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Abstract

We discuss prevalence estimation under misclassifica-
tion. That is we are concerned with the estimation of
a proportion of units having a certain property (be-
ing diseased, showing deviant behavior, etc.) from a
random sample when the true variable of interest can-
not be observed, but a related proxy variable (e.g. the
outcome of a diagnostic test) is available. If the mis-
classification probabilities were known then unbiased
prevalence estimation would be possible. We focus on
the frequent case where the misclassification probabil-
ities are unknown but two independent replicate mea-
surements have been taken. While in the traditional
precise probabilistic framework a correction from this
information is not possible due to non-identifiability,
the imprecise probability methodology of partial iden-
tification and systematic sensitivity analysis allows
to obtain valuable insights into possible bias due to
misclassification. We derive tight identification inter-
vals and corresponding confidence regions for the true
prevalence, based on the often reported kappa coeffi-
cient, which condenses the information of the repli-
cates by measuring agreement between the two mea-
surements. Our method is illustrated in several theo-
retical scenarios and in an example from oral health
on prevalence of caries in children.
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gion.

1 Introduction

Many data in social sciences, econometrics, biomet-
rics and epidemiology are complex in the sense that
the available data at hand do not exactly convey the
information one is looking for. Frequently, the vari-
ables of material interest cannot be observed directly
or measured correctly, and one has to be satisfied with
so-called surrogates or proxies, i.e., with somehow re-

lated, but different variables. This problem of non-
ascertainability of certain ideal variables is referred
to as measurement error (ME in the following) if the
variables are continuous and as misclassification (MC)
if they are discrete variables. If one ignores the princi-
pal difference between the ideal variables and their ob-
servable counterparts and just plugs in the surrogates
instead of the ideal variables (‘naive estimation’), then
all the parameter estimators must be suspected to be
severely biased. For the distorting effects of MC in
different applications, see, e.g., [8, 23, 24, 53, 55].

In the last years there has been a considerable
progress how to adjust for measurement error and
misclassification in statistical models. Many correc-
tion procedures are available for consistent estimation
in the presence of ME or MC, see in particular the
monographs [6, 17], or, e.g., [44]. Most of those pro-
cedures are based on precise information about the
process of measurement (and in complex models typ-
ically on Bayesian methods with precise priors, e.g.,
[43]). In the case of an additive measurement error,
usually the variance of measurement error has to be
known or to be estimated, e.g. by replicate measure-
ments, to enable consistent estimation. In the pres-
ence of MC, knowledge of the conditional probabili-
ties of correct classification, in the binary case called
sensitivity and specificity, allows for general estima-
tion procedures even in complex models; see [20] and
[39] for fundamental work concerned with response
misclassification and, e.g., [27, 29, 30, 59] for meth-
ods handling misclassified covariates. When no such
information about ME or MC is available, identifica-
tion problems arise and no consistent parameter es-
timation is possible. Important examples include the
estimation in simple linear regression with covariate
ME as well as the problem of estimating probability
distributions of outcomes in the presence of MC. In
this paper, we examine the latter problem in the spirit
of the methodology of partial identification (e.g., [32])
and systematic sensitivity analysis (e.g., [52]).



One important example for estimating probability dis-
tributions in medical and clinical research is preva-
lence estimation, i.e. estimating the probability that
a randomly sampled person of the population has a
certain property, e.g. is diseased.1 In the presence
of MC, induced, e.g., by a medical examiner or a di-
agnostic tool, prevalence estimation using the rela-
tive frequency ignoring MC (naive estimation) is in-
consistent. In this situation, a consistent estimator
is available when the conditional probabilities of cor-
rect diagnosis (sensitivity and specificity) are known
or can be estimated consistently. However, estimat-
ing sensitivity and specificity using a validation study
usually relies on the availability of a correct diagnos-
tic method (gold standard) in the validation sample.
If such a gold standard method is not available, then
it is usual practice to replicate measurements on the
same unit to get some information on the quality of
the measurement procedure. In the case of the avail-
ability of three independent measurements with iden-
tical sensitivity and specificity, it is still possible to
obtain consistent estimators of prevalence; for a re-
cent discussion, see [41]. Another scenario, where the
parameters are identified, is the availability of two
independent measurements with identical sensitivity
and specificity in two different populations, see [46].

When only two replicate measurements in one popula-
tion are available, the quality of measurement can be
characterized by Cohen’s kappa coefficient [9], which
is based on the agreement of the replicates (“inter
rater reliability”). Although there is a long discus-
sion about the problems of using the kappa coefficient
(e.g. [14, 50]), it is usually reported in those studies.
However, no further correction is performed, since the
resulting estimation model is not well-identified, mak-
ing the derivation of a precise-valued estimator impos-
sible. In contrast, the concept of partial identification
and systematic sensitivity analysis provides valuable
insights into the magnitude of the misclassification
bias. We derive identification regions of the misclas-
sification probabilities and the true prevalence, and
confidence regions for the latter, additionally taking
sample variation into account. In our example, we
use data from a validation study, which consists of a
subsample of our data to estimate kappa coefficient.

We understand our contribution as a typical exam-
ple where imprecise probabilistic methodology pro-
vides powerful quantitative insights into the underly-
ing structure, while the traditional precise approach,
forced to choose between the extremes ‘precise solu-
tion’ or ‘no solution’, necessarily has to surrender.

1For ease of argumentation and influenced by the example
from oral health discussed in Section 4, we use biometric termi-
nology throughout the paper, without limiting the application
of our results to that area.

The general methodology underlying our investigation
adapts recent progress in the area of partial identifi-
cation and systematic sensitivity analysis for possibly
deficient data, also strongly related to the conserva-
tive handling of deficient data in imprecise probability
settings (e.g., [12, 49, 58]). Up to now, such methods
have been mostly applied to the case of missing or
coarse data with an unknown deficiency mechanism
(e.g. [33, 36], for surveys), notably with regard to
missingness due to counterfactuality when analysing
treatment effects (see e.g. [7, 15, 25, 35, 48]). Cor-
responding ideas have, for instance, been proposed
in general settings in [13, 18], or more specifically to
handle publication bias in meta analysis [11, 21], in
the reanalysis of a public opinion survey [2] or to de-
rive tight bounds on demand responses [4], and may
provide an alternative to some neighborhood models
in robust statistics ([1, Section 5]). Recently partial
identification has also been applied in the context of
misclassification ([19, 37]).

The paper is organized as follows. In Section 2, we
deduce basic formulae for the relationship between
the fundamental quantities characterizing our situa-
tion, i.e. observed prevalence, sensitivity, specificity
and the kappa coefficient. From that, identification
regions for the true prevalence are derived. In Sec-
tion 3, sampling variability is incorporated into our
estimates resulting in confidence intervals. In Sec-
tion 4, we apply our findings to a data set of caries
research before we conclude with a brief further dis-
cussion of our approach in Section 5.

2 Prevalence Estimation under
Misclassification

At the beginning of this section the basic situation is
described and notation and terminology are fixed (cf.
also Table 1).

We address the problem of estimating the prevalence
of a certain disease, i.e. a probability

p := P (Y = 1),

where

Y =

{
1 diseased
0 not diseased

denotes the indicator for the (true) disease status.
Due to the possible presence of MC we cannot observe
Y directly, but instead the diagnosis of an examiner,
which is denoted by

Y ∗ =

{
1 diagnosis positive
0 diagnosis negative .

The naive estimator 1
n

∑n
i=1 Y

∗
i based on a simple

random sample Y ∗1 , . . . , Y
∗
n of Y ∗ of size n is biased



and converges to P (Y ∗ = 1). We call p∗ := P (Y ∗ = 1)
the naive prevalence and denote the naive estimator
based on the observed relative frequency by p̂∗.

obs. true status Y
Y ∗ 1 0

1 P (Y ∗ = 1|Y = 1) P (Y ∗ = 1|Y = 0)

sens → false p∗

positive cases

0 P (Y ∗ = 0|Y = 1) P (Y ∗ = 0|Y = 0)

→ false spec
negative cases

p

Table 1: Basic notions

The relationship between the true and the naive
prevalence using sensitivity sens := P (Y ∗ = 1|Y = 1)
and specificity spec := P (Y ∗ = 0|Y = 0) of the diag-
nosis is directly obtained from the law of total prob-
ability.

p∗ = P (Y ∗ = 1)

= P (Y ∗ = 1|Y = 1) · P (Y = 1)

+P (Y ∗ = 1|Y = 0) · P (Y = 0)

= p · sens+ (1− p) · (1− spec) (1)

Figure 1: Illustration of misclassification bias (devia-
tion from the angle bisector): naive (observed) preva-
lence p∗ in dependence of the true prevalence p for
different values of specificity and sensitivity = 1

Only for technical reasons we have to fix additionally
the assumption that throughout the paper

sens+ spec > 1 . (2)

This commonly used constraint is not a substantial
restriction, since otherwise the diagnosis does not con-
tain any useful information.

If sensitivity and specificity are known, equation (1)
yields an unbiased estimator of p by

p̂ =
p̂∗ + spec− 1

sens+ spec− 1
. (3)

Moreover, Equation (1) allows to illustrate the poten-
tially rather high distorting effects of misclassification.
In Figures 1 and 2 the naive prevalence p∗ is plotted in
dependence of the true prevalence p for different mis-
classification probabilities. Figure 1 shows the bias in
the situation of a test with optimal sensitivity, which
would detect every diseased unit, but may produce a
certain amount of false positive results.

Figure 2: Illustration of misclassification bias (devia-
tion from the angle bisector): naive (observed) preva-
lence p∗ in dependence of the true prevalence p for
different values of sensitivity and specificity

Figure 2 illustrates the more realistic situation of pos-
sibly false positive and false negative units. Note that
in all situations the bias depends on the true, but un-
known (!) value of p. Moreover, as in in Figure 2,
the bias usually is complex in the sense that, in con-
trast e.g. to single-variable classical measurement er-
ror in linear regression models, even its sign can not
be determined without additional knowledge. In de-
pendence on the concrete constellation of sense, spec
and p, over- and underestimation of the true preva-
lence is possible.



2.1 Establishing a Relationship between the
Kappa Coefficient, Misclassification
Probabilities and Prevalence

We now assume that we have two replicate measure-
ments Y ∗1 , Y

∗
2 on the same units. These replicates re-

late to two examiners and the data can be displayed in
a 2x2 table. We define the corresponding probabilities
by

pjk := P (Y ∗1 = j, Y ∗2 = k), i, j = 0, 1 . (4)

The kappa coefficient κ as proposed by [9], see also,
e.g., [42, 45] for recent developments, assesses the
chance corrected agreement among the replicate mea-
surements (inter rater agreement). The (theoretical)
kappa coefficient is defined by

κ :=
po − pe
1− pe

(5)

po := p00 + p11

pe := (p00 + p01) · (p00 + p10) (6)

+(p10 + p11) · (p01 + p11)

Here, po is the probability of the observed agreement
and pe is the probability of agreement, when both
ratings are unconditionally independent. The closer
κ is to 1, the better the agreement of the examiners.

Remark 2.1 There is an explicit relation between the
kappa coefficient, the prevalence and the probabilities
of misclassification, which will be useful to identify
regions for the prevalence. Under the assumptions

(A1) Independent conditional distributions Y ∗1 |Y and
Y ∗2 |Y for both replicates

(A2) Equal sensitivity and specificity for both replicates

the following equation holds (p ∈ (0; 1)):

κ =
p (1− p) (sens+ spec− 1)2

(spec− p (sens+ spec− 1))

· 1

(1− spec+ p (sens+ spec− 1))
. (7)

Equation (7) is deduced by using the assumptions
(A1) and (A2) that imply

p00 = (1− p) · spec2 + p · (1− sens)2

p01 = (1− p) · spec · (1− spec)
+p · (1− sens) · sens

p10 = p01 (8)

p11 = (1− p) · (1− spec)2 + p · sens2 (9)

This leads, together with (5), to formula (7). Note
that the kappa coefficient can be seen as a parameter

of one scoring process. It is a measurement of agree-
ment when it is independently applied on the same
subject twice. It can be estimated by a validation
study, where two independent scorings are available
for a (sub)sample of individuals.

Note that the assumption of conditional independence
and identical sensitivity and specificity may be vio-
lated, if the two replicates correspond to two different
examiners, for a further discussion we refer to Sec-
tion 5. The assumption of identical sensitivity and
specificity can be checked using the McNemar test,
which is designed for the comparison of two proba-
bilities for dependent data. It basically checks the
identity (8), see also our example in Section 4.

2.2 Bias Correction using the Kappa
Coefficient

We want to estimate the true prevalence p using the
naive estimator p̂∗ and a given or consistently esti-
mated kappa coefficient. The basic approach is to use
equations (7) and (1) and solve them for p. Since
there are three unknowns (p, sens, spec) and only
two equations, there is a lack of identifiability and no
direct estimator can be deduced. However, non triv-
ial intervals I(ϑ ‖ p∗, κ) for the possible solutions for
the three parameters ϑ ∈ {p, sens, spec} can be de-
rived, by additionally relying on the constraint that
all probabilities are in [0; 1]. Following [32], these so-
lutions are called identification regions. In [52] they
are called ignorance regions, since they relate to igno-
rance in contrast to sampling error.

Theorem 2.2 ( Identification Regions for p, sens
and spec using p∗ and κ)
Let the assumptions (A1) and (A2) hold. Addition-
ally, let κ ∈ (0, 1] and sens + spec > 1 (see (2)).
Then the identification regions for the prevalence p,
the sensitivity sens and the specificity spec based on
the naive prevalence p∗ ∈ [0, 1], are

I(p ‖ p∗, κ) =

[
p∗

p∗ + κ−1(1− p∗)
;

p∗

p∗ + κ (1− p∗)

]
,

(10)

I(sens ‖ p∗, κ) = [p∗ + κ (1− p∗); 1] (11)

I(spec ‖ p∗, κ) = [1− p∗ + p∗κ; 1] . (12)

The regions in the theorem follow directly by solv-
ing equations (7) and (1), and therefore are the best
that we can learn from the given values of p∗ and κ,
without adding further assumptions. Details of the
derivation are given in the web appendix ([26]).



Figure 3: Identification regions (dashed lines) for
the true prevalence p (solid line) in dependence of
κ for different values of the naive preference p∗ ∈
0.1, 0.3, 0.5, from top to bottom.

Naturally, the width of the intervals decreases when
the kappa coefficient κ increases. Indeed, considering
the extreme case where the examiners’ assignments
are almost random, (κ → 0) leads to the vacuous
statement Ip = [0; 1]. On the other hand, complete
agreement, and therefore κ = 1, results in point iden-
tification, where the region for p degenerates to p∗

and sens = spec = 1. In Figure 3, the identification
regions are displayed as a function of the kappa coeffi-
cient for fixed values of p∗. For reasonable agreement
of the measurements, in particular, the intervals are
small enough to provide valuable insight into the true
prevalence.

Note that, by construction, the method is based on
the data in a conservative manner. Consequently, the
identification region necessarily contains p∗: By κ ≤
1,

p∗

p∗ + κ−1(1− p∗)
≤ p∗

p∗ + (1− p∗)
= p∗

p∗

p∗ + κ(1− p∗)
≥ p∗

p∗ + (1− p∗)
= p∗.

The regions given in Theorem 2.2 are the best we
can conclude from the data alone. If we interpret
them as probability assignments they describe coher-
ent interval-valued probabilities and F-probabilities
in the sense of [54] and [56, 57], for details see
[26]. Note that kappa coefficient and p∗ bear suf-
ficient information for determining the probabilities
(p00, p01, p10, p11), i.e. using those probabilities would
not lead to an improvement of the bounds. Since the
assumptions A1 and A2 imply p01 = p10 and the prob-
abilities add to 1, there are only two free parameters.
An explicit formula is presented in [26].

Theorem 2.2 enables us to calculate identification re-
gions for the prevalence, sensitivity and specificity
from the naive estimator p̂∗ and an estimated kappa
value κ̂, by substituting p∗ and κ with their estimators
in equations (10) to (12). Note that these intervals
correspond to point estimators and, in particular, are
not confidence intervals. Strategies for finding confi-
dence intervals, i.e. additionally taking the sampling
variation into account, are given in the following sec-
tion.

3 Taking Additionally Sampling
Variation into Account: Confidence
Intervals

We follow here the strategy from [52] and define a
parameter γ, which is not identified by our data, but
the other parameters of our models are identified con-
ditional on this parameter. As a suitable choice for



this identifying parameter we propose in our context
γ := sens

spec , which indeed would result in a point iden-

tified estimator, see (16) below. The parameter γ has
an obvious interpretation relating the probabilities of
the two types of misclassification. In the framework
of [52] it is called a sensitivity parameter. We do not
use this technical term here to avoid confusion with
the sensitivity of the diagnosis sens. The parameter
γ is restricted by (11) and (12). Therefore, the range
of γ is given by

[γmin, γmax] =

[
p∗ + κ (1− p∗), 1

1− p∗ + p∗κ

]
.

(13)

We now assume that a consistent estimator (p̂∗, κ̂)
with asymptotic covariance matrix Σ is available. If
the estimator of κ is estimated by an independent
validation study, Σ is diagonal. If we assume that κ
is known, then the corresponding entries in Σ are 0.

To construct a confidence interval
[
L(p̂∗, κ̂);U(p̂∗, κ̂)

]
for the parameter p we have to ensure that the cover-
age probability exceeds the confidence level 1− α for
every γ ∈ [γmin, γmax], i.e.

inf
γ∈ [γ̂min, γ̂max]

Pγ(p ∈
[
L(p̂∗, κ̂);U(p̂∗, κ̂)

]
) ≥ 1− α .

(14)
This can be achieved by defining the confidence in-
terval as the union of confidence intervals over the
identification parameter γ[

L(p̂∗, κ̂);U(p̂∗, κ̂)
]

:=⋃
γ∈ [γ̂min, γ̂max]

[
L(p̂∗, κ̂, γ);U(p̂∗, κ̂, γ)

]
(15)

with
[
L(p̂∗, κ̂, γ);U(p̂∗, κ̂, γ)

]
as suitable confidence

intervals for fixed parameter γ. To calculate the lat-
ter, we apply the delta method (e.g., [3]) and use for
fixed γ the point estimator for p given by

p̂ (p̂∗, κ̂, γ) =
(1− p̂∗) · γ − p̂∗ −

√
w

(p̂∗ − 1) · γ2 + (1−
√
w) · γ − p̂∗ −

√
w

(16)
with

w = (p̂∗ − 1)2 · γ2 − 2 · p̂∗ · (p̂∗ − 1)

·(2 · κ̂− 1) · γ + (p̂∗)2

derived from (7) and (1), see [26]. The asymptotic
variance is given by the delta method

V ar(p̂ (p̂∗, κ̂, γ)) = DT
p ΣDp . (17)

Here, Dp is the vector of derivatives of p̂ (p̂∗, κ̂, γ) with
respect to p̂∗ and κ̂, and Σ is the corresponding co-
variance matrix. Details are again given in [26]. Since

the relationship (16) between γ and p is monotone, the
choice of the confidence intervals in (15) can be opti-
mized, see [52] or [22, 47]. If the local confidence inter-
vals are small compared to the identification region,
then it is actually justified to rely on the (1−α)·100%-
quantile, instead of the (1−α/2)·100%-quantile. Thus
the confidence interval is given by[

L(p̂∗; κ̂) , U(p̂, κ̂)
]

= (18)[
p̂(p̂∗, κ̂, γ̂max)− z1−α ·

√
V̂ ar(p̂(p̂∗, κ̂, γ̂max));

p̂(p̂∗, κ̂, γ̂min) + z1−α ·
√
V̂ ar(p̂ (p̂∗, κ̂, γ̂min))

]
.

The range for γ is estimated using (13). Since the
estimator of (p̂∗, κ̂) is consistent, the probability that
the interval [γ̂min, γ̂max] covers the true parameter γ
tends to 1 as sample size n goes to infinity. Therefore,
(15) is an asymptotic confidence interval. Note that
we define our confidence intervals for the parameter
and not for the entire identified set, see, in particular,
[22] for a discussion of that distinction.

4 Example

4.1 The Signal-Tandmobiel R© Study

year n p̂∗ se(p̂∗)

1996 (age 6) 3378 0.118 0.006
1998 (age 8) 3657 0.280 0.007
2000 (age 10) 3415 0.380 0.008

Table 2: Signal-Tandmobiel R© study: Estimation of
p̂∗ per year

The Signal-Tandmobiel R© study is a 6-year longitu-
dinal oral health study, conducted in Flanders (Bel-
gium) involving 4468 children. Data were collected
on oral hygiene, gingival condition, dental trauma,
prevalence and extent of enamel developmental de-
fects, fluorosis, tooth decay, presence of restoration,
missing teeth, stage of tooth eruption and orthodon-
tic treatment need, all by using established criteria,
see [51]. The children were examined annually dur-
ing 1996 to 2001. Measurement of interest is the dmft
index, which is the sum of the number of decayed,
missing due to caries or filled teeth.

We use the dmft index as an indicator for the pres-
ence or absence of caries for each child to examine the
prevalence of caries. The observed disease status Y ∗i



for child i is

Y ∗i =

{
1 caries observed (dmft > 0)
0 no caries observed (dmft = 0)

.

For illustration of our methods, we estimate the naive
prevalence and its variance for the years 1996 (age 6),
1998 (age 8) and 2000 (age 10), see Table 2. These are
the years in which a calibration study was conducted.
The longitudinal structure is ignored and the naive
prevalence naturally increases over the years, i.e. with
the age of the children, and its standard error is very
low due to the high sample size n.

1996
Rater 1

Rater 2 78 7 85
13 22 35
91 29 120

p− value = 0.1797 (McNemar)
κ = 0.5752(0.084)

1998
Rater 1

Rater 2 85 13 98
16 43 59
101 56 157

p− value = 0.5775 (McNemar)
κ = 0.6023(0.066)

2000
Rater 1

Rater 2 89 14 103
3 42 45
92 56 148

p− value = 0.0076 (McNemar)
κ = 0.7461(0.057)

Table 3: Results of the validation study with two raters.
Kappa indicates the kappa statistics with standard error
in brackets.

In the calibration study in [38], the observations of
the 16 regular examiners were compared to a gold
standard examiner resulting in estimation of sensitiv-
ity and specificity. However, letting one single person
be the gold standard examiner can still not guaran-
tee correctness. For illustration of our methods and
to incorporate this possibility of an error, the gold
standard examiner is now considered a ‘common’ ex-
aminer. In the validation study we now have two ob-
servations per child. The results are presented in Ta-
ble 3. However, since assumption A2 is questionable
in our setting, we performed a McNemar test, which

is based on the difference of the off diagonal cells of
the two by two table. In case of the two by two ta-
ble for 2000, the test indicates a significant deviation
from the assumption. Therefore, we present results
of our method only for the years 1996 and 1998. The
estimated standard errors of the kappa coefficient are
rather high due to the small sample size.

4.2 Correction for Misclassification

We use the methods shown in this paper to correct the
estimated prevalence for misclassification. In Table 4,
the corresponding identification regions based on the
point estimation of p∗ and κ using Theorem 2.2 are
presented. The regions for the prevalence are wide.
This is a consequence of the low kappa coefficient,
reflecting the low agreement among the examiners.
As discussed, the estimated regions include the naive
estimator, but it can be seen that the naive estimator
could be seriously biased. Moreover, the regions for
specificity, and especially for sensitivity are wide, too.

If the kappa coefficient was considered known, the
confidence intervals are only slightly smaller, indicat-
ing that the main problem is in the partial identifica-
tion of our setting.

year p̂∗ κ̂ I(p ‖ p̂∗, κ̂)

1996 0.118 0.577 [0.072; 0.188]
1998 0.280 0.602 [0.190; 0.393]

year I(sens ‖ p̂∗, κ̂) I(spec ‖ p̂∗, κ̂)

1996 [0.627; 1.000] [0.950; 1.000]
1998 [0.714; 1.000] [0.889; 1.000]

Table 4: Signal-Tandmobiel R© study: Estimated iden-
tification regions for p, sens and spec

In a second step, the confidence intervals for the
prevalence following the strategy from Section 3 are
presented in Table 5, once while incorporating the
sample variability of the estimators p̂∗ and κ̂ and,
for illustration, assuming κ to be known at its esti-
mated value. The asymptotic confidence intervals for
the naive prevalence are pretty small compared to the
identification regions and to the corresponding confi-
dence intervals, which are both based on the addi-
tional information from the kappa coefficient. Conse-
quently, the confidence regions based on naive preva-



lence estimation still suffer from a severe overpreci-
sion. Although being somewhat large, the identifica-
tion region and the corresponding confidence regions
still provide valuable insight into the prevalence. For
example, the hypothesis H0 : p ≥ 0.25 could be re-
jected at the 5 percent-level for the 6 year old children.

year with sampling variation fixed κ
of κ

1996 [0.057; 0.219] [0.065; 0.205]
1998 [0.170; 0.416] [0.179; 0.409]

Table 5: Signal-Tandmobiel R© study: Confidence in-
tervals for the prevalence with and without taking the
variability of κ into account

If further nontrivial bounds on sensitivity and speci-
ficity are available by some external information, then
this can be incorporated in an analogous way result-
ing in smaller identification regions and smaller con-
fidence intervals based on them.

5 Discussion

The concept of using identification regions or intervals
of ignorance in the case of misclassification with par-
tial information on sensitivity and specificity provided
by the kappa coefficient has been shown as a powerful
tool for data analysis. It avoids the potentially sub-
stantial bias arising from simply ignoring misclassifi-
cation if no direct correction method is available. The
resulting identification regions are tight in the sense
that they can not be improved without adding further
assumptions. Thus they are the best that we can con-
clude from the data alone in this context. Our exam-
ple shows that the possible effect of misclassification
is rather high, even when the inter rater reliability is
‘substantial´ in terms of [28]’s classification. Further-
more, the strategy of distinguishing between sampling
error and ignorance due to non-identifiability is use-
ful, since it highlights possible shortcomings in the
sampling of the data structure, which cannot be com-
pensated by a large sample size.

Since we use the value of the kappa coefficient from
validation data or from other sources of information,
one crucial assumption for our analysis is that this
value is also correct for the main data set. This will
be the case if our replication data are a random sample
from our main study (internal validation). Otherwise
this assumption could be disputable. It is well-known
that the kappa coefficient depends on the prevalence
when sensitivity and specificity are fixed [10]. So our

procedure cannot be used when the prevalence in the
validation data differs from the prevalence in the main
study, even if we assume that the scoring procedure
has fixed sensitivity and specificity. However, the lat-
ter assumption could also be problem, see the discus-
sion in [50]. In our example, the validation study was
part of a training program for the examiners. On the
one hand the prevalence was higher for the valida-
tion but on the other hand there were possibly more
children in that sample that were difficult to score.
This could lead to values of sensitivity and specificity
which are different in the main study. Nevertheless,
the kappa coefficient could be nearly identical in both
parts of the study. [50] performs some calculations
and presents plausible scenarios for this assumption.
Thus, our procedure can also be applied to studies
where the value of the kappa coefficient can be trans-
ferred from the validation data to the main study even
this is not true for sensitivity and specificity. Obvi-
ously, this issue has to be treated with great care.

Our results are a vivid illustration of the power of
imprecise probability methods in statistical analysis
based on misclassified data. As a topic of further re-
search the conditional independence assumption (A1)
in Remark 2.1 should be investigated further. As
mentioned above, it may be violated if the assessments
of two raters are used as substitutes for replication
data, because then certain characteristics of the units
may impose some dependence on the raters’ judge-
ments. We are currently studying the use of Frechet
bounds and related methods in this setting. If no
reliable information is available about the misclassi-
fication probabilities, our approach could be adopted
to the case where sensitivity and specificity vary in
certain ranges, closely relating our procedure to the
‘direct method’ of [37]. Then our identification pa-
rameter is two dimensional, which will result in larger
identification regions.

The methodology underlying our work promises, mu-
tatis mutandis, to be also powerful for other types of
error-prone data, like misclassification of more than
two categories and for (additive or multiplicative)
measurement error with unknown variance. In the lat-
ter case, the availability of replicates would yield iden-
tification in many instances, but often no information
about the measurement error is available, and then
partially identified corrected estimators are again the
best option available.
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