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Abstract

For a conjugate likelihood-prior model in the one-

parameter exponential family of distributions, we show

that, by letting the parameters of the conjugate exponential

prior vary in suitable sets, it is possible to define a set of

conjugate priors M that guarantees prior near-ignorance

without producing vacuous inferences. This result is ob-

tained following both a behavioural and a sensitivity analy-

sis interpretation of prior near-ignorance. We also discuss

the problem of the incompatibility of learning and prior

near-ignorance for sets of priors in the one-parameter ex-

ponential family of distributions in the case of imperfect

observations. In particular, we prove that learning and

prior near-ignorance are compatible under an imperfect ob-

servationmechanism if and only if the support of the priors

in M is the whole real axis.

Keywords. Prior near-ignorance, set of distributions, ex-

ponential family of distributions.

1 Introduction

This paper deals with the problem of modelling prior ig-

norance about statistical parameters through a set of prior

distributions M . There are two distinct approaches of this

kind. The first approach, known as Bayesian sensitivity

analysis [2], assumes that there is an ideal prior distribu-

tion π0 which could, ideally, model prior uncertainty. It

is assumed that we are unable to determine π0 accurately

because of limited time or resources. The criterion for in-

cluding a particular prior distribution π in M is that π is a

plausible candidate to be the ideal distribution π0.

The second approach, known as the theory of coherent

lower (and upper) previsions, was developed by Walley

[11]. This approach revises Bayesian sensitivity analysis

by directly emphasizing the upper and lower expectations

(also called previsions) that are generated by M . The up-

per and lower expectations of a bounded real-valued func-

tion (we call it a gamble) g on a possibility space, de-

noted by E(g) and E(g), are respectively the supremum

and infimum of the expectations EP(g) over the probabil-
ity measures P in M (if M is assumed to be closed and

convex,1 it is fully determined by all the upper and lower

expectations). The upper and lower expectations have a be-

havioural interpretation (explained in Section 2), but, con-

trary to the sensitivity analysis approach, there is no spe-

cial commitment to the individual probability distributions

in M . In choosing a set M to model prior near-ignorance,

the main aim is to generate upper and lower expectations

with the property that E(g) = infg and E(g) = supg on

a specific class of gambles of interest g. This means that

the only available information about E(g) is that it belongs
to [infg,supg], which is equivalent to state a condition of

complete prior ignorance about the value of g.

Modeling a state of prior ignorance about the value w of a

random variableW is not the only requirement for M , it

should also lead to non-vacuous posterior inferences. Pos-

terior inferences are vacuous if the lower and upper expec-

tations of all gambles of interest g coincide with the infi-

mum and, respectively, the supremum of g. This means

that our prior beliefs do not change with experience (i.e.,

there is no learning from data).

In [1], following an approach based on the behavioural

interpretation, we have defined a set of minimal proper-

ties that a set M of distributions should satisfy to be a

model of prior near-ignorance that does not lead to vacu-

ous inferences. Furthermore, in the case that the likelihood

model is in the one-parameter exponential family and M

includes the corresponding conjugate exponential priors,

we have also shown that the set of priors M satisfying the

above properties can be uniquely obtained by letting the

parameters of the conjugate exponential prior vary in suit-

able sets.

In this paper, after reviewing the main results of [1],

we show that, for the one-parameter exponential fam-

ily, similar conclusions about the parametrization of M

(which guarantee prior near-ignorance and non-vacuous in-

1Closed and convex in the weak∗ topology, see [11, Sec. 3.6] for more

details.



ferences) can be derived via a sensitivity analysis of the

quantities of interest to the choice of the prior parameters.

We also deal with the problem of imperfect observations.

In [8], it has been proven that the imprecise Beta model

yields vacuous parametric inferences in the case the obser-

vation mechanism is imperfect. It is also shown that learn-

ing and prior near-ignorance are incompatible for the im-

precise Beta model in the case of imperfect observations.2

A question is if the impossibility to learn from imperfect

observations under prior near-ignorance holds in general

for any prior model based on sets of distributions. Here,

considering conjugate likelihood-prior models in the one-

parameter exponential family, we show that learning and

prior near-ignorance are compatible under an imperfect ob-

servationmechanism if and only if the support of the priors

in M is the whole real axis.

2 A Behavioural Interpretation of Prior

Near-Ignorance

The aim of this section is to define which minimal proper-

ties the set of priors M should satisfy in the case where

there is (almost) no prior information about w ∈ W ⊆ R.

Before listing these properties, we discuss the behavioural

interpretation of upper and lower expectations.

By regarding a gamble g : W → R as a random reward,

which depends on the a priori unknown value of w, the

expectation (also called prevision) of g w.r.t. w, i.e., E(g),
represents a subject’s fair price for the function g. This

means that he should be disposed to accept the uncertain

rewards g−E(g)+ ε (i.e., to buy g at the price E(g)− ε)
and E(g)− g+ ε (i.e., to sell g at the price E(g)+ ε) for
every ε > 0. More generally, the supremum acceptable

buying price and the infimum acceptable selling prices for

g need not coincide, meaning that there may be a range

of prices [a,b] for which our subject is neither disposed to
buy nor to sell g at a price k ∈ [a,b]. His supremum ac-

ceptable buying price for g is then his lower expectation

E(g), and it holds that the subject is disposed to accept the
uncertain reward g−E(g)+ ε for every ε > 0; and his in-

fimum acceptable selling price for g is his upper prevision

E(g), implying that he is disposed to accept the reward

E(g)− g+ ε for every ε > 0. A consequence of this inter-

pretation is that E(g) =−E(−g) for every gamble g.

Under this behavioural interpretation, a state of ignorance

about a gamble g is modelled by setting E(g) = infg and

E(g) = supg. This means that our subject is neither dis-

posed to buy nor to sell g at any price k ∈ [infg,supg]. In
other words, our subject is disposed to buy (sell) g only

2Actually the results in [8] are more general and hold for a multivari-

ate prior near-ignorant model defined on a compact set. However, since

the present paper deals with the one-parameter exponential family, in the

following we focus our attention on the restriction of [8] to the imprecise

Beta model.

at a price strictly less (greater) than the minimum (maxi-

mum) reward that he would gain from g. This means that

the available information on w does not allow our subject

to set any meaningful buying or selling price for g, which

is equivalent to stating that our subject is in a state of igno-

rance.

In [11], it is proven that a closed and convex set of prob-

ability distributions can be equivalently characterized by

the lower (or upper) expectation functional that it gener-

ates as the lower (upper) envelope of the expectations ob-

tained from the distributions in such a set. Vice versa,

given a functional E(·) that satisfies some regularity prop-

erties [11, Ch. 2], it is possible to define a family M of

probability distributions that generates the lower expecta-

tion E(g) for any g. This establishes a one-to-one corre-

spondence between closed convex sets of probability dis-

tributions and lower expectations.

In case the available prior information is scarce, it there-

fore seems more natural to define M according to the

behavioural interpretation, i.e., in terms of the upper and

lower expectations it generates [7]. For instance, in prob-

lems where there is (almost) no prior information one

would expect the set M to be “large” in the sense that its

generated upper and lower expectations are relatively far

apart (vacuous or almost vacuous).

Modelling a state of prior ignorance aboutw is not the only

requirement for M , it must also produce non-vacuous

posterior inferences (otherwise it is useless in practice).

Hereafter, inspired by the work in [7], we define a set

of minimal properties that M or, equivalently, the lower

and upper expectations it generates, should satisfy to be

a model of prior ignorance and produce consistent and

meaningful posterior inferences. The first requirement for

M is coherence.

(A.1) Coherence. Prior and posterior inferences based on

M should be strongly coherent [11, Sec. 7.1.4(b)]. Under

the behavioural interpretation, this means that we should

not be able to raise the lower expectation (supremum

acceptable buying price) of a given gamble g taking into

account the acceptable transactions implicit in the other

lower expectation models.

In practice, strong coherence imposes joint constraints

on the prior, likelihood and posterior lower expectation

models, in the sense that, when considered jointly, they

should not imply inconsistent assessments. In [11, Sec.

7.8.1], it is proven that, in the case the prior and likelihood

lower expectation models are obtained as lower envelopes

of standard expectations w.r.t. sets of proper density

functions and the posterior set of densities is obtained

from these sets by element-wise application of Bayes’

rule for density functions, then strong coherence of the



respective lower expectation models is satisfied.3

Besides coherence, other requirements for the set M are

that it should represent the state of prior ignorance about

w, but without producing vacuous posterior inferences.

Thus, M should be large enough to model a state of

prior ignorance w.r.t. a set of suitable gambles (i.e., a

set of gambles of interest G0 w.r.t. which we assess our

state of prior ignorance), but not too large to prevent

learning from taking place. These two contrasting require-

ments are captured by the following two properties for M .

(A.2) G0-prior ignorance. The prior upper and lower

expectations of some suitable set of gambles G0 under M

are vacuous, i.e., E[g] = infg(w) and E[g] = supg(w) for
all g ∈ G0.

(A.3) G -learning. For a chosen set of gambles G ⊇ G0

and for each g ∈ G satisfying E[g]− E[g] > 0, there

exists a finite δ > 0 (possibly dependent on g) such that

for each n ≥ δ and non-empty sequence of observations

yn = (y1, . . . ,yn), at least one of these two conditions is

satisfied:

E[g|yn] 6= E[g], E[g|yn] 6= E[g], (1)

where E[·|yn] and E[·|yn] denote the posterior lower and

upper expectations of g after having observed y1, . . . ,yn.
Furthermore, for each g ∈ G0, (1) must hold for any n> 0.

Property (A.2) states that M should be vacuous a

priori w.r.t. some set of gambles G0, i.e., the lower and

upper expectations of g ∈ G0 respectively coincide with

the infimum and the supremum of g. In case M includes

all possible distributions then (A.2) holds for any function

g. Here, conversely, we require that (A.2) is satisfied for

some subset of gambles G0. The subset of gambles G0

used in (A.2) should include the gambles g w.r.t. which we

state our condition of prior near-ignorance. Furthermore,

the set G0 should be as large as possible to guarantee that

also M is as large as possible, but no too large to be

incompatible with the requirement (A.3) of learning. In

fact, property (A.3) states that M should be non-vacuous

a posteriori for any gamble g ∈ G ⊇ G0, which is a

condition for learning from the observations. The set of

gambles G used in (A.3) should include the gambles g

w.r.t. which we are interested in computing expectations

(i.e., making inferences). The fact that G must include G0

is the only constraint on G , meaning that (A.3) requires

that M is not vacuous w.r.t. all these gambles for which

the prior near-ignorance has been imposed. Moreover, for

these gambles, it is required that (1) holds for any n > 0,

i.e., after one observation the condition of prior-ignorance

must already be left.

3 This holds under standard assumptions about the existence of den-

sity functions and the applicability of Bayes’ rule.

Since M is a model of prior near-ignorance, it is also de-

sirable that the influence of M on the posterior inferences

vanishes with increasing numbers of observations n. This

is captured by the following property.

(A.4) Convergence. For each gamble g ∈ G and

non-empty sequence of observations yn = (y1, . . . ,yn), the
following conditions are satisfied for n→ ∞:

E[g|yn] → E∗[g|yn],

E[g|yn] → E
∗
[g|yn],

(2)

where E∗[g|yn], E
∗
[g|yn] are the posterior lower and upper

expectations obtained as lower envelopes of standard

expectations w.r.t. the posterior densities derived, via

Bayes’ rule, from the likelihood model and the improper

prior density p(w) = 1 for all w ∈ W .

Property (A.4) states that, for n → ∞, M should

give the same lower and upper expectations of g ∈ G as

those obtained from the improper prior density p(w) = 1.

The fact that E∗[g|yn] < E
∗
[g|yn] accounts for the general

case in which the likelihood model is described by a

set of likelihoods (for a single likelihood it would be

E∗[g|yn] = E
∗
[g|yn] = E∗[g|yn]). Although improper

priors produce posteriors which are often incoherent with

the likelihood model, (A.4) does not conflict with the

requirement of coherence in (A.1). In fact (A.4) is a

limiting property that holds only for n→ ∞ (furthermore,

incoherence usually vanishes at the limit). In order to

better understand properties (A.1)–(A.4), we show their

instantiation for the case of the exponential family in

Section 4. Before discussing these results, in the next

section we introduce the exponential families of densities

and review their main properties [4, Ch. 5].

3 Exponential Families

Consider a sampling model where i.i.d. samples of a ran-

dom variable Z are taken from a sample space Z .

Definition 1. A probability density p(z|x), parametrized
by x ∈ X ⊆ R, is said to belong to the one-parameter

exponential family if it is of the form

p(z|x) = f (z)[g(x)]−1 exp(cφ(x)h(z)) , z ∈ Z (3)

where, given f ,h,φ and c, it results that g(x) =
∫

z∈Z
f (z)exp (cφ(x)h(z))dz< ∞. �

Sometimes it is more convenient to rewrite (3) in a differ-

ent form.

Definition 2. The probability density

p(y|w) = k(y)exp(yw− b(w)), y ∈ Ym, (4)

derived from (3) via the transformations y = h(z), Ym =
h(Z ), w = cφ(x), b(w) = ln(g(x)) and k(y) = f (z), is



called the canonical form of representation of the expo-

nential family; w is called the natural (or canonical) pa-

rameter. �

The canonical form has some useful properties. The mean

and variance of Y are given by

E[Y |w] =
db

dw
, E[(Y −EY [Y |w])

2|w] =
d2b

dw2
, (5)

where it has been assumed that d2b
dw2 (w) > 0; from (5)

it follows that db
dw

(w) ∈ Int(Y ) (i.e., interior of Y ) [5],

where Y ⊆ R is the smallest closed or semi-closed set

that includes the sample mean of Y (if it exists, otherwise

Y = Int(Y )). Notice that the domain of the observations

Ym can be discrete or continuous, while Y is always con-

tinuous. In the case of n i.i.d. observations yi = h(zi), it
follows that

p(yn|w) =
n

∏
i=1

p(yi|w) =
n

∏
i=1

k(yi)exp(n(ŷnw− b(w))), (6)

where ŷn =
1
n ∑n

i=1 yi is the sample mean of the yi which,

together with n, is a sufficient statistic of yn for inference

about w under the i.i.d. assumption. Furthermore, by inter-

preting the density function in (6) as a likelihood function

L(w), with yn = (y1, . . . ,yn), we can define the correspond-
ing conjugate prior.

Definition 3. A probability density p(w|n0,y0),
parametrized by n0 ∈ R

+ and y0 ∈ Int(Y ), is said

to be the canonical prior of (4) if

p(w|n0,y0) = k(n0,y0)exp(n0(y0w− b(w))), (7)

where w ∈ W , n0 is the so-called number of pseudo-

observations, y0 is the so-called pseudo-observation and

k(n0,y0) is the normalization constant. �

When W = R, 0 < n0 < ∞ and y0 ∈ Int(Y ), (7) is a
proper density [5]. Some examples of densities conjugate
to a one-parameter exponential (canonical) family and
defined in W = R follow.

Gaussian with known variance: y ∈ Y = R, x ∈ R,
σ2 ∈ R

+,

p(y|x,σ2) ∝ exp
(

− 1
2σ2 (y−x)2

)

∝ exp
(

1
σ2

(

yx− x2

2

))

,

with w= x and b(w) = x2/2. The conjugate prior (7) trans-
formed back to the original domain X is:

p(x|n0,y0) ∝ exp
(

− n0
2
(x− y0)

2
)

,

which is a Gaussian with mean y0 and variance 1/n0.
Binomial-Beta: x ∈ X = (0,1), y ∈ {0,1},

p(y|x) ∝ xy(1− x)(1−y)

= (1− x)exp

(

y ln

(

x

1− x

))

= exp(yw− b(w)) ,

w = ln(x/(1− x)), b(w) = − ln(1− x) = ln(1+ exp(w)).
Considering the change of variable dx = exp(w)/(1 +
exp(w))2dw, the conjugate prior (7) transformed back to

the original domain X is:

p(x|n0,y0) ∝ xn0y0−1(1− x)n0(1−y0)−1

which is a Beta density with n0 = s> 0 and y0 = t ∈ (0,1).

The pair likelihood and conjugate prior in the canonical

exponential family satisfies a set of interesting properties,

most of them are particularly useful to represent the na-

ture of the Bayesian “learning” process. A list of such

properties is given in the following lemmas, whose proof

is omitted (see [4, Ch. 5]).

Lemma 1. For a pair of likelihood and conjugate prior in

the canonical exponential family, it holds that:

(i) the posterior density for w is:

p(w|np,yp) = k(np,yp)exp(np(ypw− b(w))), (8)

where np = n+ n0 and yp =
n0y0+nŷn
n+n0

;

(ii) the predictive density for future observations

(yn+1, . . . ,yn+m) is

p(yn+1, . . . ,yn+m|y1, . . . ,yn) =

m

∏
j=1

k(yn+ j)
k
(

n0+ n, n0y0+nŷn
n+n0

)

k
(

n0+ n+m, n0y0+(n+m)ŷn+m

n+m+n0

) .

(9)

�

Lemma 2. Suppose that the canonical conjugate prior

family is such that p(w|n0,y0) → 0 for w → supW and

w → infW . Then the prior mean of the function db
dw

is

E
[

db
dw

∣

∣

∣
n0,y0

]

= y0 and the posterior mean is:

E

[

db

dw

∣

∣

∣
np,yp

]

=
n0y0+ nŷn

n+ n0
. (10)

�

Notice that p(w|n0,y0)→ 0 forw→ supW andw→ infW

holds for any canonical priors such that W = R, but in

general it is not true for truncated priors, i.e., in the case

W ⊂ R. This is one of the reasons why it has been as-

sumed that W = R. In (5), it has been shown that d
dw

b(w)

is the mean of Y . Hence, d
dw

b(w) is the quantity about

which we will have prior beliefs before seeing the data

y and posterior beliefs after observing the data. Hence,

the results in Lemma 2 are particularly important, because

they provide us with a closed formula for the prior and

posterior mean of d
dw

b(w). For sampling models such that
d
dw

b(w) = x, i.e., linear exponential form (e.g., Gaussian,

Beta and Gamma density), Lemma 2 gives thus a closed

formula for the prior and posterior mean of x.



4 Sets of Conjugate Priors for Exponential

Families

Consider the problem of statistical inference about the real-

valued parameter w from noisy measurements (y1, . . . ,yn)
and assume that the likelihood is completely described by

the following probability density function (PDF) belong-

ing to the exponential family:

n

∏
i=1

p(yi|w) =
n

∏
i=1

k(yi)exp(n(ŷnw− b(w))), (11)

where the parameters of the likelihood, i.e., sample mean

ŷn =
1
n ∑n

i=1 yi and n ∈ R
+, are known (the likelihood can

be modelled by a single PDF). By conjugacy and follow-

ing a Bayesian approach, as prior for w we may consider

the PDF p(w|n0,y0) defined in (7) for a given value of the

parameter y0 and n0. In the case there is not enough in-

formation about w to uniquely determine the values of the

parameters y0 and n0, we can consider the family of priors

p(w|n0,y0) obtained by letting y0 vary inY ′ ⊆ Int(Y ) and
n0 in some set Ay0 ⊆ R

+, which could depend on y0. The

question to be addressed is whether such family of priors

satisfies the properties (A.1)–(A.4) discussed in Section 2.

The answer to this question is given in the next theorem.

Theorem 1. Consider as set of priors M the family of

conjugate priors p(w|n0,y0) with y0 spanning the setY
′ ⊆

Int(Y ), n0 spanning the set Ay0 ⊆ R
+ (with Ay0 possibly

dependent on y0), under the assumptions: Y convex and

W = R. If and only if the following conditions hold:

(a) For each y0 ∈ Y ′ and n0 ∈ Ay0 , it holds that

p(w|n0,y0)→ 0 for w→ supW and w→ infW ;

(b) Y ′ = Int(Y );

(c) Ay0 satisfies the following constraints: 0 < infAy0 ,

supAy0 ≤ min(n0,
c

|y0|
) for each y0 ∈ Int(Y ) and

given parameters n0,c> 0;

then, given the parameters n0 and c, M is the largest set

which satisfies properties (A.1)–(A.4), with G0 = { db
dw

} and

G including sufficiently smooth gambles.4 �

The proof of the theorem can be found in [1, Sec. 4].

Hereafter, we illustrate the intuition behind the theorem.

We distinguish three cases Y = R, Y = [a,∞) (or Y =
(−∞,a]) with a ∈ R, and Y ⊂ R bounded. In the last

two cases w.l.o.g. it can be assumed that Y = [0,∞) (or
Y = (−∞,0]) and, respectively, Y = [0,1] (by shifting

and scaling Y ); since Y has been assumed to be convex,

these three cases account for all the possibilities.

4 With sufficiently smooth gambles, we mean integrable w.r.t. the ex-

ponential family density functions with support in W and continuous on

a neighborhood of the point where the posterior relative to the improper

prior p(w) = 1 concentrates for n→ ∞.

Consider the case in which the observations belong to R

and the likelihood is a Gaussian density with known vari-

ance, so that Y = (−∞,+∞). The conjugate model under

considerations is thus a Gaussian-Gaussian model. In this

case, the set of priors M is equal to:

{

N
(

w;y0,σ
2
0

)

: y0 ∈ (−∞,+∞),

max(1/n0, |y0|/c)< σ2
0 < ∞

}

, (12)

where y0 is the prior mean and σ2
0 = 1/n0 the prior vari-

ance. Hence, M includes all the Gaussian densities with

mean free to vary in R and variance lower bounded by

1/n0 but linearly increasing with |y0|. Notice, in fact, that

if |y0| > c/n0, then σ2
0 ≥ |y0|/c. Hence, considering the

likelihood N (yi;w,σ
2) for i= 1, . . . ,n, the corresponding

set of posteriors is equal to:

{

N
(

w;yp,σ
2
p

)

: yp = σ2
p

(

y0

σ2
0

+
nŷn

σ2

)

,

σ2
p =

(

1

σ2
0

+
n

σ2

)−1

, y0 ∈ (−∞,+∞),

max(1/n0, |y0|/c)< σ2
0 < ∞

}

,

(13)

where yp is the posterior mean. Since yp = (n0y0 +
nŷn)/(n+ n0) then, fixed n0 = 1/σ2

0 , for |y0| → ∞ it fol-

lows that |yp| = |n0y0 + nŷn|/(n+ n0) = |y0| → ∞. Simi-

larly, fixed y0, for n0 → ∞ it follows that |yp| = |y0|. In

other words, n0|y0|= ∞ implies a vacuous posterior mean

and, thus, no learning and no convergence. Theorem 1

states that a necessary and sufficient condition to guaran-

tee near-ignorancewithout preventing learning and conver-

gence to take place is by imposing the constraint:

|n0y0|< c< ∞,

which means that n0 must in general depend on y0. In

this case in fact for |y0| → ∞, it follows that |yp|= |n0y0+
nŷn|/(n+ n0) < ∞. That is, the contribution of y0 to yp
must decrease as |y0| → ∞, otherwise the observations do

not contribute to yp (learning cannot take place). This is es-

sentially the meaning of the constraint |y0|/c< σ2
0 in (13),

i.e., the variance of the Gaussians in M must be greater

than |y0|/c. Furthermore, n0 < ∞ or, equivalently, the vari-

ance must also be greater than zero otherwise the Gaus-

sian density would coincide with a Dirac delta; this is the

reason of the constraint σ2
0 > 1/n0 > 0. Under these con-

straints, it can be verified that yp satisfies:

min

(

−c+ nŷn

n+ n0
,
−c+ nŷn

n

)

≤

yp =
n0y0+ nŷn

n+ n0
≤max

(

c+ nŷn

n+ n0
,
c+ nŷn

n

)

,

(14)

and converges to ŷn (maximum likelihood estimate) for

n → ∞ (convergence property (A.4)). Observe that, for



n0 suitably small, the set of priors M reduces to the fam-

ily of Gaussian priors with infinite variance discussed in [7,

Section 3.3] and the bounds in (14) become approximately

equal to:

−c+ nŷn

n
≤

n0y0+ nŷn

n+ n0
≤

c+ nŷn

n
. (15)

The main difference is that the family of priors defined in

Theorem 1 has been proved to be strongly coherent, while

no proof of coherence is given for the model in [7, Section

3.3]; the coherence of this model is still an open problem.

Consider now the case in which the observations are

counts, i.e., the likelihood is a Poisson distribution, Ym =
N and Y = [0,∞). The conjugate model under consider-

ation is now a Poisson-Gamma model. The set of priors

M transformed back to the original parameter space X

reduces to a set of Gamma densities:

M =
{

g(x|α,β ) : 0< α = n0y0 ≤ c,

0< β = n0 ≤min(n0,c/|y0|)
}

, (16)

where x,y0 ∈ (0,+∞) and g(x|α,β ) ∝ xα−1 exp(−βx) is
the Gamma density with parameters α and β . The set of
posteriors resulting from (16) is:

Mp =
{

g(x|α,β ) : α = n0y0+ nŷn, β = n+ n0,

y0 ∈ (0,+∞), 0< n0 ≤min(n0,c/|y0|)
}

(17)

and the posterior mean is equal to yp = (n0y0+ nŷn)/(n+
n0). Notice again that, because of the constraint n0 ≤
min(n0,c/|y0|) it results that yp is always finite, satisfies

5

nŷn

n+ n0
≤ yp =

n0y0+ nŷn

n+ n0
≤

c+ nŷn

n
,

and converges to ŷn (maximum likelihood estimate) for

n→ ∞.

Consider the case in which the observations are binary, i.e.,

the likelihood is a binomial distribution Ym = {0,1} and

Y = [0,1]. The conjugate model under considerations is

thus a Binomial-Beta model. It can be easily verified that

in this case the set of priors M transformed back to the

original parameter space X reduces to the general Impre-

cise Beta Model (IBM) discussed in [11, Section 5.4.3]:

M =
{

B(x;st,s(1− t)) : t ∈ (0,1),0< s< n0

}

, (18)

where x ∈ (0,1), y0 = t, n0 = s and B(x;α,β ) is the

Beta density with parameters α and β . In this case, it

follows from Theorem 1 that y0 ∈ (0,1) and 0 < n0 ≤

5 Since ŷn ≥ 0, it results that c+nŷn
n

≥ c+nŷn
n+n0

and, thus, c+nŷn
n

is a right

bound for yp.

min(n0,c). Hence, if n0 < c the set of priors in Theo-

rem 1 reduces to (18). In this case, near-ignorance and

learning/convergence are compatible even if n0 does not

depend on y0. In fact, being |y0|< 1< ∞, the product n0y0
is always bounded provided that n0 < n0 < ∞.6 Finally

notice that in the special case s = n0, we obtain the IBM

discussed in [11, Section 5.3.1] and [3].

Observe that the family of priors M in Theorem 1 is com-

pletely determined by the two parameters c> 0 and n0 > 0.

The larger these parameters are the larger the family of pri-

orsM is and, thus, the more conservative are the posterior

inferences. The choice of these parameters is discussed in

[1, Sec. 5].

It is also interesting to compare the set of priors M in

Theorem 1 with another model for near-ignorance, the

Bounded Derivative Model (BDM) [12]. In the BDM,

MBDM includes all continuous proper probability density

functions for which the derivative of the log-density is

bounded by a positive constant. It can be verified that

BDM satisfies all the properties (A1)–(A4), with G0 and G

defined as in Theorem 1. BDM is a non-parametric model

and, in this sense, is more general than the model result-

ing from Theorem 1 that is restricted to the one-parameter

exponential family only. A drawback of this generality is

that inferences with BDM can in general be difficult to

compute [12, Sec. 6], while this is often not the case for

the model resulting from Theorem 1 because of conjugacy.

Conversely, a model for statistical inferences based on a

set of densities belonging to the exponential family is pre-

sented in [9, Ch.4], [10]. The main difference w.r.t. the

present work is that the model in [10] is not a model of

prior near-ignorance, as pointed out by the authors, i.e.,

the set Y ′ in Theorem 1 is chosen in [10] to reflect the

prior information on y0 and, thus, the posterior inferences

depend on this information. Since no constraint between

n0 and y0 is assumed, the model in [10] can also violate

(A.3)–(A.4) in the case Y ′ = Int(Y ), and hence it can

produce vacuous inferences.

5 A Sensitivity Analysis Interpretation of

Prior Near-Ignorance

In Section 2, we have considered an interpretation of prior

near-ignorance in terms of lower and upper expectations,

i.e., behavioural dispositions to buy and sell gambles. In

particular, with the properties (A1)–(A4), we have given

general conditions for coherence, prior near-ignorance,

learning and convergence, which hold for any set of distri-

butions M . Then, in Section 4, we have specialized these

6In [13] the authors propose a functional relationship between n0 and

y0 in the exponential families with a different aim w.r.t. that of the present

paper; that is highlighting prior-data conflict in the case of inference

drawn from a set of informative priors, i.e., near-ignorance is not satis-

fied. In this case, n0 may depend on y0 also in the IBM.



conditions to the case in which M includes densities be-

longing to the one-parameter exponential family and, for

this set of densities, we have shown that (A1)–(A4) are

equivalent to a special choice of the domains for the pa-

rameters of the exponential priors.

An alternative approach is to start directly from the set

of priors M in the one-parameter exponential family and

then to perform a sensitivity analysis of the quantities of

interest (posterior inferences) to the choice of the prior pa-

rameters. This is typically done by deriving the quantities

of interest w.r.t. the parameters of the conjugate priors, and

looking for a set of parameters that sharply changes the in-

ferences.

In this respect, consider a function g( db
dw

)7 and its Taylor

series expansion around the posterior parameter yp, i.e.:

g

(

db

dw

)

= g(yp)+

(

db

dw
− yp

)

g′(yp)

+
1

2

(

db

dw
− yp

)2

g′′(yp)+ . . . (19)

where g′(yp) =
dg

d( dbdw )
|yp and so on for higher order deriva-

tives. In statistical inference, we are interested in comput-

ing the expectation of g or, equivalently, of (19) w.r.t. the

posterior density k(np,yp)exp(np(ypw− b(w))), i.e.:

E[g|yn] =

∫

g

(

db

dw

)

k(np,yp)exp(np(ypw− b(w)))dw

= g(yp)+
1

2
g′′(yp)E

[

(

db

dw
− yp

)2
∣

∣

∣

∣

∣

yn
]

+
1

3!
g′′′(yp)E

[

(

db

dw
− yp

)3
∣

∣

∣

∣

∣

yn
]

+ . . . (20)

where, for short notation, {y1, . . . ,yn} = yn has been in-

troduced. The posterior expectation E[g|yn] depends on
yp = (n0y0+nŷn)/(n+n0) which, in turn, depends on the
prior parameters n0 and y0. The sensitivity of E[g|y

n] to the
prior parameters can be obtained by differentiating E[g|yn]
w.r.t. n0 and y0. However, since the value of n0 may de-

pend on the value of y0 and vice versa, it is more interest-

ing to compute the sensitivity of E[g|yn] to variations of

n0y0. Define n0y0 = r and n0 = n0(r), then

dyp

dr
=

n+ n0− (r+ nŷn)
dn0
dr

(n+ n0)2
. (21)

where n0 depends on r. Thus, it follows that
dE[g|yn]

dr
is

7To simplify the derivations, we have assumed that g is an analytic

function. Although not general, this holds for many gambles g.

equal to

dyp

dr

dg(yp)

dyp
+

1

2

dyp

dr

dg′′(yp)

dyp
E
[

(

db
dw

− yp
)2
∣

∣

∣
yn
]

+
1

2

dyp

dr
g′′(yp)

dE
[

(

db
dw

− yp
)2
∣

∣

∣
yn
]

dyp
+ . . .

(22)

From the relationship between a derivative and its differ-

ence quotient, one gets

|Er+∆[g|y
n]−Er[g|y

n]| ≤

∣

∣

∣

∣

dE[g|yn]

dr

∣

∣

∣

∣

|∆| (23)

where Er+∆[g|y
n] is the expected value of g computed at

n0y0 = r + ∆, Er[g|y
n] is the expected value of g com-

puted at n0y0 = r and ∆ is a scalar such that r + ∆ ∈
[minn0y0,maxn0y0].

Theorem 2. There exists a finite δ > 0 (possi-

bly dependent on g) such that, for each n ≥ δ and

non-empty set of observations y1, . . . ,yn, the difference

maxr,∆ |Er+∆[g|y
n]−Er[g|y

n]| is bounded and converges to
zero for n→ ∞, if max |n0y0|< ∞ and n0 < ∞. �

Proof: If max |n0y0| < ∞, then it is also true that max |∆| =

|maxn0y0−minn0y0| < ∞. With max |∆| being bounded, a con-

dition for maxr,∆ |Er+∆[g|y
n]−Er[g|y

n]| to be bounded is that

|dE[g|yn]/dr|< ∞. Thus, also being n0 < ∞, for n→ ∞ it

follows that yp → ŷn, np → n and the posterior density

p(w|np,yp) becomes a Dirac delta in ŷn. Then it results

that limE
[(

db
dw

−yp

)m ∣

∣

∣
yn
]

= 0 for any m = 1,2, . . . and

limdyp/dr= 0 (since yp = ŷn, the derivative of yp w.r.t. r is null).

Thus, |dE[g|yn]/dr| converges to zero for n→ ∞. Furthermore,

because p(w|np,yp) is always a well-defined PDF if |n0y0| < ∞

and n0 < ∞, by continuity arguments we can also conclude that

there exists a finite δ > 0 such that |dE[g|yn]/dr| is bounded for

any n> δ . �

Thus, we have again proven that max |n0y0| < c and n0 ≤
n0 < ∞ are sufficient conditions for learning and conver-

gence,8 but now following an approach based on sensi-

tivity analysis. Consider the case g
(

db
dw

)

= db
dw

, assume

that p(w|np,yp) is a Beta density and n0 = s > 0. Then,

from (21)–(22) it follows that dyp/dr = dE[g|yn]/dr =
1/(n+ s) (because n0 = s is constant). Since y0 ∈ (0,1),
then 0< n0y0 = r < s and, thus, max |∆|= s, we conclude

that maxr,∆ |Er+∆[g|y
n]−Er[g|y

n]| ≤ s
n+s

, which is exactly
the imprecision (i.e., the difference between the upper and

lower mean) of the IBM.

Consider the Gaussian case and assume n0 ≈ 0. For

g
(

db
dw

)

= db
dw

it results that dyp/dr = dE[g|yn]/dr = 1/n.
In this case the boundedness of max |∆| is ensured if

|n0y0| ≤ c < ∞, which implies max |∆| = 2c. Therefore,

8 Theorem 1 is more general than Theorem 2, since it holds for more

general functions g. Furthermore, the conditions derived there are not

only sufficient but also necessary for (A.1)–(A.4).



(23) becomes maxr,∆ |Er+∆[g|y
n]−Er[g|y

n]| ≤ 2c
n
, which is

the imprecision of (15). Therefore, we have arrived at sim-

ilar conclusions of those in Theorem 1 but via a sensitivity

analysis. This approach allows to give another interpreta-

tion of the imprecision, e.g., s/(n+ s) and 2c/n, in terms

of the maximum value of the product |dE[g|yn]/dr||∆|.

6 Imperfect observations

In real world applications, there is always a probability of

making mistakes during the observation process. Often, if

this probability is small, one assumes that the data are per-

fectly observable in order to use a simple likelihood model

(e.g., a density belonging to the exponential family); doing

so, one implicitly assumes that there is a sort of continuity

between models with perfectly observable data and mod-

els with small probability of errors in the observations. In

other words, one expects that a small error in the mod-

elling of the observation mechanism leads to a small error

in the inference. However, as observed in [8], this may be

not true for inferences derived from a prior near-ignorance

model based on set of distributions. To better understand

this aspect, we introduce the imperfect observation mech-

anism described in [8]. An imperfect observation mech-

anism can be modelled as a two step process: (i) ideal

observations y′1, . . . ,y
′
n are generated according to the like-

lihood L(y′1, . . . ,y
′
n|w); (ii) y

′
1, . . . ,y

′
n are perturbed based

on a distribution p(y1, . . . ,yn|y
′
1, . . . ,y

′
n) and imperfect ob-

servations y1, . . . ,yn are produced. Hence, the likelihood

of imperfect observations can be modelled as:

p(yn|w) =
∫

Y n
m

p(yn|y′n)L(y′n|w) dy′n, (24)

where, for the sake of space, the notation yn =
(y1, . . . ,yn) ∈ Y n

m and y′
n = (y′1, . . . ,y

′
n) ∈ Y n

m has been in-

troduced; p(yn|y′n) = ∏n
i=1 p(yi|y

′
i) is any PDF such that

p(yi|y
′
i) > 0 for all yi,y

′
i ∈ Ym; L(y

′n|w) = ∏n
i=1L(y

′
i|w)

is the likelihood corresponding to the ideal unknown ob-

servations y′i (we assume that it belongs to one-parameter

canonical exponential family of distributions). Since the

observations can also be discrete, p(yn|y′n) and L(y′n|w)
can also be probability mass functions and the integral in

(24) becomes a sum. For the sake of notation, we use the

integral notation for both continuous and discrete case, but

in the latter case (24) becomes:

p(yn|w) = ∑
y′∈Y n

m

p(yn|y′n)L(y′n|w).

Assume we have no prior information about w and we use

the model in Theorem 1 to represent our state of ignorance.

Since p(y1, . . . ,yn|w) might not belong to the exponential

family of distributions, a question to be addressed is if

properties (A3)–(A4) continue to hold also in this case.

The answer is in general negative as shown in [8]. In fact,

assuming the imperfect observation mechanism (24), the

authors prove that, for the Imprecise Beta model (as dis-

cussed in the Introduction, the results in [8] are more gen-

eral), property (A.3) does not hold (no learning from data

takes place) and, consequently also (A.4) does not hold (no

convergence). In this case, the only way to satisfy (A.3)–

(A.4) is to not allow y0 → 0,1; this means that y0 must

vary in [ε,1− ε] with 0 < ε < 0.5. That is, (A.3)–(A.4)

can be satisfied if and only if (A.2) (prior near-ignorance)

does not hold [8]. A similar conclusion is derived in [6]

using more general arguments. This has an important con-

sequence, namely that in this case, the amount of imper-

fection introduced by p(yn|y′n) (as long as it is positive)

does not matter, we cannot be ignorant a priori without

also being vacuous a posteriori.

A further question to be addressed is if this is true for

any conjugate model (e.g., Gaussian-Gaussian, Poisson-

Gamma etc.), whose likelihood is perturbed as described

in (24). In order to prove that, we will use the following

results.

Lemma 3. Consider the prior p(w|n0,y0) =
k(n0,y0)exp(n0(y0w − b(w))). For y0 → supY or

y0 → infY and n0 < ∞, it holds that k(n0,y0) → 0 and

exp(n0(y0w− b(w))) concentrates on the value w∗ such

that db(w)/dw|w=w∗ = y0. �

This can be proven by using the same arguments in the

proof of [1, Cor. 1] (notice that w∗ is a maximum of

p(w|n0,y0)).

Lemma 4. Consider the observational mechanism (24)

and assume that: p(yn|y′n) > 0 for each yn,y′n ∈ Y n
m ,

L(y′n|w) belongs to the exponential family of distribu-

tions and W = R. Define Lgn(w) = ln p(w|n,yn,y0,n0) =
ln(p(yn|w)p(w|n0,y0)/p(y

n)) and assume that for any

well-defined prior p(w|n0,y0), with 0 < n0 < ∞ and y0 ∈
Int(Y ), and for every n there is a strict local maximum mn

of p(w|n,yn,y0,n0) satisfying:

dLgn

dw
(mn) = 0, σ2

n =−

(

d2Lgn

dw2
(mn)

)−1

> 0 (25)

and that mn converges when n→ ∞. Define Bρ(w
∗) = {w :

|w−w∗|< ρ} and assume also that the posterior satisfies:

(c1) σ2
n → 0 for n→ ∞.

(c2) For any ε > 0 there exists δ > 0 and ρ > 0 such that,

for any n> δ and w ∈ Bρ(mn), it holds that:

1− a(ε)≤

d2Lgn
dw2 (w)

d2Lgn
dw2 (mn)

≤ 1+ a(ε), (26)

where a(ε)> 0 and tends to zero for ε → 0.

(c3) For any ρ > 0
∫

Bρ (mn)
p(w|n,yn,y0,n0) dw→ 1, for n→ ∞.



Let φn be equal to (wn − mn)/σn, with wn ∼
p(w|n,yn,y0,n0). Then, given (c1) and (c2), (c3) is

a necessary and sufficient condition for φn to converge in

distribution to φ , where p(φ) = N (φ ;0,1). �

The proof of this lemma can be found in [4, Sec. 5.1].

Essentially, Lemma 4 states that, for large n, (c1),(c2) to-

gether ensure that inside a small neighborhood of mn the

function p(w|n,yn,y0,n0) becomes highly peaked and be-

haves as a normal density. Condition (c3) ensures that the

probability outside any neighborhood of mn becomes neg-

ligible for n→∞. Under these conditions,w has an asymp-

totic posterior limit N (w;mn,σ
2
n ).

Theorem 3. Assume conditions in Lemma 4 hold9 and

that the gambles g ∈ G defined in Theorem 1 are inte-

grable w.r.t. p(w|n,yn,y0,n0). Then, for the set of priors

M in Theorem 1, (A.1) and (A.2) are always satisfied,

while (A.3) and (A.4) hold if and only if Y = R and, thus,

infY =−∞ and supY = ∞. �

Proof: Since coherence and G0-prior ignorance properties do

not depend on the likelihood (for coherence this holds since

p(yn|w) is separately coherent), the fact that (A.1) and (A.2)

are still verified is a direct consequence of Theorem 1.10 First

we prove the necessity of the conditions of the theorem, by

showing that in the case infY 6= −∞ or supY 6= ∞, (A.3)–

(A.4) do not hold. Consider a gamble g ∈ G and the poste-

rior p(w|n,yn,y0,n0) obtained in correspondence of the prior

p(w|n0,y0), which is equal to

p(w|n,yn,y0,n0) =

∫

Y n

p(yn|y′n)p(y′n|w)p(w|n0,y0) dy
′ndw

∫

W

∫

Y n

p(yn|y′n)p(y′n|w)p(w|n0,y0) dy′
ndw

(27)
and can be rewritten as:

∫

Y n

p(yn|y′n)

n

∏
j=1

k(y′j)k(n0,y0)

k(np,y′p)
p(w|np,y

′
p) dy

′ndw

∫

W

∫

Y n

p(yn|y′n)

n

∏
j=1

k(y′j )k(n0 ,y0)

k(np ,y′p)
p(w|np,y′p) dy

′ndw

. (28)

by using the fact that L(y′n|w)p(w|n0,y0) = p(y′n)p(w|np,y
′
p),

with11

p(y′
n
) = p(y′

n
|n0,y0) =

n

∏
j=1

k(y′j)
k (n0,y0)

k
(

np,y′p
) , (29)

where np = n+n0 and y′p = (n0y0+∑n
i=1 y

′
i)/(n+n0).

Consider the case in which Y = [0,1] (i.e, Ym = {0,1} or Ym =
[0,1]). Because of Lemma 3, for y0 → 0 (y0 → 1) and y′1, · · · ,y

′
n 6=

0 (y′1, · · · ,y
′
n 6= 1), it holds that k (n0,y0)/k

(

np,y
′
p

)

→ 0 and,

thus, that p(y′n)→ 0 apart from the case in which y′1 = · · ·= y′n =
0 (y′1 = · · · = y′n = 1) where the ratio k (n0,y0)/k

(

np,y
′
p

)

> 0.

9This means that the imperfect observation mechanism still allows

asymptotic normality to hold for any prior p(w|n0,y0) with fixed 0 <
n0 < ∞ and y0 ∈ Int(Y ).

10More precisely, from Theorem 1, it can be derived that the likelihood

p(yn|w), the set of priors M in the exponential family and the correspond-

ing set of posteriors are strongly coherent.
11Equation (29) can be derived form (9).

Therefore, for y0 → 0, p(y′n) concentrates on y′1, · · · ,y
′
n = 0.

From Lemma 3, it also follows that p(w|np,y
′
p) concentrates on

w∗ such that db(w)/dw|w=w∗ = 0 when y′p → 0. Thus, for any

choice of ε > 0, by continuity arguments, it is possible to find a

y
0
∈ Int(Y ) and δ > 0 such that

∫

Bε (w∗)
p(w|n,yn,y0,n0) dw> 1− ε,

for any 0 < y0 ≤ y
0
and n > δ .12 In other words, for y0 → 0,

the posterior p(w|n,yn,y0,n0) concentrates on w∗. Similarly,

for y0 → 1, the posterior p(w|n,yn,y0,n0) concentrates on w∗

such that db(w)/dw|w=w∗ = 1. Under continuity conditions for

g∈ G in a neighborhood of w∗ (w∗), this implies that, for y0 → 0

(y0 → 1), the posterior expectation of g, i.e., E[g|n,yn,n0,y0],

concentrates on g(w∗) (on g(w∗)).13 Hence, for the continuous

function g = db(w)/dw, since g(w) = y0 and, thus, g(w∗) = 0

and g(w∗) = 1, it follows that E[g|n,yn,y0,n0] = 0 = E[g] for

y0 → 0 and E[g|n,yn,y0,n0] = 1 = E [g] for y0 → 1, i.e., prior

and posterior lower and upper expectations coincide. It can thus

be concluded that (A.3) does not hold (no learning from data)

and, consequently also (A.4) does not hold (no convergence).

Consider now the case Y = [0,+∞) (or Y = (−∞,0]), then if

y0 → 0 the ratio k (n0,y0)/k
(

np,y
′
p

)

→ 0 apart from the case in

which also ŷ′n = 0, where y′p → 0 and k (n0,y0)/k
(

np,y
′
p

)

> 0.

Therefore, for the same arguments of the case Y = [0,1], it fol-

lows that for g= db(w)/dw, E[g|n,yn,n0,y0] = g(w∗) = 0. This

means that E[g|n,yn,n0,y0] = 0, it does not matter the value of yn.

Therefore, we conclude that (A.4) does not hold. (A.3) holds for

some gambles. For instance, for the gamble g= db(w)/dw, (A.3)

holds, since the upper expectation differs from its prior value for

any n> 0 (but the lower expectation is always zero). Hence, the

validity of (A.3) depends on the choice of the set G . In particular,

if G includes a function g which gets its infimum and supremum

for y0 → 0 and, respectively, y0 → limn→∞ ŷ′n 6= 0, then for n→∞

the prior lower and upper expectations coincide respectively with

the posterior lower and upper expectations and, thus, (A.3) does

not hold.

Finally assume that infY = −∞, supY = ∞ and, thus, Y =

(−∞,∞). Consider the parameters np = n+n0 and y
′
p = (n0y0+

∑n
i=1 y

′
i)/(n+ n0) of the posterior density p(w|np,y

′
p). Under

the conditions of Theorem 1, i.e., y0 ∈ Int(Y ) and 0 < n0 <

min(n0,
c
|y0|

), it results that y′p is bounded as in (14). From this

fact it follows that conditions (c1) holds for any y0 ∈ Int(Y ) and

0 < n0 < min(n0,
c
|y0|

) since y′p → y′n for n → ∞. For (c2), by

continuity arguments is always possible to find an ε in the defini-

tion of (c2), for which (26) is satisfied for any y0 ∈ Int(Y ) and

0< n0 <min(n0,
c
|y0|

) and, thus, for any prior in M . It is in fact

sufficient to consider the largest δ for which (26) holds for any

y′p in (14). This upper δ must exist finite, otherwise Lemma 4 can-

not hold. Same considerations hold for (c3). Thus, for any prior

inM satisfying hypotheses of Theorem (1), asymptotic normality

holds. Under continuity conditions for g∈G in a small neighbor-

hood of mn, this implies that also (A.4) and, consequently, (A.3)

12In the case w∗ =−∞, Bε (w
∗) must be intended as the open interval,

e.g., (−∞,w−1/ρ) for some w ∈ W .
13This was also proven in [8, Ths. 11–12].



hold. This proves that infY =−∞ and supY =∞ are necessary

and sufficient conditions for (A.3)–(A.4). �

The theorem states that for a set of Gaussian priors near-

ignorance and learning/convergence are compatible even

in the case of imperfect observations while this is for in-

stance not the case for a set of Beta priors. The main

point is that for the latter, when ŷ′n = 0, y′p = (n0y0 +
nŷ′n)/(n0+ n) can be made as close as desired to the left

boundary of Int(Y ) and, thus, from Lemma 3 the poste-

rior p(w|n′p,y
′
p) can be made as closer as desired to a Dirac

delta. Thus, in the integration in (27) the only meaningful

term is the one relative to the case ŷ′n = 0 and, therefore,

p(w|n, ŷn,n0,y0 = 0) = p(w|n′p,y
′
p = 0). Conversely, in

the Gaussian case, since |n0y0| < ∞ it follows that |y′p| =
|n0y0 + nŷ′n|/(n0+ n) = ∞ only if |ŷ′n| → ∞, but this case

must have probability zero otherwise Lemma 4 would not

be satisfied. This ensures that p(w|n, ŷn,n0,y0) converges
in distribution to N (w;mn,σ

2
n ) for any value of n0,y0 in

Theorem 1. To better understand the peculiarity of the

Gaussian density, assume that p(yi|y
′
i) = N (yi;y

′
i,σ

2
r )

14,

L(y′i|x) = N (y′i;x,σ
2) and consider

p(yn|x) =
∫

y′n∈Y n

n

∏
i=1

N (yi;y
′
i,σ

2
r )N (y′i;x,σ

2) dy′n.

(30)

Since N (yi;y
′
i,σ

2
r )N (y′i;x,σ

2) is equal to

N (yi;x,σ
2+σ2

r )N (y′i;σ
2
s (yi/σ2+ x/σ2

r ),σ
2
s ),

where σ2
s = σ2σ2

r /(σ
2 + σ2

r ), (30) becomes p(yn|x) =

∏n
i=1N (yi;x,σ

2+σ2
r ). Therefore, we can see that in this

case the effect of the imperfect observation mechanism

is just that of increasing the variance of the measurement

noise.

7 Conclusions

This paper has discussed the problem of learning and prior

near-ignorance for sets of priors in the one-parameter ex-

ponential family. In particular, for conjugate likelihood-

prior models in the one-parameter exponential family of

distributions, we show that, by letting the parameters of the

conjugate exponential prior vary in suitable sets, it is pos-

sible to define a set of conjugate priors M which guaran-

tees prior ignorancewithout producing vacuous inferences.

This result is obtained following both a behavioural and a

sensitivity analysis interpretation of prior near-ignorance.

We have also discussed the incompatibility of learning and

prior near-ignorance for sets of priors in the one-parameter

exponential family of distributions in the case of imperfect

observations. In particular, we have shown that learning

and prior near-ignorance are compatible under an imper-

fect observation mechanism provided that the support of

the priors in M is the whole real axis. Future work will

14This satisfies the hypotheses of Theorem 2.

address the following issues: extension of the model to

the multivariate case; extension to more general family of

densities.

Acknowledgements

This work has been partially supported by the Swiss NSF grants

n. 200020-121785/1, 200020-134759/1 and by the Hasler Foun-

dation grant n. 10030.

References

[1] A. Benavoli and M. Zaffalon. A model of prior igno-

rance for inferences in the one-parameter exponential fam-

ily. Available at http://www.idsia.ch/∼alessio/TR2011.pdf.

[2] J. O. Berger. Statistical Decision Theory and Bayesian

Analysis. Springer Series in Statistics, New York, 1985.

[3] J.M. Bernard. An introduction to the imprecise Dirichlet

model for multinomial data. Int. Journal of Approximate

Reasoning, pages 123–150, 2005.

[4] J.M. Bernardo and A.F.M. Smith. Bayesian theory. John

Wiley & Sons, 1994.

[5] P. Diaconis and D. Ylvisaker. Conjugate priors for exponen-

tial families. The Annals of statistics, 7(2):269–281, 1979.

[6] Serafin Moral. Imprecise probabilities for representing ig-

norance about a parameter. International Journal of Ap-

proximate Reasoning, In Press, Corrected Proof, 2010.

[7] L.R. Pericchi and P.Walley. Robust Bayesian credible inter-

vals and prior ignorance. International Statistical Review,

pages 1–23, 1991.

[8] A. Piatti, M. Zaffalon, F. Trojani, and M. Hutter. Limits

of learning about a categorical latent variable under prior

near-ignorance. Int. Journal of Approximate Reasoning,

50(4):597–611, 2009.

[9] E. Quaeghebeur. Learning from samples using coherent

lower previsions. PhD thesis, Ghent University, 2009.

[10] E. Quaeghebeur and G. De Cooman. Imprecise probability

models for inference in exponential families. In Proc. of

ISIPTA’05, pages 287–296, 2005.

[11] P. Walley. Statistical Reasoning with Imprecise Probabili-

ties. Chapman and Hall, New York, 1991.

[12] P. Walley. A bounded derivative model for prior ignorance

about a real-valued parameter. Scandinavian Journal of

Statistics, 24(4):463–483, 1997.

[13] G. Walter and T. Augustin. Imprecision and prior-data con-

flict in generalized Bayesian inference. Journal of Statisti-

cal Theory and Practice, 3:255–271, 2009.


	1 Introduction
	2 A Behavioural Interpretation of Prior Near-Ignorance
	3 Exponential Families
	4 Sets of Conjugate Priors for Exponential Families
	5 A Sensitivity Analysis Interpretation of Prior Near-Ignorance
	6 Imperfect observations
	7 Conclusions

