} of extensive conditional credal sets in the
CN.

For each Xi, we originally have a collec-
tion of m separately specified credal sets
{K(Xi|π1), . . . ,K(Xi|πm)}, where m is the number
of configurations of Πi. The problem is transformed
into an equivalent one by using a transparent vari-
able Tπi

for each configuration of the parents of
Xi (πi ∈ ΩΠi

). Tπi
will have as many cases as

the number of vertices in the separately specified
credal set K(Xi|πi). Each vertex of the extensive
conditional credal set K(Xi|Πi) can be obtained by
fixing each transparent variable Tπi

to one of its
values. This transformation is equivalent in size to
the one proposed by Antonucci et al. in [1], although



that one requires modifications in the graph of the
CN.

SBTs and BPTs enable an extensive conditional
credal set K(Xi|Πi) to be represented efficiently when
it comes from m separately specified credal sets
{K(Xi|π1), . . . ,K(Xi|πm)} and with a single data
structure (the necessary space for the tree is propor-
tional to the sum of the necessary spaces for the m
local trees). In Fig. 5, we can see one example where
a BPT represents the extensive conditional credal set
K(X|Y ) associated to the two separately specified
credal sets K(X|Y = y1) and K(X|Y = y2). In the
BPT in Fig. 5, we can obtain the extreme points of
K(X|Y ) by fixing Ty1

and Ty2
to each one of its val-

ues. For example, if the BPT is restricted to Ty1
= t1y1

and Ty2
= t2y2

, we obtain a new BPT that gives us the
extreme point of K(X|Y ) associated to p1 and q2.
The tree avoids repetition of probability values, re-
ducing the space necessary with respect to the table
representation.
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Figure 5: A binary probability tree for K(X|Y )

Algorithm 1: Variable Elimination

Input : K = {K(Xi|πi) : i = 1, . . . , n} the set of separately
specified credal sets in the CN; e the set of observed
values, e ∈ ΩE; a variable of interest Xq ,
Xq ∈ X \ E; and ∆ the threshold for pruning

Output: P (xq |e) and P (xq|e) for each xq ∈ ΩXq
, Xq ∈ X \E

1 Get the set SBT of binary trees, building each binary tree
BT i from the credal sets K(Xi|πi), ∀πi ∈ ΩΠi

(as in Figure 5)

2 Transform each BT i into BT
R(e)
i (restrict to evidence)

3 Reorder variables and split sets in every BT i

4 Prune each BT i with the ∆ threshold
5 foreach Y ∈ X \ (E ∪ {Xq}) do

6 Let SY = {BT i|Y ∈ s(BT i)}
7 Calculate BT prod =

Q

BT i∈SY
BT i

8 Calculate BT sum = BT
↓s(BT prod)\Y

prod

9 Reorder variables and split sets in BT sum

10 Prune BT sum using the ∆ threshold
11 SBT = {(SBT \ SY }) ∪ BT sum

12 Calculate BT q =
Q

BT i∈SBT
BT i

13 Get P (xq |e) and P (xq|e) by normalizing the vertices in BT q

In our version of the VE algorithm (Algorithm 1),
each conditional credal set K(Xi|Πi) is represented
with a BPT as in Fig. 5 from the set of separately

specified credal sets {K(Xi|πi),∀πi ∈ ΩΠi
}. This is

done in step 1 of the algorithm. The evidence (if
available) is incorporated with restriction operations
(step 2). Then each tree is reordered (step 3) so that
the most informative variables appear in the upper
levels of the tree, using the procedure described in
Section 3.3. Step 4 consists of pruning the trees using
a given ∆ threshold in order to reduce their sizes as
much as possible. The loop (step 5) deletes a variable
(non-transparent) in each iteration. The combination
of trees containing the variable to be removed is per-
formed in step 7. This operation is made directly over
trees (see [8]). The resulting tree is marginalized to
discard the variable to be removed using marginaliza-
tion (step 8). Again, this operation is made directly
over the tree (see [8]). Steps 9 and 10 reorder the
variables of the tree (see Section 3.3) and prune it re-
spectively. The pruning operation can select any vari-
able (normal or transparent one) in the tree. Finally,
the resulting trees (all of them will be defined only
on the queried variable and on transparent variables)
are combined to produce a single tree (step 12). Fi-
nally the upper and lower bounds for the probability
of the queried variable can be obtained by normaliz-
ing each one of the vertices in BT q (step 13) using
expression 8. The pruning reduces the complexity of
posterior operations. The more transparent variables
are pruned the less vertices appears in the final credal
set obtained with the BPT in step 12 of the algo-
rithm. When a ∆ = 0.0 threshold is used, no variable
will be pruned unless there are context specific inde-
pendences in the potentials. In the worst case, using
∆ = 0.0, the BPT obtained in step 12 corresponds to
a credal set with nv possible vertices.

With respect to the complexity of Algorithm 1, using
∆ = 0.0, if the potentials do not contain any context
specific independence, no pruning will be done, and
so inference is equivalent to make nv propagations
in a BN. This is the worst case. Using values of ∆
greater than 0.0 we can reduce the size of potentials
and so computing times. A theoretical evaluation of
the computational complexity is out of the scope of
this paper.

5 Experiments

In order to compare the performance of SPTs and
BPTs we have used two classical BNs (Alarm [2] and
Insurance [3]). The number of states for the variables
in these networks is maintained as in their original
specifications. These networks contain variables with
more than two states. For each model, we obtained a
CN by randomly generating separately specified con-
ditional credal sets for each variable Xi and each con-
figuration of the parents of Xi. The number of vertices



at each K(Xi|πi) is selected as follows: For a given
percentage of the configurations in ΩΠi

we associated
a given number of vertices in the credal sets K(Xi|πi).
For the rest of configurations we used only one ver-
tex. This allows us to control the potential size of the
strong extension of the CN, so that exact inference is
not too difficult to be done in our computers, in order
to allow the comparison of the error of approximate
inference with respect to the exact one. The process
to randomly select the probabilities for the vertices
at each separately specified credal set K(Xi|πi) is as
follows. When only one vertex must be used we take
the probability values in the original BN. When sev-
eral vertices are used we take as basis the probabil-
ity distribution in the original BN (P (Xi|πi)). If a
value equal to 0.0 is found for a given configuration
of P (Xi|πi), it will be kept for that configuration. If
a value equal to v, v > 0.0, is found, we select a new
uniform random value in the interval [−v, v] (nega-
tive values are converted into positive). The resulting
vertex is then normalized. This procedure do not pro-
duce too much context specific independences in the
resulting potentials, but we must take into account
that these kind of independences are present in our
representation of extensive conditional credal sets by
means of trees. For example, in Fig. 5 the potential
do not depend on Ty2

when Y = y1.

Several experiments have been done using different
variables for each network. In some cases we have
considered that some of the variables of the network
are observed. In Table 2 we show for each experi-
ment (Ex), the chosen variable (Var), the name of the
network, the number of observed variables (|E|), the
number of vertices per credal set (nvpc), the percent-
age of configurations (per) of ΩΠi

that will contain
nvpc vertices, and the potential size of the strong ex-
tension (nv) of the CN. In the calculus of nv we sup-
pose that the barren nodes for the given query have
been removed from the network.

Ex Var Network |E| nvpc per nv

1 Venttube Alarm 0 3 90 354294

2 Expco2 Alarm 0 3 17 177147

3 RiskAversion Insurance 0 3 70 177147

4 DrivHist Insurance 0 3 31.5 177147

5 Venttube Alarm 6 3 12.25 354294

6 DrivHist Insurance 9 3 12 944784

Table 2: Experiments we have done

We have measured the maximum required size of
SPTs and BPTs during the propagation (biggest tree
used in the computations), the mean square error for
the a posteriori bounds of the queried variable and
the running time used by the propagation algorithm.
The mean square error for a queried variable Xq is
measured using the following expression:

v

u

u

t

P

xq∈ΩXq
((P ∗(xq|e) − P (xq|e))2 + (P

∗
(xq|e) − P (xq|e))2)

2 · |ΩXq |

(12)

where P ∗(xq|e, P
∗
(xq|e) are the approximate lower

and upper bounds and P (xq|e, P (xq|e) the exact ones.

These parameters (mean square error, maximum size
and time) are measured running the Algorithm 1 with
several values for the ∆ threshold using SPTs and
BPTs. We have used values for ∆ in the interval
[10−7, 10−2]. Each experiment was run ten times.
Each time, we began randomly generating the proba-
bilities for each credal set. So, average of mean square
error, maximum size and time (in seconds) are calcu-
lated and reported in figures 6 to 11 for the different
experiments. For each experiment, we show the aver-
age mean square error versus largest tree size required
in the two versions of the propagation algorithm (us-
ing SPTs and BPTs) and the average mean square
error versus average time required in the two versions
of the propagation algorithm (using SPTs and BPTs).

As expected with both kind of trees, high values of ∆
cause large errors but require lower computing time
and smaller trees. Small values of ∆ give small errors
but require a high computing time and large trees.

The figures allow to compare propagation with SPTs
and BPTs for each experiment. In some cases, we
can see a noticeable reduction in the size and required
time using BPTs with respect to SBTs: that is, the
same level of error can be achieved with BPTs, but
with a very important reduction in size and time. This
is the case of Experiment 1 for VENTTUBE variable
(4 states) in Alarm network (Fig. 6), Experiment 3
for RiskAversion (4 states) in Insurance network (Fig.
8), Experiment 5 for VENTTUBE variable in Alarm
network using 6 observed variables (Fig. 10). There
are also cases where the performance of SPTs and
BPTs is quite similar. For example, see Experiment
2 for EXPCO2 variable (4 states) in Alarm network
(Fig. 7) or Experiment 6 for DrivHist in Insurance
network using 9 observed variables (Fig. 11).

We have also tried to propagate using tables for repre-
senting the extensive conditional credal sets, like the
one in Table 1, but our computer run out of memory
in all the experiments in about 18 minutes. This is
because a table does not allow to capture the context
specific independences for transparent variables, and
so the size of potentials increases quicker for tables in
the propagation process, even if we do not use prun-
ing in trees. We have also compared the maximum
tree size and computing time. Obviously computing
time increases when bigger trees are used (figures are
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Figure 6: Inference for VENTTUBE in Alarm network (no evidence)
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Figure 7: Inference for EXPCO2 in Alarm network (no evidence)
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Figure 8: Inference for RiskAversion in Insurance network (no evidence)

not includes because of the space).

6 Conclusions

In this paper we have proposed the use of BPTs to
propagate in CNs. BPTs and SPTs make possible
to control the accuracy of the propagation by means

of a given threshold ∆ used for pruning the trees.
The choice of ∆ is a trade-off between accuracy and
computing time. The experiments show that BPTs
offer better performance than SPTs in some cases,
and similar one in other cases. So, we think that
BPTs is a better representation for the potentials of
a CN.
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Figure 9: Inference for DrivHist in Insurance network (no evidence)
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Figure 10: Inference for VENTTUBE in Alarm network (evidence in 6 variables)
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Figure 11: Inference for DrivHist in Insurance network (evidence in 9 variables)

In the future we intend to perform more exhaus-
tive experiments so we can characterize the situations
where BPTs will be better than SPTs. In this way we
will check the complete list of unobserved variables in
these networks and in other classical BNs. We will
also analyze the impact of the number of vertices in
the conditional credal sets in the performance of BPTs

with respect to SPTs.
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