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Abstract

In this paper we pose the problem of approximating
an arbitrary belief function (b.f.) with a consonant
one, in a geometric framework in which belief func-
tions are represented by the vectors of their basic
probabilities, or “mass space”. Given such a vector
~mb, the consonant b.f. which minimizes an appro-
priate distance function from ~mb can be sought. We
consider here the classical L1, L2 and Lp norms. As
consonant belief functions live in a collection of sim-
plices in the mass space, partial approximations on
each individual simplex have to be computed in order
to find the overall approximation. Interpretations of
the obtained approximations in terms of basic prob-
abilities are proposed, and the results compared with
those of previous approaches, in particular outer con-
sonant approximation.

Keywords. Consonant belief functions, (outer) con-
sonant approximation, mass space, Lp norms.

1 Introduction

The theory of evidence (ToE) [22] is a popular ap-
proach to uncertainty description. Probabilities are
there replaced by belief functions (b.f.s), which as-
sign values between 0 and 1 to subsets of the sam-
ple space Θ instead of single elements. Possibil-
ity theory [10], on its side, is based on possibility
measures, i.e., functions Pos : 2Θ → [0, 1] on Θ
such that Pos(

⋃
iAi) = supi Pos(Ai) for any family

{Ai|Ai ∈ 2Θ, i ∈ I} where I is an arbitrary set index.
Given a possibility measure Pos, the dual necessity
measure is defined as Nec(A) = 1− Pos(Ac).
Necessity measures have as counterparts in the the-
ory of evidence consonant b.f.s, i.e., belief functions
whose focal elements are nested [22]. The problem of
approximating a belief function with a necessity mea-
sure is then equivalent to approximating a belief func-
tion with a consonant b.f. [1, 11, 15, 16]. As possibil-
ities are completely determined by their values on the

singletons Pos(x), x ∈ Θ, they are less computation-
ally expensive than b.f.s, making the approximation
process interesting for many applications. Several au-
thors, such as Yager [25] and Romer [21] amongst
others, have studied the connection between fuzzy
numbers and Dempster-Shafer theory. Klir et al have
published an excellent discussion [20] on the relations
among fuzzy and belief measures and possibility the-
ory. Heilpern [13] has also presented the theoreti-
cal background of fuzzy numbers connected with the
possibility and Dempster-Shafer theories, describing
some types of representation of fuzzy numbers and
studying the notions of distance and order between
fuzzy numbers based on these representations. Caro
and Nadjar [2], instead, have suggested a generaliza-
tion of the Dempster-Shafer theory to a fuzzy valued
measure. The links between transferable belief model
and possibility theory have been briefly investigated
by Ph. Smets in [24].
Dubois and Prade [11], more specifically, have ex-
tensively worked on consonant approximations of be-
lief functions. As belief functions are computation-
ally expensive to work on (at least in a naive way),
mapping them to necessity or possibility measures,
which only depends on their values on singletons, can
greatly reduce the complexity of making inferences
or decisions under uncertainty. Dubois and Prade’s
work has been later considered in [15, 16]. In partic-
ular, the notion of “outer consonant approximation”
has received considerable attention in the past. In-
deed, belief functions admit the following order rela-
tion: b ≤ b′ ⇔ b(A) ≤ b′(A) ∀A ⊆ Θ, called “weak
inclusion”. It is then possible to introduce the no-
tion of “outer consonant approximations” [11] of a
belief function b, i.e., those co.b.f.s such that ∀A ⊆ Θ
co(A) ≤ b(A). Dubois and Prade’s work has been
later extended by Baroni [1] to capacities. In [7] the
author has indeed provided a comprehensive descrip-
tion of the geometry of the set of outer consonant
approximations.

In recent times the opportunity of seeking probabil-



ity or consonant approximations/transformations of
belief functions by minimizing appropriate distance
functions has been explored. The author has himself
introduced the notion of orthogonal projection π[b] of
a belief function onto the probability simplex [3], and
studied consistent approximations of belief functions
induced by classical Lp norms [8] in the space of belief
functions [4]. In [6] he has shown that norm minimiza-
tion can also be used to define families of geometric
conditional b.f.s. Jousselme et al [17] have recently
conducted a nice survey of the similarity measures be-
tween belief functions introduced so far. Other sim-
ilarity measures between belief functions have been
proposed by Shi et al [23], Jiang et al [14], and others
[9, 14, 19]. Many of these measures could be in prin-
ciple employed to define conditional belief functions,
or approximate b.f.s by necessity measures.
Paper outline. In this paper we derive the expres-
sions of all the consonant approximations of belief
functions induced by minimizing Lp distances in the
mass space (with respect to the counting measure on
2Θ). After providing the necessary background on
consonant b.f.s and the approximation problem (Sec-
tion 2), we compute the approximations induced by
L1 (3.1), L2 (3.2) and L∞ (3.3) norms, respectively.
Their interpretation in terms of mass re-assignment
and their relation with outer consonant approxima-
tions are discussed in Section 4, and illustrated in the
significant ternary case.

2 Consonant approximation

Consonant belief functions. We briefly recall here
a few basis definitions. A basic probability assign-
ment (b.p.a.) over a finite set (frame of discern-
ment [22]) Θ is a function mb : 2Θ → [0, 1] on its
power set 2Θ = {A ⊆ Θ} such that mb(∅) = 0
and

∑
A⊆Θmb(A) = 1. Subsets of Θ associated

with non-zero values of mb are called focal elements.
The belief function b : 2Θ → [0, 1] associated with
a basic probability assignment mb on Θ is defined
as: b(A) =

∑
B⊆Amb(B). The plausibility function

(pl.f.) plb : 2Θ → [0, 1], A 7→ plb(A), where plb(A) .=
1−b(Ac) = 1−

∑
B⊆Ac mb(B) =

∑
B∩A 6=∅mb(B), ex-

presses the amount of evidence not against A. A prob-
ability measure is simply a special belief function as-
signing non-zero masses to singletons only (Bayesian
b.f.): mb(A) = 0 |A| > 1. A belief function is said to
be consonant if its focal elements are nested.

Mass vector representations. Given a frame Θ,
each belief function b : 2Θ → [0, 1] is completely spec-
ified by its N − 2 belief values {b(A), ∅ ( A ( Θ},
N

.= 2n (n .= |Θ|), (as b(∅) = 0, b(Θ) = 1 for all
b.f.s) and can therefore be represented as a point of

RN−2 [4]. In the same way, each belief function is
uniquely associated with the related set of mass val-
ues {m(A), ∅ ( A ⊆ Θ} (Θ this time included). It can
therefore be seen also as a point of RN−1, the vector
~mb of its N − 1 mass components:

~mb =
∑
∅(B⊆Θ

mb(B)~mB , (1)

where ~mB is the vector of mass values associated with
the (“categorical”) mass function ~mB assigning all the
mass to a single event B: ~mB(B) = 1, ~mB(A) =
0 ∀A 6= B. Note that in RN−1 ~mΘ = [0, ..., 0, 1]′

and cannot be neglected. However, since the mass
of Θ is determined by all the other masses in virtue
of the normalization constraint, we can also choose
to represent mass vectors as vectors of RN−2 of the
form ~mb =

∑
∅(B(Θmb(B)~mB , in which this time

the component Θ is neglected. We will consider both
representations in the following. The collection M of
points which are valid basic probability assignments
is a simplex 1, which we call mass space. M is the
convex closure2 M = Cl(~mA, ∅ ( A ⊆ Θ).

The consonant complex. In this framework the ge-
ometry of consonant belief functions can be described
in terms of simplicial complexes [12], i.e., collections
Σ of simplices of arbitrary dimensions such that: 1.
if a simplex belongs to Σ, then all its faces of any
dimension belong to Σ; 2. the intersection of any
two simplices is a face of both. Now, the region CO
of consonant belief functions in the belief space is a
simplicial complex [7]. Namely, CO is the union of a
collection of (maximal) simplices, each of them asso-
ciated with a maximal chain C = {A1 ⊂ · · · ⊂ An},
|Ai| = i of subsets of Θ. When the mass of some
element of the maximal chain is zero, the simplicial
coordinate of the associated b.f. is also zero. Analo-
gously, the region of consonant belief functions in the
mass space M will be the simplicial complex:

COM =
⋃

C=A1⊂···⊂An

Cl(~mA1 , · · · , ~mAn).

Binary example. In the case of a frame of dis-
cernment containing only two elements, Θ2 = {x, y},
each b.f. b : 2Θ2 → [0, 1] is completely deter-
mined by its mass values mb(x), mb(y), as mb(Θ) =

1An n-dimensional simplex is the convex closure
Cl(x1, ..., xn+1) of n+1 affinely independent points x1, ..., xn+1

of the Euclidean space Rn. An affine combination of k points
v1, ..., vk ∈ Rm is a sum α1v1 + · · ·+αkvk such that

∑
i αi = 1.

The affine subspace generated by the points v1, ..., vk ∈ Rm

is the set {v ∈ Rm : v = α1v1 + · · · + αkvk,
∑

i αi = 1}. If
v1, ..., vk generate an affine space of dimension k they are said
to be affinely independent.

2Here Cl denotes convex closure: Cl(~m1, ..., ~mk) = {~m ∈
M : ~m = α1 ~m1 + · · ·+ αk ~mk,

∑
i αi = 1, αi ≥ 0 ∀i}.



1 − mb(x) − mb(y) and mb(∅) = 0. We can there-
fore collect them in a vector of RN−2 = R2 (since
N = 22 = 4): ~mb = [mb(x),mb(y)]′ ∈ R2. In this ex-
ample we adopt therefore the N − 2-dimensional ver-
sion of the mass space. Since mb(x) ≥ 0, mb(y) ≥ 0,

Figure 1: The belief spaceM2 for a binary frame is a
triangle in R2 whose vertices are the mass vectors as-
sociated with the categorical belief functions focused
on {x}, {y} and Θ: ~mx, ~my, ~mΘ. Consonant b.f.s live
in the union of the two segments COx = Cl(~mΘ, ~mx)
and COy = Cl(~mΘ, ~my). The unique L1 = L2 con-
sonant approximation and the set of L∞ consonant
approximations (dashed) on COx are also shown.
and mb(x)+mb(y) ≤ 1 we can easily infer that the set
M2 of all the possible basic probability assignments
on Θ2 can be depicted as the triangle in the Carte-
sian plane of Figure 1, whose vertices are the points
~mΘ = [0, 0]′, ~mx = [1, 0]′, ~my = [0, 1]′, which corre-
spond respectively to the vacuous belief function bΘ
(mbΘ(Θ) = 1), the Bayesian b.f. bx with mbx(x) = 1,
and the Bayesian b.f. by with mby (y) = 1. The re-
gion P2 of all Bayesian b.f.s on Θ2 is the diagonal line
segment Cl(~mx, ~my).

Consonant approximations in the binary case.
On Θ2 = {x, y} consonant belief functions can have as
chain of focal elements either {{x},Θ2} or {{y},Θ2}.
Therefore the region CO2 of all the co.b.f.s on Θ2 is
the union of two segments (see Figure 1): CO2 =
COx ∪ COy = Cl(~mΘ, ~mx) ∪ Cl(~mΘ, ~my).
Figure 1 illustrates the Lp consonant approximations
of a given ~mb as well. We can notice that the L1 and
L2 (partial) approximations coincide, and are located
in the barycenter of the set of L∞ approximations,
which form instead a whole interval. Such L1/L2 ap-
proximations leave the mass of {x} unchanged, and

re-assign the mass of {y} (which is not in the chain
{{x}, {x, y}}) to Θ. Such features are retained in the
general case (Section 4).

The consonant approximation problem. Given
a belief function b with basic probability assignment
mb, we call (metric) consonant approximation of a
belief function b induced by a distance function d in
M the b.f.(s) cod[mb] which minimize(s) the distance
d(~mb, CO) between the mass vector ~mb representing
mb and the consonant simplicial complex

cod[mb] = arg min
~mco∈CO

d(~mb, ~mco), (2)

under the condition that such minima exist.

Why use Lp norms. A close relation exists between
consonant belief functions and Lp norms, in particular
the L∞ one. Consonant b.f.s are the counterparts of
necessity measures in the theory of evidence, so that
their plausibility functions are possibility measures.
Possibility measures Pos, in turn, are inherently re-
lated to L∞ as Pos(A) = maxx∈A Pos(x). It makes
therefore sense to conjecture that a consonant trans-
formation obtained by picking as distance function in
the problem (2) one of the classical norms

‖~mb − ~mb′‖L1 =
∑
A⊆Θ

|mb(A)−mb′(A)|,

‖~mb − ~mb′‖L2 =
√∑

A⊆Θ(mb(A)−mb′(A))2,

‖~mb − ~mb′‖L∞ = max
A⊆Θ

{
|mb(A)−mb′(A)|

}
(3)

would be meaningful. In the probabilistic case, in the
belief space B (p[b] = arg minp∈P dist(b, p)), the use of
Lp norms leads indeed to quite interesting results. On
one side, the L2 approximation induces the so-called
“orthogonal projection” of b onto P [3]. On the other,
the set of L1/L∞ probabilistic approximations of b (in
the belief space) coincides with the set of probabilities
dominating b: {p : p(A) ≥ b(A)} (at least in the
binary case).

Other norms. The Lp family of norms is important
and useful also in classical probability theory. Clearly,
however, a number of other norms can be introduced
in the framework of belief functions and used to de-
fine consonant (or Bayesian) approximations. For in-
stance, generalizations to belief functions of the classi-
cal Kullback-Leibler divergence of two probability dis-
tributions P,Q (DKL(P |Q) =

∫∞
−∞ p(x) log(p(x)

q(x) )dx)
or other measures based on information theory such
as fidelity and entropy-based norms [18] can be stud-
ied. Many other similarity measures have indeed been
proposed [9, 14, 19, 23]. The application of similarity
measures more specific to belief functions or inspired
by classical probability to the approximation problem



Figure 2: To minimize the distance of a point from
a simplicial complex, we need to find all the partial
solutions (4) on all the maximal simplices of the com-
plex (empty circles), to later compare these partial
solutions to select a global optimum (black circle).

is an enormous task, of which this paper can be seen
as just a first step.

Distance of a point from a simplicial complex.
As the consonant complex CO is a collection of sim-
plices, solving the consonant approximation problem
involves finding a number of partial solutions

coCLp [mb] = arg min
~co∈COC

‖~mb − ~co‖Lp (4)

(see Figure 2), one for each maximal chain C of sub-
sets of Θ. Then, the distance of ~mb from all such
partial solutions has to be assessed in order to se-
lect a global optimal approximation. Figure 1 shows
the obtained (partial) Lp consonant approximations
onto COx in the binary case. In such a toy example,
coL1 [mb] = coL2 [mb] coincide and are unique, lying on
the barycenter of the set coL∞ [mb] of L∞ approxima-
tions, which instead form a whole interval. Some of
these features are retained in the general case, others
are not. Note also that, in the binary case, consonant
and consistent [8] approximations coincide, and there
is no difference between belief and mass space [6] rep-
resentation. In the rest of the paper we will explicitly
compute the L1, L2, and L∞ consonant approxima-
tions in the mass space and discuss the results.

3 Consonant approximation in M

If we choose the N − 1-dimensional version of the
mass space (see Equation (1)), the mass vector as-
sociated with an arbitrary consonant b.f. co with
maximal chain of focal elements C reads as ~mco =∑
A∈Cmco(A)~mA, so that the difference vector is

~mb− ~mco =
∑
A∈C

(mb(A)−mco(A))~mA+
∑
A6∈C

mb(A)~mA.

(5)

If we instead pick the N − 2-dimensional version of
the mass space, the mass vector associated with the
same, arbitrary consonant b.f. co with maximal chain
C reads as ~mco =

∑
A∈C,A6=Θmco(A)~mA, and the dif-

ference vector is∑
A∈C,A 6=Θ

(mb(A)−mco(A))~mA +
∑
A 6∈C

mb(A)~mA. (6)

3.1 L1 approximation

3.1.1 RN−1 representation

Consider first the RN−1 representation of mass vec-
tors. Given the difference vector (5) its L1 norm
is ‖~mb − ~mco‖L1 =

∑
A∈C |mb(A) − mco(A)| +∑

A 6∈Cmb(A) =
∑
A∈C |β(A)| +

∑
A6∈Cmb(A), where

β(A) .= mb(A)−mco(A) and∑
A∈C

β(A) =
∑
A∈C

(mb(A)−mco(A)) =
∑
A∈C

mb(A)− 1

(7)
so that β(Θ) =

∑
A∈C

mb(A)− 1−
∑

A∈C,A 6=Θ

β(A).

The above norm reads therefore as, as a function of
the variables {β(A), A ∈ C, A 6= Θ},

‖~mb − ~mco‖L1 =
∣∣∣∑
A∈C

mb(A)− 1−
∑

A∈C,A 6=Θ

β(A)
∣∣∣

+
∑

A∈C,A 6=Θ

|β(A)|+
∑
A 6∈C

mb(A).

(8)
Partial approximation. This function has the form∑

i

|xi|+
∣∣∣−∑

i

xi − k
∣∣∣, k ≥ 0 (9)

which has an entire simplex of minima, namely: xi ≤
0 ∀i,

∑
i xi ≥ −k (see [6] for a similar optimization

problem in the geometric conditioning context). The
minima of the L1 norm (8) are therefore given by the
following system of constraints:

β(A) ≤ 0 ∀A ∈ C, A 6= Θ,∑
A∈C,A6=Θ

β(A) ≥
∑
A∈C

mb(A)− 1.

(10)
The solution in terms of the mass of the consonant
approximation reads as:

mco(A) ≥ mb(A) ∀A ∈ C, A 6= Θ,∑
A∈C,A6=Θ

(mb(A)−mco(A)) ≥
∑
A∈C

mb(A)− 1

(11)
where the last constraint reduces to∑
A∈C,A6=Θ

(mb(A)−mco(A)) =

=
∑

A∈C,A6=Θ

mb(A)−
(

1−mco(Θ)
)
≥
∑
A∈C

mb(A)− 1,



i.e., mco(Θ) ≥ mb(Θ). Therefore the solution is
mco(A) ≥ mb(A) ∀A ∈ C.

Vertices and barycenter of the partial approx-
imation. The vertices of the set of approximations
which are the solutions of (10) are given by the vectors
{~βA, A ∈ C} such that

~βA(B) =
{
−
∑
A 6∈Cmb(A) B = A,

0 B 6= A

when A 6= Θ, while ~βΘ = ~0. In terms of masses the
vertices of the set of partial L1 approximations are
the vectors {~mL1

A , A ∈ C} such that

~mL1
A (B) =

{
mb(B) +

∑
A6∈Cmb(A) B = A,

mb(B) B 6= A
(12)

whose barycenter is coL1,N−1[mb](B) = mb(B) +∑
A6∈Cmb(A)

n .

Global approximation. To find the global L1 ap-
proximation on the consonant complex, we need to
find out which component is associated with the min-
imal L1 distance. The partial approximations (11)
onto COC have L1 distance from ~mb given by:∑

A6∈C

mb(A) = 1−
∑
A∈C

mb(A). (13)

Therefore, the component of the consonant complex
at minimal distance is that one associated with the
chain that has maximal mass in the original b.f.

3.1.2 RN−2 representation

In the RN−2 representation of mass vectors, the L1

norm of the difference vector (6) is

‖~mb−~mco‖L1 =
∑

A∈C,A6=Θ

|mb(A)−mco(A)|+
∑
A6∈C

mb(A)

which is obviously minimized by

mco(A) = mb(A) ∀A ∈ C, A 6= Θ. (14)

Again, to find the global L1 approximation on the
consonant complex in RN−2, we need to find the clos-
est simplicial component. As the partial approxima-
tion (14) onto COC has L1 distance from ~mb given as
before by (13), we have the following.

Theorem 1. Given a belief function b : 2Θ → [0, 1]
with b.p.a. mb, the global L1 consonant approxima-
tions of b in the mass space M of dimension RN−1 is
the set of partial approximations

coC
∗

L1,M,N−1[mb] =
{
mco(A) ≥ mb(A) ∀A ∈ C

}
= Cl(~mL1

A , A ∈ C),

with vertices given by Equation (12), associated with
the maximal chain of focal elements which maximizes
the total original mass of the chain

C∗ = arg max
C

∑
A∈C

mb(A).

Its global L1 consonant approximations in the mass
space M of dimension RN−2 is the (unique) partial
approximation coC

∗

L1,M,N−2[mb] such that mco(A) = mb(A) ∀A ∈ C, A 6= Θ,
mco(Θ) = mb(Θ) + 1−

∑
A∈C

mb(A)

associated with the same chain of focal elements.

Not only the two approximations are consistent in the
sense that they have the same chain of focal elements,
but the set of L1 consonant approximations in RN−1

is convex and forms a polytope, one of whose vertices
is indeed the L1 approximation in RN−2.

3.2 L2 approximation

In order to find the L2 consonant approximation(s) it
is convenient to recall that the minimal L2 distance
between a point and a vector space is attained by
the point of the vector space such that the difference
vector is orthogonal to all the generators ~gi of the
vector space:

arg min
~q∈V
‖~p− ~q‖L2 = q̂ ∈ V : 〈~p− q̂, ~gi〉 = 0 ∀i

whenever ~p ∈ Rm, V = span(~gi, i). Hence, in-
stead of minimizing the L2 norm of the difference
vector ‖~mb − ~mco‖L2 we can just impose a condition
of orthogonality between the difference vector itself
~mb − ~mco and each component COC of the consonant
complex. In the two cases RN−1 and RN−2 we will
therefore have two different difference vectors and two
different orthogonality conditions. In the both cases
we need to write:

〈~mb − ~mco, ~mA − ~mΘ〉 = 0 ∀A ∈ C, A 6= Θ. (15)

3.2.1 RN−1 representation

In the N − 1 dimensional mass space, however, the
vector ~mA − ~mΘ is such that ~mA − ~mΘ(B) = 1 if
B = A, ~mA − ~mΘ(B) = −1 if B = Θ, 0 otherwise.
Hence, the orthogonality condition becomes

β(A)− β(Θ) = 0 ∀A ∈ C, A 6= Θ.

Partial approximation. By Equation (7) β(Θ) =∑
A∈Cmb(A)− 1−

∑
A∈C,A 6=Θ β(A) and the orthogo-

nality condition becomes{
2β(A) + 1−

∑
B∈C

mb(B) +
∑

B∈C,B 6=A,Θ

β(B) = 0



for all focal elements A in the maximal chain C, A 6=
Θ. By substitution it can be proven that the solution
is β(A) =

∑
B∈Cmb(B)−1

n . The mass of the partial L2

consonant approximation is therefore, ∀A ∈ C:

mco(A) = mb(A) +
1−

∑
B∈Cmb(B)
n

. (16)

Global approximation. To find the global approxi-
mation, we need to compute the L2 distance of b from
the closest such partial solution. We have:

‖~mb − ~mco‖2L2
=
∑
A⊆Θ

(mb(A)−mco(A))2

=
(
∑
B 6∈Cmb(B))2

n
+
∑
A6∈C

(mb(A))2,

which is minimized by the component COC that min-
imizes

∑
A 6∈C(mb(A))2.

3.2.2 RN−2 representation

In the RN−2 representation, as ~mΘ = ~0, the orthogo-
nality condition reads as:

〈~mb − ~mco, ~mA〉 = β(A) = 0 ∀A ∈ C, A 6= Θ

so that the L2 partial approximation is given by
mco(A) = mb(A) A ∈ C, A 6= Θ
mco(Θ) = mb(Θ) +

∑
B 6∈C

mb(B).

(17)
The optimal distance is, in this case, ‖~mb− ~mco‖2L2

=∑
A⊆Θ(mb(A) − mco(A))2 =

∑
A6∈C(mb(A))2 +

(
∑
A6∈Cmb(A))2, which is once again minimized by

the maximal chain C∗ = arg minC
∑
A 6∈C(mb(A))2.

Theorem 2. Given a belief function b : 2Θ → [0, 1]
with b.p.a. mb, the global L2 consonant approxima-
tions of b in the mass space M of dimension RN−1 is
the set of partial approximations coC

∗

L2,M,N−1[mb] =

=
{
mco(A) = mb(A) +

1−
∑
B∈C∗ mb(B)
n

}
associated with the maximal chain of focal elements
which minimizes the sum of square masses outside the
chain: C∗ = arg minC

∑
A 6∈C(mb(A))2.

Its global L2 consonant approximations in the mass
space M of dimension RN−2 is the (unique) partial
approximation coC

∗

L1,M,N−2[mb] =

=
{

mco(A) = mb(A) ∀A ∈ C, A 6= Θ,

mco(Θ) = mb(Θ) + 1−
∑
A∈C

mb(A)
}

associated with the same chain of focal elements, and
coincides with the global L1 consonant approximation
in the mass space M of dimension RN−2.

Indeed, in virtue of (17) and (14) all partial L1 and L2

consonant approximations coincide in the mass space
of dimension N − 2.

3.3 L∞ approximation

3.3.1 RN−1 representation

In the N − 1 representation, the L∞ norm of the dif-
ference vector is

‖~mb − ~mco‖L∞ = max
{

max
A∈C
|β(A)|,max

B 6∈C
mb(B)

}
,

β(Θ) =
∑
B∈Cmb(B)− 1−

∑
B∈C,B 6=Θ β(B), so that

|β(Θ)| =
∣∣∣ ∑
B 6∈C

mb(B) +
∑

B∈C,B 6=Θ

β(B)
∣∣∣

and the norm to minimize becomes

‖~mb − ~mco‖L∞ = max
{

max
A∈C,A 6=Θ

|β(A)|,∣∣∣ ∑
B 6∈C

mb(B) +
∑

B∈C,B 6=Θ

β(B)
∣∣∣,max
B 6∈C

mb(B)
}
.

(18)
This is a function of the form

max
{
|x1|, |x2|, |x1 + x2 + k1|, k2

}
(19)

with 0 ≤ k2 ≤ k1 ≤ 1. If |C| = 2, for instance,
x1 = β(A1), x2 = β(A2), k1 =

∑
B 6∈Cmb(B) and

k2 = maxB 6∈Cmb(B). Such a function has two pos-
sible behaviors in terms of its minimal region in the
plane x1, x2.

Case 1. If k1 ≤ 3k2 its contour function has the
form rendered in Figure 3. The set of minimal points
is given by xi ≥ −k2, x1 + x2 ≤ k2 − k1. In the more

Figure 3: Contour function (level sets) and minimal
points (white triangle) of a function of the form (19),
when k1 ≤ 3k2. In the example k2 = 0.4 and k1 = 0.5.
general case of an arbitrary number m−1 of variables
x1, ..., xm−1 such that xi ≥ −k2,

∑
i xi ≤ k2− k1, the

set of minimal points is a simplex with m vertices:



each vertex vi is such that vi(j) = −k2 ∀j 6= i; vi(i) =
−k1 + (m− 1)k2 (obviously vm = [−k2, · · · ,−k2]).
For the norm (18), in the first case

max
B 6∈C

mb(B) ≥ 1
n

∑
B 6∈C

mb(B) (20)

the set of partial L∞ approximations is given by
β(A) ≥ −max

B 6∈C
mb(B) A ∈ C, A 6= Θ∑

B∈C,B 6=Θ

β(B) ≤ max
B 6∈C

mb(B)−
∑
B 6∈C

mb(B)

This is a simplex Cl(~mL∞
Ā

, Ā ∈ C) with vertices
βĀ(A) = −max

B 6∈C
mb(B) A ∈ C, A 6= Ā

βĀ(Ā) = −
∑
B 6∈C

mb(B) + (n− 1) max
B 6∈C

mb(B)

or, in terms of their basic probability assignments,
~mL∞
Ā

(A) = mb(A) + max
B 6∈C

mb(B) A ∈ C, A 6= Ā

~mL∞
Ā

(Ā) = mb(Ā) +
∑
B 6∈C

mb(B)+

−(n− 1) maxB 6∈Cmb(B).
(21)

Note that such quantity is not guaranteed to be posi-
tive, as, for instance, when there exists a single subset
B s.t. mb(B) 6= 0 outside C, ~mL∞

Ā
(Ā) is negative un-

less n ≤ 2. The barycenter of this simplex can be
computed as follows:

mL∞(A) =

∑
Ā∈C

~mL∞
Ā

(A)

n
= mb(A) +

∑
B 6∈Cmb(B)

n
,

i.e., the L2 partial approximation. The corresponding
minimal L∞ norm of the difference vector is, accord-
ing to (18), equal to maxB 6∈Cmb(B).

Case 2. In the second case k1 > 3k2, or for us

max
B 6∈C

mb(B) <
1
n

∑
B 6∈C

mb(B), (22)

the contour function of (19) is as in Figure 4. There is
a single minimal point, located in [−1/3k1,−1/3k1].
For an arbitrary number m − 1 of variables the min-
imal point is located in [(−1/m)k1, · · · , (−1/m)k1]′,

i.e., for system (18), β(A) = − 1
n

∑
B 6∈C

mb(B) for all

A ∈ C, A 6= Θ or, in terms of b.p.a.s,

mcoL∞ [mb](A) = mb(A) +
1
n

∑
B 6∈C

mb(B) ∀A ∈ C.

The mass of Θ is obtained by normalization.
The corresponding minimal L∞ norm of the difference
vector is 1

n

∑
B 6∈Cmb(B).

Figure 4: Contour function (level sets) and minimal
point (white cross) of a function of the form (19),
when k1 ≥ 3k2. In the example k2 = 0.1 and k1 = 0.5.

3.3.2 RN−2 representation

In RN−2 the L∞ norm of the difference vector is

‖~mb − ~mco‖L∞ = max
∅(A(Θ

|mb(A)−mco(A)|

= max
{

max
A∈C,A 6=Θ

|β(A)|,max
B 6∈C

mb(B)
} (23)

which is minimized by

|β(A)| ≤ max
B 6∈C

mb(B) ∀A ∈ C, A 6= Θ (24)

i.e., in the original mass coordinates,

mb(A)−max
B 6∈C

mb(B) ≤ mco(A) ≤

≤ mb(A) + maxB 6∈Cmb(B) ∀A ∈ C, A 6= Θ.
(25)

According to (23) the corresponding minimal L∞
norm is equal to maxB 6∈Cmb(B).
Clearly, the vertices of the set (24) are all the vectors
of β variables such that β(A) = +/−maxB 6∈Cmb(B)
for all A ∈ C, A 6= Θ. Its barycenter is clearly given
by β(A) = 0 for all A ∈ C, A 6= Θ, i.e.:

mco(B) =
{
mb(B) B ∈ C, B 6= Θ
mb(B) +

∑
B 6∈Cmb(B) B = Θ.

(26)
Summarizing:

Theorem 3. Given a belief function b : 2Θ → [0, 1]
with b.p.a. mb, the partial L∞ consonant approxima-
tions of b in the mass space M of dimension RN−1

can form either a simplex

coC
∗

L∞,M,N−1[mb] = Cl(~mL∞
Ā

, Ā ∈ C)

with vertices (21) when maxB 6∈Cmb(B) ≥
1
n

∑
B 6∈Cmb(B), or a reduce to a single belief

function when the opposite is true, the barycenter of
the above simplex, located on the partial L2 approxi-
mation (16). In both cases, the global L∞ consonant



approximation is associated with the maximal chain
of focal elements:

C∗ = arg min
C

max
B 6∈C

mb(B). (27)

The partial L∞ consonant approximations of b in
the mass space M of dimension RN−2 form the set
coC

∗

L∞,M,N−2[mb] given by Equation (25). Its barycen-
ter reassigns all the mass outside the chain to Θ, leav-
ing the masses of the other elements untouched. The
related global approximations of b are associated with
the same optimal chain (27).

4 Semantics

Let us interpret the results we obtained in terms of
basic probability assignments of the various consonant
approximations, and compare those results with the
outer consonant approximations [11] whose geometry
has been described in [7].

Summary of approximations inM. We can sum-
marize all the results obtained here in the following
tables. In the RN−1 mass representation the partial
Lp approximations are:

coCL1,N−1[mb] = Cl(~mL1
A , A ∈ C)

: mco(A) ≥ mb(A) ∀A ∈ C;
coC
L1,N−1

[mb] = coCL2,N−1[b]

: mco(A) = mb(A) +
∑
B 6∈Cmb(B)

n .
(28)

Concerning the L∞ approximation, if (20) holds

coCL∞,N−1[mb] = Cl(~mL∞
Ā

, Ā ∈ C);
coC
L∞,N−1

[mb] = coCL2,N−1[mb],

while if (22) holds: coCL∞,N−1[mb] = coCL2,N−1[mb].
We can observe the following facts:

1. the set of L1 partial approximation is the set of
inner consonant approximations of b according to the
order relation: b ≥ b′ iff mb(A) ≥ mb′(A);
2. this set is a simplex, whose vertices are obtained
by re-assigning all the mass outside the desired chain
to a single focal element of the chain itself (see (12));
3. its barycenter coincides with the L2 partial ap-
proximation;
4. such approximation redistributes the mass of focal
elements outside the chain on an equal basis to all the
elements of the chain;
5. when the partial L∞ approximation is unique, it
coincides with the L2 approximation and the barycen-
ter of the L1 approximations;
6. when it is not unique, it is a simplex whose ver-
tices assign to each element of the chain but one the
maximal mass outside the chain, with barycenter still
in the L2 approximation.

In particular, points 2. and 4. (and 5.) remind us of
the behavior of geometric conditional belief functions
in the mass space [6]. There,
Proposition 1. Given a belief function b : 2Θ →
[0, 1] and an arbitrary non-empty focal element ∅ (
A ⊆ Θ, the unique L2 conditional belief functions
bL2,M(.|A) with respect to A in M is the b.f. whose
b.p.a. redistributes the mass 1 − b(A) to each focal
element B ⊆ A in an equal way.
The set of L1 conditional belief functions bL1,M(.|A)
with respect to A in M is a simplex whose vertices
re-assign the mass 1 − b(A) of focal elements not in
the conditioning event A to a specific subset of A.

It is tempting to speculate that this is a consistent
behavior of L1 and L2 minimization in the RN−1 rep-
resentation of the mass space.
In the RN−2 mass representation the corresponding
partial Lp approximations are:

coCL∞,N−2[b] : |mco(A)−mb(A)| ≤ max
B 6∈C

mb(B)

∀A ∈ C, A 6= Θ;
coC
L∞,N−2

[b] = coCL1,N−2[b] = coCL2,N−2[b]

:


mco(A) = mb(A), A ∈ C, 6= Θ
mco(Θ) = mb(Θ) +

∑
B 6∈C

mb(B).

(29)
We can notice a number of facts here too:

1. the L∞ (partial) approximation is not unique, and
it falls entirely inside the simplex of admissible con-
sonant b.f. only if each focal element in the desired
chain has mass greater then all focal elements outside
the chain: mb(A) ≤ maxB 6∈Cmb(B);
2. it forms a polytope in the mass space M, whose
size is determined by the largest mass outside the de-
sired maximal chain;
3. the L1 and L2 partial approximations are uniquely
determined, and coincide with the barycenter of the
set of L∞ partial approximations;
4. their semantic is straightforward: all the mass
outside the chain is re-assigned to Θ, increasing the
overall uncertainty of the belief state.

Clearly, approximations in the mass space do not take
into account the contributions of focal elements out-
side the chain to the plausibility of elements of the
chain. A similar phenomenon has been observed in
the case of geometric conditioning [6].

Relation with outer consonant approxima-
tions. Let us recall the main results on the geometry
of outer consonant approximations [7].
Proposition 2. For each simplicial component COC
of the consonant space associated with any maximal
chain of focal elements C = {A1 ⊂ · · · ⊂ An, |Ai| = i}
the set of outer consonant approximation of any b.f.



b is the convex closure OC [b] = Cl(o ~B [b],∀ ~B) of the
co.b.f.s with basic probabilities

mo~B [b](Bi) =
∑

A⊆Θ: ~B(A)=Ai

mb(A), (30)

each associated with an “assignment function” ~B :
2Θ → C, A 7→ ~B(A) ⊇ A which maps each event A to
one of the elements of the chain containing it.

The points (30) are not guaranteed to be proper ver-
tices of the polytope OC [b], as some of them can
be obtained as a convex combination of the others.
The outer approximation produced by the permuta-
tion ρ of singletons which generates the desired chain
Ai = {xρ(1), · · · , xρ(i)}, i = 1, ..., n, i.e.

mcoρ(Ai) =
∑

B⊆Ai,B 6⊂Ai−1

mb(B), (31)

is an actual vertex of OC [b], and corresponds to the
maximal outer consonant approximation with maxi-
mal chain C.
Indeed, by Equation (11), the partial L1 approxima-
tions in RN−1 are such that mco(A) ≥ mb(A) for all
A ∈ C: they are the opposite of outer consonant ap-
proximations, using the natural order relation between
basic probabilities (rather than belief values).
It can be seen in Figure 1 that, in the binary case,
such maximal outer approximation coincides with the
(partial) L1 = L2 = L∞ approximation in the N − 2
representation. It looks unclear what the relationship
should be in the general case.

Comparison on a ternary example. It can there-
fore be useful to compare the different approximations
in the toy case of a ternary frame, Θ = {x, y, z},
to look for insights. Let us assume that we want
the consonant approximation to have maximal chain
C = {{x}, {x, y},Θ}.
Figure 5 illustrates the different partial consonant ap-
proximations in the simplex of consonant belief func-
tions with focal element {{x}, {x, y},Θ}, for a belief
function with masses

mb(x) = 0.2,mb(y) = 0.3,mb(x, z) = 0.5 (32)

We notice that the different simplices of Lp consonant
approximations are distinct, with the L1,N−1 one
(red simplex) falling entire in the consonant simplex
Cl(~mx, ~mx,y, ~mΘ), while most of L∞,N−2 (green
quadrangle) does not. It is interesting to note,
though, they are not unrelated to each other: indeed,
the L1/L2/L∞ consonant approximation in RN−2

(green little square) is a vertex of the simplex of L1

approximation in N − 1.
Even though the case for the unique

L1,N−2/L2,N−2/L∞,N−2 and L1,N−1 approxima-
tions seems compelling, it will be worth exploring in
the near future the behavior of the intersection of the
set of approximations not entirely admissible with
the consonant complex.

According to the formulae at page 8 of [5], the set
of outer consonant approximations of (32) with chain
{{x}, {x, y},Θ} is the convex closure of the points:

~mB1,B2 = [mb(x),mb(y), 1−mb(x)−mb(y)]′,
~mB3,B4 = [mb(x), 0, 1−mb(x)]′,
~mB5,B6 = [0,mb(x) +mb(y), 1−mb(x)−mb(y)]′,
~mB7,B8 = [0,mb(x), 1−mb(x)]′,
~mB9,B10 = [0,mb(y), 1−mb(y)]′,
~mB11,B12 = [0, 0, 1]′,

(33)
These points are plotted as light blue squares in Fig-
ure 5. We can notice many interesting things.

1. the set OC [b] of outer consonant approximations
with chain C is a subset of (the admissible part of)
the set of L∞,N−2 partial approximations; actually,
the barycenter of the latter is a vertex of OC [b];
2. on the contrary, outer approximations and L1,N−1

approximations are mutually exclusive, as it can be
inferred by Equation (11);
3. the maximal outer approximation coρ lies on the
border between the two, where mco(x, y) = mb(x, y).

Several other intriguing facts can be noticed there:
they surely deserve further analysis.

5 Conclusions

In this paper we computed all the consonant approxi-
mations of a belief function induced by minimizing its
Lp distances to the consonant complex, in the mass
space of basic probability vectors. Interpretations for
such approximations are rather natural in terms of
mass redistribution. We compared them with each
other and related them with classical outer consonant
approximations, with the help of an example.
The nature of Lp-induced consonant approximations
in the belief space remains an open problem, as is a
comprehensive analysis of consonant and consistent
approximations induced by distance minimization.
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