
7th International Symposium on Imprecise Probability: Theories and Applications, Innsbruck, Austria, 2011

Dynamic Programming and Subtree Perfectness for Deterministic
Discrete-Time Systems with Uncertain Rewards

Nathan Huntley
Durham University, UK

nathan.huntley@durham.ac.uk

Matthias C. M. Troffaes
Durham University, UK

matthias.troffaes@gmail.com

Abstract

We generalise de Cooman and Troffaes’s sufficient
condition for dynamic programming to work for deter-
ministic discrete-time systems. To do so, we use the
general framework developed by Huntley and Trof-
faes, for decision trees with arbitrary rewards and ar-
bitrary choice functions. Whence, we allow determin-
istic discrete-time systems with arbitrary rewards and
an arbitrary composition operator on rewards. We
show that the principle of optimality reduces to two
much simpler conditions on the choice function. We
establish necessary and sufficient conditions on choice
functions for deterministic discrete-time systems to
be solvable by backward induction, that is, for dy-
namic programming to work. Finally, we also discuss
subtree perfectness—which is a stronger form of dy-
namic consistency—for these systems, and show that,
in general, decision criteria from imprecise probability
theory violate it, even though dynamic programming
may work.

Keywords. Optimal control, dynamic programming,
deterministic discrete-time systems, backward induc-
tion, subtree perfectness, choice function

1 Introduction

In this paper we formalize and extend the results of
de Cooman and Troffaes [4] for deterministic discrete-
time systems with uncertain gains. Such systems are
typical in control theory (see for instance [2, 9]), which
more generally covers the behaviour and control of
dynamic systems. The particular class of systems we
investigate is best illustrated by example: Fig. 1 de-
picts a system that starts at N1, and can reach N4 by
multiple paths. The subject, who controls the system,
can choose the path the system will take. Travelling
down a particular arc gives the subject an associated
reward. For instance, choosing the arc from N1 to N2

will give the subject X. The subject’s task is to find
an optimal path for the system to take.

N1

N2

N3

N4

X

Y

Z

W

V

U

Figure 1: A simple deterministic system.

This is an example of a deterministic discrete-time
system. If all rewards U , . . . , Z are certain, so the sub-
ject knows exactly what she will receive when choos-
ing a particular route, then this is a system with cer-
tain gains. Such systems are easily solved: find a
path with the highest total reward. We instead con-
sider systems with uncertain gains, so U , . . . , Z give
rewards determined by the as yet unknown state of
nature. Such uncertain gains are called gambles. The
overall reward for a particular path is then determined
by the sum of the gambles for all arcs in the path.

This paper deals with normal form decision making.
In general, normal form decisions involve the sub-
ject specifying her decisions in all eventualities, and
then acting upon this specification. For deterministic
discrete-time systems with certain rewards, a normal
form decision is simply a path through the system.
In contrast, the extensive form involves making deci-
sions only when the relevant decision point is reached,
and is expressed differently. We do not investigate the
extensive form in this paper, but caution that the two
forms do not always lead to the same answer.

With uncertain rewards, there are two possible ways
the system can evolve. If the subject receives the re-
ward from a gamble as soon as that arc is chosen, then
she can use this information to choose her next arc.
For example, an informal strategy for Fig. 1 could be
“choose Y , and then choose W if Y has given a large
reward, but choose V otherwise”. Alternatively, the



N1

N2 X + Z
dZ

dX

N3

Y +W

dW

Y + V
dV

Y + U

d
U

d
Y

Figure 2: The decision tree for Fig. 1.

subject may only learn about her actual rewards at
the end of the process, and so could have no strat-
egy more complicated than, say “choose Y , then W”,
because she does not learn of the outcome of Y until
later. The latter set-up, where the true state of nature
is only revealed at the end of the process, is followed
by de Cooman and Troffaes, and so we follow it too.

Normal form decisions are thus very simple (indeed,
exactly the same as for certain rewards), and no con-
cept of conditioning is required. Also, since in this
case everything is completely deterministic until the
final decision has been made, it seems natural to use
the normal form. Note that the concept of normal
form decision making can be criticized [14], however
we do not aim to address these issues in this paper.

We aim to apply known results by Huntley and Trof-
faes [6] on backward induction and subtree perfectness
for decision trees to these deterministic discrete-time
systems, thereby generalizing the work of de Cooman
and Troffaes [4]. Whence, as a first step, we represent
these systems as decision trees [8, 7, 3]. An example
is given in Fig. 2. In such a tree, square nodes, called
decision nodes, represent points at which the subject
must choose an arc. The circular nodes, called chance
nodes represent points at which the consequence is
determined by the state of nature. For completeness,
Fig. 3 ought to have arcs leading from the chance
nodes to terminal reward nodes, representing the re-
wards given by the gambles for particular states of
nature. Since we have not explicitly defined the gam-
bles, this final layer of nodes has been omitted.

This representation can be simplified to a form of de-
cision tree more suited for the special structure of the
problem at hand. In this representation, which we
call a deterministic system tree, there are only two
types of nodes: decision nodes and terminal nodes.
All branches end with a terminal node, and all ter-
minal nodes appear at the end of branches. Every

N1

N2

Z

X

N3

W

V

U

Y

Figure 3: The deterministic system tree for Fig. 1.

arc corresponds to a decision, and each arc has an
associated gamble. The deterministic system tree for
Fig. 1 is shown in Fig. 3. It must be emphasised that,
although gambles are acquired upon choosing a deci-
sion arc, their value is not discovered until the termi-
nal node is reached. Therefore there is no learning or
conditioning involved in this model.

This tree is clearly much more similar to the descrip-
tion of the system. Indeed, normal form decisions
for deterministic system trees are again just paths
through the tree. How do we find the optimal paths?
Following [4], we will use choice functions on gambles.
Such choice function returns, for every set of gambles,
a subset of gambles which are deemed optimal in some
sense (which depends on your choice of choice func-
tion). For example, maximizing expected utility is
one such choice function, but many more exist.

Now, as we saw, each path through the tree has a cor-
responding gamble. Whence, given a choice function,
we can say that a path is optimal whenever its gamble
is optimal in the set of gambles induced by all paths.
Effectively, we end up with a set of optimal paths.

Two questions arise from this form of solution.
The first, addressed by de Cooman and Troffaes, is
whether backward induction (more commonly called
dynamic programming in this field, following Bell-
man [2]) can be used to reach the normal form so-
lution for a given choice function.

The idea of backward induction is simple. We infor-
mally illustrate it on Fig. 3. First, we find which of
W , V , and U are optimal. Suppose this is {V,W}.
Then, we determine which of X+Z, Y +W , and Y +V
is optimal. We end up with the backward induction
solution, say for instance {X + Z, Y + V }.

Backward induction thus returns a set of paths, but
for many choice functions it can give a different set
of paths from the standard normal form solution. In
other words, applying the choice function recursively



stage-by-stage may not give the same result as ap-
plying the choice function on all gambles at once.
De Cooman and Troffaes [4] show that backward in-
duction works if the choice function satisfy Bellman’s
principle of optimality [2] and another property, insen-
sitivity to the omission of non-optimal elements. This
paper contributes a reformulation of these results into
a theorem about trees and paths in the same fashion
as our method for decision trees [6], a proof of neces-
sity as well as sufficiency, and a decomposition of the
principle of optimality into two more basic properties.

The second question is whether the normal form solu-
tion is equivalent to the combination of local solutions.
For instance, in Fig. 3, if W and V are both optimal
at N3, then both Y + W and Y + V should be opti-
mal at N1, or neither should—this was violated in our
earlier example demonstrating backward induction.

This property has been studied extensively for prob-
lems modelled by standard decision trees (see for in-
stance [5, 10, 11, 6]). We call a solution with such a
property subtree perfect (following Selten’s analogous
concept of subgame perfectness [15]). We show that
subtree perfectness for deterministic system trees cor-
responds to a stricter version of Bellman’s principle of
optimality obtained by strengthening set inclusions of
all properties involved to equalities.

The paper is structured as follow. Section 2 intro-
duces necessary notation. Section 3 presents the re-
sults on dynamic programming. Section 4 presents
the results on subtree perfectness. Section 5 provides
a brief summary of the consequences of the results
for the theory of coherent lower previsions. Section 6
concludes the paper.

2 Definitions and Notation

Let Ω be a possibility space, i.e. the set of all possible
states of nature. Elements ω of Ω are called outcomes.
Let R be a set of rewards (results the subject can re-
ceive; they do not have to be desirable rewards). We
assume a binary operator + on R, which we call ad-
dition.1 We assume that R has a left identity element
0, so 0 + r = r for all r ∈ R. We also assume that
r1+r2 = r1+r3 implies r2 = r3; this holds for instance
if every reward r ∈ R has a left inverse −r ∈ R, so
(−r) + r equals the left identity element 0. No other
assumptions about R are required.

A gamble is a function X : Ω → R, with the inter-
pretation that, should ω be the true state of nature,
the gamble X gives the subject the reward X(ω).

1If R = R, then the operator + does not need to have any
resemblance with the usual addition of real numbers, although
it is a convenient and popular choice.

Addition of gambles is defined in the obvious way:
(X + Y )(ω) = X(ω) + Y (ω).

Given a set of gambles X (in this paper, all sets are
assumed to be finite, and non-empty unless otherwise
noted) from which our subject must pick one, how
should she decide? Ideally, she would like to select a
single optimal gamble for every set X , but this may
not always be possible, for instance, because she lacks
information about ω, or because she has no precise
utility over her rewards. She might, at least, be able
to specify a (possibly empty) set of gambles in X she
considers unacceptable. Any gamble not so judged
remains a plausible candidate, and these could be re-
ported as an optimal set. This procedure is repre-
sented by a choice function: a function that maps
sets of options to non-empty subsets.

Definition 1. A choice function on gambles, opt, is
a function that maps each set X of gambles to a non-
empty subset of that set:

∅ 6= opt(X ) ⊆ X .

How do we use the concepts of gambles and choice
functions to solve deterministic system trees? First,
we introduce the concept of normal form decisions,
solutions, and operators.

Definition 2. A normal form decision of a determin-
istic system tree T is a path through T .

Definition 3. The set of all normal form decisions
for a deterministic system tree T is denoted by nfd(T ).

Definition 4. A normal form solution of a determin-
istic system tree T is a non-empty subset of nfd(T ).

The interpretation of a normal form solution is that
the subject may pick any path in this subset and fol-
low it.

Definition 5. A normal form operator norm is a
function that maps each deterministic system tree T
to a normal form solution of T :

∅ 6= norm(T ) ⊆ nfd(T ).

Using these definitions, we can define the set of all
gambles associated with a deterministic system tree.
Recall that any path through a tree has its own gam-
ble, so given the set of all normal form decisions we
can find the set of all gambles for that tree.

Definition 6. The function gamb maps deterministic
system trees to their set of associated gambles (called
normal form gambles):

gamb(T ) =
⋃

U∈nfd(T )

gamb(U).



This gives us a set of gambles to which to apply the
choice function opt. The procedure is as follows: find
the set of normal form gambles, apply the choice func-
tion to find an optimal subset of normal form gambles,
and then list all normal form decisions with gambles
in this optimal subset. This defines a normal form
operator, normopt.

Definition 7. For a choice function opt, the normal
form operator induced by opt is defined for any de-
terministic system tree T by

normopt(T ) = {U ∈ nfd(T ) :

gamb(U) ⊆ opt(gamb(T ))}.

Of course, since U is always a normal form decision,
gamb(U) is always a singleton in this definition. In
particular, the following equality holds:

gamb(normopt(T )) = opt(gamb(T )).

In the above equation, we have used the following
notation: for any set of deterministic system trees T ,

gamb(T ) =
⋃
T∈T

gamb(T ).

To express backward induction in terms of trees, and
to help with many proofs, we introduce a notation for
representing a deterministic system tree as a combi-
nation of smaller deterministic system trees. For any
trees T1, . . . , Tn, we can join them at a decision node,
with the arc from this decision node to Ti correspond-
ing to a gamble Xi, and write this as

n⊔
i=1

XiTi.

Sometimes we need to work with all the possible ways
to join sets of trees T1, . . . , Tn in a similar way. This
is written as

n⊔
i=1

XiTi =

{
n⊔

i=1

XiTi : Ti ∈ Ti

}
.

This allows gamb to be defined recursively:

gamb

(
n⊔

i=1

XiTi

)
=

n⋃
i=1

(Xi + gamb(Ti)),

where we use the notation

X + Y = {X + Y : Y ∈ Y}.

Similarly,

gamb

(
n⊔

i=1

XiTi

)
=

n⋃
i=1

(Xi + gamb(Ti)).

Finally, we sometimes need to restrict deterministic
system trees to particular subtrees, obtained by re-
moving everything before a certain node.

Definition 8. A subtree of a deterministic system
tree T obtained by removal of all non-descendants of
a particular node N , but retaining N , is called the
subtree of T at N and is denoted by stN (T ).

This extends to sets of trees in the usual way:

stN (T ) = {stN (T ) : T ∈ T and N in T}.

Usually, the subtrees we need to use are those whose
roots are immediate successors of T . Therefore we
define ch(T ) to be the set of immediate successors
(i.e. children) of the root node of T .

3 Backward Induction Theorem

We introduce a new normal form operator based on
backward induction, defined recursively. The opera-
tor works by eliminating non-optimal paths in sub-
trees, then bringing all optimal paths to the next
largest subtree, and so on until the root node is
reached. To do so elegantly, we extend normopt to
act upon sets of trees:

normopt(T ) = {U ∈ nfd(T ) :

gamb(U) ⊆ opt(gamb(T ))}.

Definition 9. The normal form operator backopt is
defined for any deterministic system tree T that con-
sists only of a terminal node by

backopt(T ) = T

and for any other deterministic system tree T =⊔n
i=1XiTi by

backopt(T ) = normopt

(
n⊔

i=1

Xi backopt(Ti)

)
.

We are interested in determining when backopt and
normopt coincide. This happens if and only if the
following two properties hold.

Property 1 (Insensitivity of optimality to the omis-
sion of non-optimal elements). For any sets of gam-
bles X and Y,

opt(X ) ⊆ Y ⊆ X ⇒ opt(Y) = opt(X ).

De Cooman and Troffaes [4] explain that this prop-
erty is crucial for backward induction to work. It also
appears in the work of Sen [16], who shows it to be



one “half” of the property of path independence (see
for instance Plott [12]).

The second property was introduced by Bellman [2]
with the following explanation:

An optimal policy has the property that,
whatever the initial state and initial decision
are, the remaining decisions must constitute
an optimal policy with regard to the state
resulting from the first decision.

Note that, in the context of deterministic system
trees, states are simply decision nodes.

Although Bellman states the principle in terms of the
first decision only, it implies that the restriction of an
optimal policy to any subtree must be optimal. We
formalize the principle into the following property.

Property 2 (Principle of Optimality). A normal
form operator norm satisfies the principle of optimal-
ity if, for any deterministic system tree T , and any
node N in at least one element of norm(T ),

stN (norm(T )) ⊆ norm(stN (T )).

Equivalently, for any normal form decision U ∈
norm(T ) and any node N in U ,

stN (U) ∈ norm(stN (T )).

For the particular case of normopt, the above defini-
tion is easily seen to be equivalent to the inclusion for-
mula of de Cooman and Troffaes [4, Definition 13]—
but our notation is far more efficient at expressing it.

Interestingly, we can decompose Property 2, the prin-
ciple of optimality, into two far more basic properties.

Property 3 (Preservation of non-optimality under
the addition of elements). For any sets of gambles X
and Y,

Y ⊆ X ⇒ opt(Y) ⊇ opt(X ) ∩ Y.

This is a type of independence of irrelevant alterna-
tives (see [1, 13]), called property α by Sen [16]. It
is the other “half” of path independence (so we show
that path independence is necessary for dynamic pro-
gramming). Property 3 is not explicitly invoked by
de Cooman and Troffaes, but it is used in a proof for
a particular choice function [4, Proposition 16].

Property 4 (Backward Addition Property). For any
gamble X and any non-empty finite set of gambles Y,

opt(X + Y) ⊆ X + opt(Y).

This property was informally foreseen by de Cooman
and Troffaes (see the discussion of “additivity” [4,
§3.4]). It is similar to properties relating to backward
induction for other decision processes [6, 17].

The proof of equivalence relies on the next lemma.

Lemma 10. Let norm be any normal form operator.
Let T be a consistent decision tree. If,

(i) for all nodes K ∈ ch(T ) such that K is in at least
one element of norm(T ),

stK(norm(T )) ⊆ norm(stK(T )),

(ii) and, for all nodes K ∈ ch(T ), and all nodes L ∈
stK(T ) such that L is in at least one element of
norm(stK(T )),

stL(norm(stK(T ))) ⊆ norm(stL(stK(T ))),

then, for all nodes N in T such that N is in at least
one element of norm(T ),

stN (norm(T )) ⊆ norm(stN (T )).

Proof. If N is the root of T , then the result is imme-
diate. If N ∈ ch(T ), then the result follows from (i).
Otherwise, N must be in stK(T ) for one K ∈ ch(T ).

By assumption, there is a U ∈ norm(T ) that con-
tains N (and of course also K). Therefore, U ∈
stK(norm(T )), and by (i), stK(U) ∈ norm(stK(T )),
and so N is also in at least one element of
norm(stK(T )).

We use the fact that, if U and V are sets of normal
form decisions such that U ⊆ V, then for any node N ,
stN (U) ⊆ stN (V). Combining everything, by (i),

stN (stK(norm(T ))) ⊆ stN (norm(stK(T )))

hence, since N is in at least one element of
norm(stK(T )), by (ii) we have

⊆ norm(stN (stK(T ))),

whence the desired result follows, since
stN (stK(T )) = stN (T ).

Theorem 11. normopt satisfies Property 2 if and
only if opt satisfies Properties 3 and 4.

Proof. “only if”. Let X be a gamble and Y =
{Y1, . . . , Yn} be a set of gambles. Consider the up-
per tree in Fig. 4. If X + Yk ∈ opt(X + Y), then by
Property 2 it follows that Y ∈ opt(Y), hence Prop-
erty 4 holds. Next, consider the lower tree. Let
Y = {Y1 . . . , Ym}, Z = {Z1, . . . , Zn} and suppose



Y1

...
Y
n

X

Y1

...
Y
m

0

Z1

...
Z
n

0

Figure 4: Decision trees for Theorem 11.

Y ∩ Z = ∅. Now let X = Y ∪ Z. By Property 2
we know that if Y ∈ Y ∩ opt(X ), then Y ∈ opt(Y),
hence Property 3 holds.

“if”. We proceed by structural induction. Let T be a
deterministic system tree. The base step, to show the
result when T consists of a terminal node only, is triv-
ial. The inductive step is to suppose that Property 2
holds for every stK(T ) where K ∈ ch(T ), and then
show that Property 2 holds for T . By Lemma 10, we
need only show that for every K ∈ ch(T ) that is in at
least one element of normopt(T ),

stK(normopt(T )) ⊆ normopt(stK(T )).

So, the proof is established if we can show that, for
every U ∈ normopt(T ) passing through K ∈ ch(T ),

stK(U) ∈ normopt(stK(T )). (1)

We now express this in terms of gambles—but first
we introduce some notation.

Let ch(T ) = {K1, . . . ,Kn}, and K = Kk. Let
gamb(stKi

(T )) = Yi, and let Xi be the gamble corre-
sponding to the arc to Ki. That is,

T =

n⊔
i=1

Xi stKi
(T ).

Recall, U contains the node Kk, so gamb(U) = Xk +
Yk for some Yk ∈ Yk.

Now, because U ∈ normopt(T ), we know that

Xk +Yk ∈ opt(gamb(T )) = opt

(
n⋃

i=1

(Xi +Yi)

)
. (2)

To establish Eq. (1), we must simply show that Yk ∈
opt(Yk).

Indeed. Obviously,

Xk + Yk ⊆
n⋃

i=1

(Xi + Yi).

Applying Property 3,

opt(Xk + Yk) ⊇ opt

(
n⋃

i=1

(Xi + Yi)

)
∩ (Xk + Yk).

However, by Eq. (2), Xk + Yk belongs to the right
hand side, whence, it must also belong to the left hand
side. Now, apply Property 4, to see that indeed Yk ∈
opt(Yk). This completes the inductive step.

We are now in a position to prove a backward induc-
tion theorem. It turns out that we can incorporate an-
other simple concept into this theorem, namely that
of strategic equivalence. Two trees are strategically
equivalent if their set of gambles is the same. We
can show easily that backopt and normopt agreeing is
equivalent to backopt preserving strategic equivalence.

Theorem 12. Let opt be any choice function. The
following conditions are equivalent.

(A) For any deterministic system tree T , it holds that
backopt(T ) = normopt(T ).

(B) For any strategically equivalent deterministic sys-
tem trees, T1 and T2, it holds that

gamb(backopt(T1)) = gamb(backopt(T2)).

(C) opt satisfies Properties 1 and 2.

Lemma 13. If, for all strategically equivalent deter-
ministic system trees T1 and T2, it holds that

gamb(backopt(T1)) = gamb(backopt(T2)),

then opt satisfies Property 1.

Proof. Let X and Y = {Y1, . . . , Yn} be sets of gam-
bles such that opt(X ) ⊆ Y ⊆ X . Let T1 be a deter-
ministic system tree with just one decision node and
gamb(T1) = X . Let T2 be a deterministic system tree
constructed as follows: there is one decision arc with
gamble 0 that leads to T1, and n other decision arcs,
each leading immediately to a terminal node, with
gambles Y1 to Yn. Clearly, gamb(T2) = X . We have

gamb(backopt(T2)) = opt(opt(X ) ∪ Y) = opt(Y).

because opt(X ) ⊆ Y. Since backopt is assumed to pre-
serve strategic equivalence, and T1 and T2 are strate-
gically equivalent by construction, it follows that
opt(Y) = opt(X ), as required.



Lemma 14. If, for all strategically equivalent deter-
ministic system trees T1 and T2, it holds that

gamb(backopt(T1)) = gamb(backopt(T2)),

then normopt satisfies Property 2.

Proof. We show that opt must satisfy Properties 3
and 4 and invoke Theorem 11. We can again use the
two trees from Fig. 4. Let the upper tree be called
T1, and let T2 be a tree with only one decision node
and gamb(T2) = X + Y. Then,

opt(X + Y) = gamb(backopt(T2))

= gamb(backopt(T1))

= opt(X + opt(Y)) ⊆ X + opt(Y),

so Property 4 holds.

Let T1 be the lower tree in Fig. 4, with {Y,Z} a
partition of X . Let T2 have one decision node and
gamb(T2) = X . As assumed, gamb(backopt(T1)) =
opt(opt(Y) ∪ opt(Z)) = opt(X ). So,

opt(X ) ∩ Y = opt(opt(Y) ∪ opt(Z)) ∩ Y
⊆ (opt(Y) ∪ opt(Z)) ∩ Y
= opt(Y) ∩ Y = opt(Y),

so Property 3 holds.

Lemma 15. If T ⊆ U ⊆ V are sets of de-
terministic system trees, opt satisfies Property 1,
and normopt(T ) = normopt(V), then normopt(U) =
normopt(V).

Proof. By assumption, we have that

opt(gamb(V)) = opt(gamb(T )) ⊆ gamb(T )

⊆ gamb(U) ⊆ gamb(V).

Hence, by Property 1,

opt(gamb(T )) = opt(gamb(U)) = opt(gamb(V)).

So,

normopt(U) = {U ∈ U : gamb(U) ⊆ opt(gamb(T ))}
⊇ {U ∈ T : gamb(U) ⊆ opt(gamb(T ))}
= normopt(T )

because U ⊇ T , and

normopt(U) = {U ∈ U : gamb(U) ⊆ opt(gamb(V))}
⊆ {U ∈ V : gamb(U) ⊆ opt(gamb(V))}
= normopt(V)

because U ⊆ V. We conclude that

normopt(T ) ⊆ normopt(U) ⊆ normopt(V).

Now use normopt(T ) = normopt(V).

Proof of Theorem 12. (A) =⇒ (B). Immediate, since
for strategically equivalent trees, normopt(T1) =
normopt(T2) by definition.

(B) =⇒ (C). See Lemmas 13 and 14.

(C) =⇒ (A). We proceed by structural induction.
The base step is trivial. The induction hypothesis is
that, for a T =

⊔n
i=1XiTi, we have normopt(Ti) =

backopt(Ti) for all i. The induction step is to show
that this implies normopt(T ) = backopt(T ).

Let Ki be the root node of Ti. For any i such that Ki

is in at least one element of normopt(T ), we know from
Property 2 that stKi

(normopt(T )) ⊆ normopt(Ti) =
backopt(Ti). If instead Ki is not in at least one ele-
ment of normopt(T ), then nothing from backopt(Ti) is
involved in normopt(T ). Therefore,

normopt(T ) ⊆
n⊔

i=1

Xi backopt(Ti) ⊆ nfd(T ).

Since normopt(nfd(T )) = normopt(T ) and it fol-
lows from Property 1 that normopt(normopt(T )) =
normopt(T ),2 we can use Lemma 15 to conclude that

backopt(T ) = normopt

(
n⊔

i=1

Xi backopt(Ti)

)
= normopt(T ).

4 Subtree Perfectness

Subtree perfectness means that, when a normal form
solution is restricted to a subtree of a deterministic
system tree, it is equal to the solution of the subtree.

Definition 16. A normal form operator norm is sub-
tree perfect if, for any deterministic system tree T ,
and any node N in at least one element of norm(T ),

stN (norm(T )) = norm(stN (T )).

This is just a stronger form of Property 2, and so it is
unsurprising that the necessary and sufficient condi-
tions on opt turn out to be identical apart from having
equalities instead of inclusions.

Property 5 (Intersection property). For any sets of
gambles X and Y such that Y ⊆ X and opt(X )∩Y 6=
∅,

opt(Y) = opt(X ) ∩ Y.
Property 6 (Addition Property). For any gamble X
and any non-empty finite set of gambles Y,

opt(X + Y) = X + opt(Y).

2Use Y = opt(X ) in Property 1.



Note that Property 1 is actually included within Prop-
erty 5 (which is in fact equivalent to saying that opt
defines a total preorder [1]). Another useful reformu-
lation of Property 5 is [16, 6]:

Property 7 (Very strong path independence). For
any sets of gambles X1, . . . ,Xn, let I = {i : Xi ∩
opt(∪ni=1Xi) 6= ∅}. Then,

opt

(
n⋃

i=1

Xi

)
=

n⋃
i∈I

opt(Xi).

Theorem 17. The normal form operator normopt is
subtree perfect for deterministic system trees if and
only if opt satisfies Properties 5 and 6.

Lemma 18. Consider a deterministic system tree
T =

⊔n
i=1XiTi, and any choice function opt. For

each tree Ti, let Ki be its root. Then, Ki is in at least
one element of normopt(T ) if and only if

(Xi + gamb(Ti)) ∩ opt(gamb(T )) 6= ∅. (3)

Proof. Eq. (3) holds if and only if there is a normal
form decision U ∈ nfd(Ti) such that Xi + gamb(U) ⊆
opt(gamb(T )). This is equivalent to there being a
U such that gamb(tXiU) ⊆ opt(gamb(T )). Clearly,
tXiU is a normal form decision of T , and so by def-
inition of normopt, Eq. (3) holds if and only if tXiU
is in normopt(T ), which holds if and only if Ki is in
at least one element of normopt(T ).

Lemma 19. If T =
⊔n

i=1XiTi, and opt is a choice
function satisfying Properties 5 and 6, then

gamb(normopt(T )) =
⋃
i∈I

(Xi + gamb(normopt(Ti)))

(4)
implies

normopt(T ) = nfd

(⊔
i∈I

Xi normopt(Ti)

)
,

where I = {i ∈ {1, . . . , n} : (Xi + gamb(Ti)) ∩
opt(gamb(T )) 6= ∅}.

Proof. We first show that

normopt(T ) ⊇ nfd

(⊔
i∈I

Xi normopt(Ti)

)
.

Consider a normal form decision U ∈
nfd
(⊔

i∈I Xi normopt(Ti)
)
. To show that

U ∈ normopt(T ), we must show that U ∈ nfd(T )
and gamb(U) ⊆ gamb(normopt(T )). The former is
obvious, and the latter is established by Eq. (4):

gamb(U) ⊆
⋃
i∈I

(Xi + gamb(normopt(Ti)))

= gamb(normopt(T )).

Next we show that

normopt(T ) ⊆ nfd

(⊔
i∈I

Xi normopt(Ti)

)
.

Let U ∈ normopt(T ). Let V be U with the root node
removed, that is, U = tXkV for some k. Clearly, V ∈
nfd(Tk). It suffices to show that V ∈ normopt(Tk).
Let {Y } = gamb(V ) and let Y = gamb(Tk). We know
that Xk + Y ∈ gamb(T ), and Y ∈ gamb(Tk). Also,
Xk + Y ⊆ gamb(T ). By Property 5 and Lemma 18,

opt(Xk + Y) = opt(gamb(T )) ∩ (Xk + Y).

By Property 6,

Xk + opt(Y) = opt(Xk + Y),

whence

Xk + opt(Y) = opt(gamb(T )) ∩ (Xk + Y).

We know Xk +Y is in the right hand side, so Xk +Y
is in the left hand side. Therefore Y ∈ opt(Y) and
V ∈ normopt(Tk).

Lemma 20 (Huntley and Troffaes [6, Lemma 17]).
Let norm be a normal form operator. Let T be a de-
terministic system tree. If,

(i) for all nodes K ∈ ch(T ) such that K is in at least
one element of norm(T ),

stK(norm(T )) = norm(stK(T )),

(ii) and, for all nodes K ∈ ch(T ), and all nodes L ∈
stK(T ) such that L is in at least one element of
norm(stK(T )),

stL(norm(stK(T ))) = norm(stL(stK(T ))),

then, for all nodes N in T such that N is in at least
one element of norm(T ),

stN (norm(T )) = norm(stN (T )).

Lemma 21. If normopt is subtree perfect then opt
satisfies Property 5.

Proof. Let X and Y be sets of gambles such that
Y ⊆ X . Let T1 and T2 be deterministic system trees
with exactly one decision node, and gamb(T1) = X ,
gamb(T2) = Y. Let T = T1 t T2 (so the arcs to T1
and T2 have reward 0), and N be the node at the root
of T2. So, gamb(T ) = X . Now, gamb(normopt(T )) =
opt(X ), and gamb(stN (normopt(T ))) = gamb(Y) ∩
opt(X ). By subtree perfectness, Property 5 fol-
lows.



Lemma 22. If normopt is subtree perfect, then opt
satisfies Property 6.

Proof. Let X be a gamble and let Y be a non-empty
finite set of gambles. Let T1 be a deterministic system
tree with exactly one decision node and gamb(T1) =
Y. Let T = tXT1, so gamb(T ) = X + Y. Now,

gamb(normopt(T )) = opt(X + Y)

and

gamb(normopt(T1)) = opt(Y).

By subtree perfectness and the definition of normopt,
we must have that, first, any gamble X + Y ∈
opt(X+Y) must have Y ∈ opt(Y) (else there is a U ∈
normopt(T ) that is non-optimal in T1), and second,
any Y ∈ opt(Y) must have X +Y ∈ opt(X +Y) (else
there is a U ∈ normopt(T1) with tXU non-optimal in
T ). Therefore opt(X + Y) = X + opt(Y).

Proof of Theorem 17. “only if”. Follows from Lem-
mas 21 and 22.

“if”. We proceed by structural induction as usual.
The base step is trivial. The induction hypothesis is
that, for a T =

⊔n
i=1XiTi, we have subtree perfect-

ness at all Ti. If we can show that

gamb(normopt(T )) =
⋃
i∈I

(Xi + gamb(normopt(Ti)))

for I = {i ∈ {1, . . . , n} : (Xi + gamb(Ti)) ∩
opt(gamb(T )) 6= ∅}, then by Lemma 19 and
Lemma 20, subtree perfectness holds for T .

We have

gamb(normopt(T )) = opt

(
n⋃

i=1

(Xi + gamb(Ti))

)

whence by Property 7

=
⋃
i∈I

opt(Xi + gamb(Ti))

whence by Property 6

=
⋃
i∈I

(Xi + opt(gamb(Ti)))

=
⋃
i∈I

(Xi + gamb(normopt(Ti)))

as required.

Property
1 3 4 5 6

E-admissibility X X X X
Maximality X X X X
Γ-maximin X X X

Interval Dominance X X

Table 1: Properties of various choice functions.

5 Imprecise Probability

De Cooman and Troffaes [4, §3.2–3.5] investigate
whether dynamic programming works for four com-
mon choice functions in imprecise probability [18],
namely maximality, E-admissibility, Γ-maximin, and
interval dominance. The first two satisfy all proper-
ties, and the latter two fail Property 4. Γ-maximin
and interval dominance fail because of the non-
additivity of a coherent lower prevision.

For subtree perfectness, none of the choice functions
satisfies all the necessary properties. Property 5 re-
quires a total preorder, and, of the four, only Γ-
maximin is. Since Γ-maximin fails Property 4, it auto-
matically fails Property 6. These results mirror those
for standard decision trees [6]: only maximality and
E-admissibility allow backward induction, and noth-
ing is subtree perfect. A table showing the properties
satisfied by each choice function is shown in Table 1.

As mentioned by de Cooman and Troffaes, Γ-maximin
could satisfy Property 6 for certain lower previsions.
Suppose that Ω is a product of possibility spaces
Ω1, . . . ,Ωm, and the gambles on the ith decision arc in
any path is a gamble on Ωi. If the overall lower previ-
sion P is a suitable independent product of lower pre-
visions P i on the Ωi, then additivity will be satisfied.
We refer to [4, §3.4] for more details and references.

6 Conclusion

In this paper we have investigated dynamic program-
ming for deterministic discrete-time systems with un-
certain gain using normal form operators induced
by choice functions. We have brought the work of
de Cooman and Troffaes into the decision tree setting
of [6]. In doing so, we have extended their Bellman
Equation Theorem [4, Theorem 14] by adding neces-
sity to their sufficiency, allowing arbitrary rewards
(so a utility function over rewards is no longer as-
sumed), and fairly arbitrary addition operators. Also,
we have decomposed Bellman’s principle of optimality
into two much simpler properties.

Further, we have found simple necessary and sufficient
conditions for subtree perfectness, which is a stronger



form of Bellman’s principle. The distinction between
dynamic programming and subtree perfectness is not
often made (see for instance the informal description
of Property 2 by Luenberger [9, p. 419]: this is clearly
subtree perfectness being described).

A likely reason for this lack of distinction is that, un-
der the assumption of a total preorder (a very popular
assumption in decision theory literature) the two con-
cepts become almost identical. We cannot think of a
well-known choice function for any uncertainty model
that satisfies Properties 4 and 5 but not Property 6.
The distinction is much more important with impre-
cise methods, where a major attraction is the ability
to model indecision and incomparability of options.
In such cases, subtree perfectness will always fail.

The key observations are that lack of subtree perfect-
ness is not necessarily a barrier to dynamic program-
ming, but nor is success of dynamic programming
enough to guarantee that one’s normal form solution
is completely well-behaved.

Acknowledgements

The first author is supported by the EPSRC. We
thank both reviewers for their valuable comments and
suggestions.

References

[1] Kenneth J. Arrow. Rational choice functions
and orderings. Economica, 26(102):121–127, May
1959.

[2] R. Bellman. Dynamic Programming. Princeton
University Press, Princeton, 1957.

[3] Robert T. Clemen and Terence Reilly. Making
Hard Decisions. Duxbury, 2001.

[4] G. De Cooman and M.C.M. Troffaes. Dynamic
programming for deterministic discrete-time sys-
tems with uncertain gain. International Journal
of Approximate Reasoning, 39(2-3):257–278, Jun
2005.

[5] P. Hammond. Consequentialist foundations for
expected utility. Theory and Decision, 25(1):25–
78, Jul 1988.

[6] N. Huntley and M. C. M. Troffaes. Character-
izing factuality in normal form sequential deci-
sion making. In Thomas Augustin, Frank P. A.
Coolen, Serafin Moral, and Matthias C. M. Trof-
faes, editors, ISIPTA’09: Proceedings of the Sixth
International Symposium on Imprecise Probabil-
ity: Theories and Applications, pages 239–248,
2009.

[7] D. V. Lindley. Making Decisions. Wiley, London,
2nd edition, 1985.

[8] R.D. Luce and H. Raiffa. Games and Decisions:
introduction and critical survery. Wiley, 1957.

[9] D. G. Luenberger. Introduction to Dynamic Sys-
tems. Wiley, 1979.

[10] M.J. Machina. Dynamic consistency and non-
expected utility models of choice under uncer-
tainty. Journal of Economic Literature, 27(1622-
1688), 1989.

[11] E. F. McClennen. Rationality and Dynamic
Choice: Foundational Explorations. Cambridge
University Press, 1990.

[12] C.R. Plott. Path independence, rationality, and
social choice. Econometrica, 41(6):1075–1091,
Nov 1973.

[13] P. Ray. Independence of irrelevant alternatives.
Econometrica, 41(5):987–991, Sep 1973.

[14] Teddy Seidenfeld. When normal and extensive
form decisions differ. In D. Prawitz, B. Skyrms,
and D. Westerstahl, editors, Logic, Methodology
and Philosophy of Science IX, Proceedings of the
Ninth International Congress of Logic, Method-
ology and Philosophy of Science, volume 134 of
Studies in Logic and the Foundations of Mathe-
matics, pages 451–463. Elsevier, 1995.

[15] R. Selten. Reexamination of the perfectness con-
cept for equilibrium points in extensive games.
International Journal of Game Theory, 4(1):25–
55, Mar 1975.

[16] A. K. Sen. Social choice theory: A re-
examination. Econometrica, 45(1):53–89, 1977.

[17] M. C. M. Troffaes, N. Huntley, and R. Shi-
rota Filho. Sequential decision processes un-
der act-state independence with arbitrary choice
functions. In E. Huellermeier, R. Kruse, and
F. Hoffmann, editors, Information Processing
and Management of Uncertainty in Knowledge-
Based Systems, pages 98–107. Springer, 2010.

[18] P. Walley. Statistical Reasoning with Imprecise
Probabilities. Chapman and Hall, London, 1991.


