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Abstract

Probability boxes (pairs of cumulative distribution
functions) are among the most popular models used in
imprecise probability theory. In this paper, we pro-
vide new efficient tools to construct multivariate p-
boxes and develop algorithms to draw inferences from
them. For this purpose, we formalise and extend the
theory of p-boxes using lower previsions. We allow
p-boxes to be defined on arbitrary totally preordered
spaces, hence thereby also admitting multivariate p-
boxes. We discuss the construction of multivariate p-
boxes under various independence assumptions. An
example demonstrates the practical feasibility of our
results.
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1 Introduction

Imprecise probability [18] refers to uncertainty models
applicable in situations where the available informa-
tion does not allow us to single out a unique probabil-
ity measure for the random variables involved. They
require more complex mathematical tools, such as
non-linear functionals. It is therefore of interest to
consider models that yield simpler mathematical de-
scriptions, at the expense of generality, but gaining
ease of use, elicitation, and representation.

We consider one such model: pairs of lower and upper
distribution functions, also called probability boxes, or
p-boxes [9, 10]. They are often used in risk stud-
ies, where cumulative distributions are central. Many
theoretical properties and practical aspects of p-boxes
have already been studied in the literature. Previ-
ous work includes probabilistic arithmetic [20], which
provides a very efficient numerical framework for par-
ticular inferences with p-boxes (and which we gener-
alise in this paper). In [11], p-boxes are connected to
info-gap theory [1]. The relation between p-boxes and

random sets was investigated in [14]. Finally, an ex-
tension of p-boxes to arbitrary finite spaces [8] yields
potential applications to much more general problems.

In this paper, we study p-boxes using lower previsions
[19, 18]. From the point of view of lower previsions,
p-boxes were studied briefly in [18, Section 4.6.6] and
[17]. This has at least two advantages. Firstly, they
can be defined on arbitrary spaces. Secondly, they
come with a powerful inference tool, called natural
extension. We will study the natural extension of a
p-box, and we derive a number of useful expressions
for it, whence providing new numerical tools for exact
inferences on arbitrary random quantities and events.

As mentioned, [8] extended p-boxes to finite totally
preordered spaces. In this paper, we extend p-boxes
further to arbitrary totally preordered spaces, lead-
ing to many useful features that classical p-boxes do
not have. Firstly, we encompass, in one sweep, p-
boxes defined on finite spaces and on closed real in-
tervals. Secondly, as we do not impose anti-symmetry
on the ordering, we can also handle product spaces by
considering an appropriate total preorder, and thus
also admit multivariate non-finite p-boxes, which have
not been considered before.1 Whence, we can spec-
ify p-boxes directly on the product space. Contrast
this with the usual multivariate approach to p-boxes,
such as probabilistic arithmetic [20], that consider one
marginal p-box per dimension and draw inferences
from a joint model built around some information
about variable dependencies. Finally, our approach
is also useful in elicitation, as it allows uncertainty to
be expressed as probability bounds over any collection
of (possibly multivariate) nested sets, because we can
always find a total preorder that is compatible with
any collection of nested sets.

The paper is organised as follows: Section 2 provides
a brief introduction to the theory of coherent lower

1We still require the preorder to be total. P-boxes for par-
tially preordered spaces might be interesting, but are not con-
sidered in this paper.



previsions. Section 3 introduces and studies the p-
box model from the point of view of lower previsions.
Section 4 provides an expression for the natural ex-
tension of a p-box to all events, and Section 5 studies
the natural extension to all gambles. Section 6 stud-
ies an important special case of p-boxes whose pre-
order is induced by a real-valued mapping, as this is a
convenient way to specify a multivariate p-box. Sec-
tion 7 discusses the construction of such multivariate
p-boxes from marginal coherent lower previsions un-
der arbitrary dependency models. Section 8 demon-
strates the theory with an example.

2 Preliminaries

This section introduces lower previsions, see [2, 19,
18, 15] for details.

The possibility space is Ω. A gamble on Ω is a
bounded real-valued map on Ω. The set of all gambles
on Ω is L(Ω), or L if Ω is evident. A subset of Ω is an
event. The indicator of A is the gamble that is 1 on
A and 0 elsewhere: write IA, or A if confusion fails.

A lower prevision P is a real-valued map on an arbi-
trary subset K of L: for any f in K, P (f) represents
a subject’s supremum buying price for f (see [18] for
actual explanation). A lower prevision on a set of
indicators of events is a lower probability.

P denotes the conjugate upper prevision of P : for
every −f ∈ K, P (f) = −P (−f); it represents a sub-
ject’s infimum selling price for f .

A real-valued map P on L satisfying P (f) ≥ inf f
and P (f + g) = P (f) + P (g) for all f and g ∈ L is a
linear prevision on L [18, p. 88, Sec. 2.4.8]. The set
of all linear previsions on L is denoted by P. A linear
prevision is essentially an expectation operator.

Of particular interest is the set

M(P ) = {Q ∈ P : (∀f ∈ K)(Q(f) ≥ P (f))}.

If M(P ) 6= ∅, then P is said to avoid sure loss, in
which case the natural extension of P [18, Sec. 3.4.1]

E(f) = min
Q∈M(P )

Q(f) for all f ∈ L

extends P to L. Finally, P is called coherent [19,
p. 18] when it coincides with E on K.

A lower prevision P defined on a lattice of gambles
K, i.e., a set of gambles closed under point-wise max-
imum and point-wise minimum, is called n-monotone
if for all p ∈ N, p ≤ n, and all f , f1, . . . , fp in K [5]:

∑
I⊆{1,...,p}

(−1)|I|P

(
f ∧

∧
i∈I

fi

)
≥ 0.

A lower prevision which is n-monotone for all n ∈ N
is called completely monotone.

3 P-Boxes

Next, we introduce the formalism of p-boxes defined
on totally preordered spaces. In contrast to [9], we do
not restrict p-boxes to intervals on the real line.

Let (Ω,�) be a total preorder: so � is transitive and
reflexive and any two elements are comparable. We
write x ≺ y for x � y and x 6� y, x � y for y ≺ x,
and x ' y for x � y and y � x. For any two x, y ∈ Ω
exactly one of x ≺ y, x ' y, or x � y holds. We also
use the following common notation for intervals in Ω:

[x, y] = {z ∈ Ω: x � z � y}
(x, y) = {z ∈ Ω: x ≺ z ≺ y}

and similarly for [x, y) and (x, y].

For simplicity, we assume that Ω has a smallest ele-
ment 0Ω and a largest element 1Ω (we can always add
them to Ω).

A cumulative distribution function is a mapping F :
Ω→ [0, 1] which is non-decreasing and satisfies more-
over F (1Ω) = 1. For each x ∈ Ω, we interpret F (x)
as the probability of the interval [0Ω, x]. We do not
impose F (0Ω) = 0, so we allow {0Ω} to carry non-
zero mass, which happens commonly if Ω is finite. No
continuity assumptions are made.

By Ω/ ' we denote the quotient set of Ω with respect
to the equivalence relation ' induced by �, that is:

[x]' = {y ∈ Ω: y ' x} for any x ∈ Ω

Ω/ ' = {[x]' : x ∈ Ω}

Because F is non-decreasing, F is constant on ele-
ments [x]' of Ω/ '.

Definition 1. A probability box, or p-box, is a pair
(F , F ) of cumulative distribution functions from Ω to
[0, 1] satisfying F ≤ F .

A p-box is interpreted as a lower and an upper cumu-
lative distribution function. In Walley’s framework,
this means that a p-box is interpreted as a lower prob-
ability PF,F on the set of events

K = {[0Ω, x] : x ∈ Ω} ∪ {(y, 1Ω] : y ∈ Ω}

by

PF,F ([0Ω, x]) = F (x) and PF,F ((y, 1Ω]) = 1− F (y).

P-boxes on a totally preordered space (Ω,�) are co-
herent (the proof is virtually identical to the one given



in [17, p. 93, Thm. 3.59], which considered p-boxes on
[a, b] ⊆ R). We denote by EF,F the natural extension
of PF,F to all gambles.

When F = F , we say that (F , F ) is precise, and we
denote the corresponding lower prevision on K by PF
and its natural extension to L by EF (with F := F =
F ).

We end with a useful approximation theorem:

Theorem 2. Let P be any coherent lower prevision
defined on L. The least conservative p-box (F , F ) on
(Ω,�) whose natural extension is dominated by P is

F (x) = P ([0Ω, x])), F (x) = P ([0Ω, x]), ∀x ∈ Ω.

4 Natural Extension to All Events

The remainder of this paper is devoted to finding con-
venient expressions for the natural extension EF,F of
PF,F . We start by giving the form of the natural
extension on the field of events generated by K.

4.1 Extension to the Field Generated by the
Domain

Let H be the field of events generated by the domain
K of the p-box, i.e., events of the type

[0Ω, x1] ∪ (x2, x3] ∪ · · · ∪ (x2n, x2n+1]

for x1 ≺ x2 ≺ x3 ≺ · · · ≺ x2n+1 in Ω (if n is 0 we
simply take this expression to be [0Ω, x1]) and

(x2, x3] ∪ · · · ∪ (x2n, x2n+1]

for x2 ≺ x3 ≺ · · · ≺ x2n+1 in Ω. Clearly, these events
form a field: the union and intersection of any two
events in H is again in H, and the complement of any
event in H also is again in H.

To simplify the description of this field, and the ex-
pression of natural extension, we introduce an element
0Ω− such that 0Ω− ≺ x for all x ∈ Ω and:

F (0Ω−) = F (0Ω−) = F (0Ω−) = 0

So, (0Ω−, x] = [0Ω, x]. With Ω∗ = Ω ∪ {0Ω−},

H = {(x0, x1] ∪ (x2, x3] ∪ · · · ∪ (x2n, x2n+1] : (1)

x0 ≺ x1 ≺ · · · ≺ x2n+1 in Ω∗}.

To calculate the natural extension of PF,F to all gam-
bles, we first consider the extension from K toH, then
to all events, and finally to all gambles.

A precise p-box PF has a unique extension to a
finitely additive probability measure on H:

Proposition 3. EF restricted to H is a finitely ad-
ditive probability measure. Moreover, for any A ∈ H,
that is A = (x0, x1] ∪ (x2, x3] ∪ · · · ∪ (x2n, x2n+1] with
x0 ≺ x1 ≺ · · · ≺ x2n+1 in Ω∗, it holds that

EF (A) =

n∑
k=0

(F (x2k+1)− F (x2k)) (2)

Proposition 3 extends to p-boxes as follows:

Proposition 4. For any A ∈ H, that is A = (x0, x1]∪
(x2, x3]∪· · ·∪(x2n, x2n+1] with x0 ≺ x1 ≺ · · · ≺ x2n+1

in Ω∗, it holds that EF,F (A) = PH
F,F

(A), where

PH
F,F

(A) =

n∑
k=0

max{0, F (x2k+1)− F (x2k)}. (3)

For EF,F , use EF,F (A) = 1− EF,F (Ac).

4.2 Inner Measure

The inner measure PH
F,F ∗

of the coherent lower prob-

ability PH
F,F

defined in Eq. (3) coincides with EF,F
on all events [18, Cor. 3.1.9, p. 127]:

EF,F (A) = PH
F,F ∗

(A) = sup
C∈H,C⊆A

PH
F,F

(C). (4)

For ease of notation, from now onwards, we denote
EF,F by E when no confusion about the functions F

and F determining the p-box can arise.

In principle, the problem of natural extension to all
events is solved: simply calculate the inner measure
as in Eq. (4), using Eq. (3) to calculate PH

F,F
(C) for

elements C in H. However, the inner measure still
involves calculating a supremum. What we show next
is that Eq. (3) can be extended to arbitrary events, by
first taking the topological interior with respect to a
very simple topology, followed by a (possibly infinite)
sum over the so-called full components of this interior.

4.3 The Partition Topology

Consider the partition topology on Ω generated by
τ := {[x]' : x ∈ Ω}. The open sets in this topology are
all unions of equivalence classes (or, subsets of Ω/ ',
if you like). Hence, every open set is also closed. In
particular, every interval in (Ω,�) is clopen.

The topological interior of a set A is given by the
union of all equivalence classes contained in A:

int(A) =
⋃
{[x]' : [x]' ⊆ A} (5)

and the topological closure is given by the union of
all equivalence classes which intersect with A:

cl(A) =
⋃
{[x]' : [x]' ∩A 6= ∅}. (6)



Lemma 5. For any subset A of Ω, E(A) = E(int(A))
and E(A) = E(cl(A)).

4.4 Additivity on Full Components

Next, we determine a constructive expression of the
natural extension E on the clopen subsets of Ω.

Definition 6. [16, §4.4] A set S ⊆ Ω is called full if
[a, b] ⊆ S for any a � b in S.

What do these full sets look like?

Lemma 7. Every full set is clopen.

Under an additional completeness assumption, the
full sets are precisely the intervals.

Lemma 8. If Ω/ ' is order complete, that is, if ev-
ery subset of Ω/ ' has a supremum (minimal upper
bound) and infimum (maximal lower bound), then ev-
ery full set is an interval, that is, it can be written as
[x, y], [x, y), (x, y], or (x, y), for some x, y in Ω.

Note that Ω/ ' can be made order complete via the
Dedekind completion [16, §4.34].

Definition 9. [16, §4.4] Given a clopen setA ⊆ Ω and
an element x of A, the full component C(x,A) of x in
A is the largest full set S which satisfies x ∈ S ⊆ A.

Lemma 10. The full components of any clopen set
A form a partition of A.

We can prove that the natural extension E is additive
on full components. Recall that the sum of a family
(xλ)λ∈Λ of non-negative real numbers is defined as∑

λ∈Λ

xλ = sup
L⊆Λ
L finite

∑
λ∈L

xλ

If the above sum is a finite number, at most countably
many of the xλ’s are non-zero [16, 10.40].

Theorem 11. Let B be a clopen subset of Ω. Let
(Bλ)λ∈Λ be the full components of B, and let (Cλ)λ∈Λ′

be the full components of Bc. Then

E(B) =
∑
λ∈Λ

E(Bλ) and E(B) = 1−
∑
λ∈Λ′

E(Cλ)

In other words, the natural extension E of a p-box is
arbitrarily additive on full components (but obviously
not additive on arbitrary events). Interestingly, addi-
tivity on full components is not sufficient for a lower
probability to be equivalent to a p-box.

4.5 Practical computations over events

Let us explain how Proposition 4 can be generalized
to all events (at least when Ω/ ' is order complete).

Consider an arbitrary event A. By Lemma 5, it suf-
fices to find the natural extension of int(A) or cl(A).
Calculating the interior or closure with respect to the
partition topology will usually be trivial (see exam-
ples further on). Because the topological interior or
closure of a set is always clopen, we only need to know
the natural extension of clopen sets.

Now, by Theorem 11, we only need to calculate the
natural extension of the (clopen) full components
(Bλ)λ∈Λ of int(A) or the (clopen) full components
(Cλ)λ∈Λ of cl(A)c = int(Ac). Finding the full compo-
nents will often be a trivial operation. By Lemma 8,
if Ω/ ' is order complete, then each full component
is an interval. And for intervals, we immediately infer
from Proposition 4 and Eq. (4) that (i.p. standing for
immediate predecessor):

E((x, y])=max{0, F (y)− F (x)} (7a)

E((x, y))=max{0, F (y−)− F (x)} (7b)

E([x, y])=

{
max{0, F (y)− F (x)} if x has no i.p.

max{0, F (y)− F (x−)} if x has an i.p.

(7c)

E([x, y))=

{
max{0, F (y−)− F (x)} if x has no i.p.

max{0, F (y−)− F (x−)} if x has an i.p.

(7d)

for any x ≺ y in Ω,2 where F (y−) denotes
supz≺y F (z) and similarly for F (x−). The equalities
hold because, if x ≺ y in Ω, and x− is an immediate
predecessor of x, then [x, y] = (x−, y] and [x, y) =
(x−, y). Recall also that F (0Ω−) = F (0Ω−) = 0 by
convention. If Ω/ ' is finite, then one can think of
z− as the immediate predecessor of z in Ω/ '.

In other words, we have a simple constructive means
of calculating the natural extension of any event.

4.6 Special Cases

The above equations hold for any (Ω,�) with order
complete quotient space. In most cases in practice,
either Ω/ ' is finite, or Ω/ ' is connected, meaning
that for any two elements x ≺ y in Ω there is a z in
Ω such that x ≺ z ≺ y,3 (this is the case for instance
when Ω is a closed interval in R and � is the usual
ordering of reals). Moreover, if Ω/ ' is connected,
then, in practice, F will satisfy F (y−) = F (y) for all
y in Ω. For example, in case Ω is a closed interval
in R, this happens precisely when F (0) = 0 and F is
left-continuous in the usual sense.

2In case x = 0Ω, evidently, 0Ω− is the i.p.
3This terminology stems from the fact that, in this case,

Ω/ ' is connected with respect to the order topology [16,
§15.46(6)].



If Ω/ ' is finite, then every element of Ω has an imme-
diate predecessor (remember, we take the immediate
predecessor of 0Ω to be 0Ω−), and if Ω/ ' is con-
nected, then no element except 0Ω has an immediate
predecessor. So:

Corollary 12. If Ω/ ' is finite, then every full set
B ⊆ Ω is of the form [a, b] and for every event A ⊆ Ω,

E(A) =
∑
λ∈Λ

max{0, F (bλ)− F (aλ−)}

E(A) = 1−
∑
λ∈Λ′

max{0, F (b′λ)− F (a′λ−)}

where ([aλ, bλ])λ∈Λ are the full components of int(A),
and ([a′λ, b

′
λ])λ∈Λ′ are the full components of int(Ac) =

cl(A)c.

Corollary 13. If Ω/ ' is order complete and con-
nected, and F (y−) = F (y) for all y in Ω, then

E(A) =
∑
λ∈Λ

max{0, F (supBλ)− F (inf Bλ)}

E(A) = 1−
∑
λ∈Λ′

max{0, F (supCλ)− F (inf Cλ)}

where (Bλ)λ∈Λ are the full components of int(A) and
(Cλ)λ∈Λ′ are the full components of int(Ac) = cl(A)c.

Beware of F (0Ω) = F (0Ω−) = 0 in the last corollary.

4.7 Example

Let’s investigate a particular type of p-boxes on the
unit square [0, 1]2. First, we must specify a pre-
order on Ω. A natural yet naive way of doing so
is, for instance, saying that (x1, y1) � (x2, y2) when-
ever x1 + y1 ≤ x2 + y2. Consider a p-box (F , F ) on
([0, 1]2,�). Since F is required to be non-decreasing
with respect to �, it follows that F (x, y) is con-
stant on elements of [0, 1]2/ ', which means that
F (x1, y1) = F (x2, y2) whenever x1 + y1 = x2 + y2.
Thus, we may think of F (x, y) as a function of a sin-
gle variable z = x + y, and we write F (z). Similarly,
we write F (z).

So, our p-box specifies bounds on the probability of
right-angled triangles (restricted to [0, 1]2) whose hy-
pothenuses are orthogonal to the diagonal:

F (z) ≤ p({(x, y) ∈ [0, 1]2 : x+ y ≤ z}) ≤ F (z) (8)

Observe that the p-box is given directly on the two-
dimensional product space, without the need to define
marginal p-boxes for each dimension. The base τ for
our partition topology is given by

τ = {{(x, y) ∈ [0, 1]2 : x+ y = z} : z ∈ [0, 2]}

x+ y ≤ 0.5

0.5 ≤ x+ y ≤ 1.2

x+ y ≥ 1.2

b

d

x+ y ≤ min{b, d}

a

c

x+ y ≥ 1 + max{a, c}

Figure 1: Shape of intervals induced by �, and calcu-
lation of the topological interior.

For example, the topological interior of a rectangle
A = [a, b] × [c, d] is empty, unless a = c = 0 or b =
d = 1, because in all other cases, no element of τ is
a subset of A. In the cases where a = c = 0 and
min{b, d} < 1, or max{a, c} > 0 and b = d = 1 (if
a = c = 0 and b = d = 1 then the interior is Ω),
respectively, we have:

int([0, b]×[0, d])={(x, y)∈ [0,1]2 :x+y≤min{b, d}}
int([a, 1]×[c, 1])={(x, y)∈ [0,1]2 :x+y≥1+max{a, c}}

Consequently, E(A) = 0 for all rectangles A, except

E([0, b]× [0, d]) = F (min{b, d})
E([a, 1]× [c, 1]) = 1− F (1 + max{a, c})

Fig. 1 illustrates the situation. So, for the purpose
of making inferences about the lower probability of
events that are rectangles, the ordering � was obvi-
ously poorly chosen. In general, one should choose �
in a way that Ω/ ' contains good approximations for
all events of interest.

For example, a strategy would be to start from a refer-
ence point (e.g., an elicited modal value) and then to
choose the ordering � such that intervals correspond
to concentric regions of interests around the reference
point. Again, all of this is possible because our the-
ory concerns p-boxes on arbitrary totally preordered
spaces, and is not limited to the real line with its nat-
ural ordering. More realistic examples in which such
concentric regions are used are given in Section 8.

5 Natural Extension to All Gambles

Next, we establish that the natural extension of p-
boxes to all gambles can be expressed as a Choquet
integral. We further simplify the calculation of this
Choquet integral via the lower and upper oscillation
of gambles with respect to the partition topology in-
troduced earlier.



5.1 Choquet Integral Representation

Extending previous results [8] where the relation be-
tween p-boxes and complete monotonicity was estab-
lished for finite spaces, we can show that the natural
extension of p-boxes on totally pre-ordered spaces are
completely monotone. Let PH

F,F
denote the restric-

tion of EF,F to H, given by Proposition 4:

Theorem 14. PH
F,F

is completely monotone.

This allows us to characterise the natural extension
on all gambles:

Theorem 15. The natural extension E of PF,F is
given by the Choquet integral

E(f) = inf f +

∫ sup f

inf f

E({f ≥ t}) dt

for every gamble f . Moreover, E is completely mono-
tone on all gambles. Similarly,

E(f) = inf f +

∫ sup f

inf f

E({f ≥ t}) dt.

5.2 Lower and Upper Oscillation

By Lemma 5, to turn Theorem 15 in an effective al-
gorithm, we must calculate int({f ≥ t}) for every t.
Fortunately, there is a very simple way to do this.

For any gamble f on Ω and any topological base τ ,
define its lower oscillation as the gamble

osc(f)(x) = sup
C∈τ : x∈C

inf
y∈C

f(y)

For the partition topology which we introduced ear-
lier, this simplifies to

osc(f)(x) = inf
y∈[x]'

f(y) (9)

The upper oscillation is:

osc(f)(x) = −osc(−f)(x) = sup
y∈[x]'

f(y) (10)

For a subset A of Ω, the lower oscillation of IA is
Iint(A), so the lower oscillation is the natural gener-
alisation of the topological interior to gambles. Simi-
larly, the upper oscillation of IA is Icl(A).

Proposition 16. For any gamble f on Ω,

int({f ≥ t}) = {osc(f) ≥ t}
cl({f ≥ t}) = {osc(f) ≥ t}

so, in particular,

E(f) = inf osc(f) +

∫ sup osc(f)

inf osc(f)

E({osc(f) ≥ t}) dt

E(f) = inf osc(f) +

∫ sup osc(f)

inf osc(f)

E({osc(f) ≥ t}) dt

Concluding, to calculate the natural extension of any
gamble, in practice, we must simply determine the
full components of the cut sets of its lower or upper
oscillation, and calculate a simple Riemann integral
of a monotonic function.

Examples will be given in Section 8.

6 P-Boxes Whose Preorders are
Induced by a Real-Valued Function

In practice, a convenient way to specify a preorder �
on Ω such that Ω/ ' is order complete and connected
is by means of a bounded real-valued function Z : Ω→
R. For instance, in the example in Section 4.7, we
used Z(x, y) = x+ y. Also see [1, 12]. Let us assume
from now onwards that Z is a surjective mapping from
Ω to [0, 1].

For any x and y in Ω, define x � y whenever Z(x) ≤
Z(y). Because Z is surjective, Ω/ ' is order complete
and connected. In particular, Ω has a smallest and
largest element, for which Z(0Ω) = 0 and Z(1Ω) = 1.
Moreover, we can think of any cumulative distribution
function on (Ω,�) as a function over a single variable
z ∈ [0, 1]. Consequently, we can think of any p-box on
(Ω,�) as a p-box on ([0, 1],≤). In particular, for any
subset I of [0, 1] we write E(I) for E(Z−1(I)). For
example, for a, b in [0, 1], and A = Z−1((a, b]) ⊆ Ω,
we have that

E(A) = E((a, b]) = max{0, F (a)− F (b)}

by Proposition 4. Similar expressions for other types
of intervals follow from Eq. (7).

The topological interior and closure can be related to
the so-called lower and upper inverse of Z−1. Indeed,
consider the multi-valued mapping Γ := Z−1 : [0, 1]→
℘(Ω). Because for every x in Ω, it holds that
[x]' = Γ(Z(x)), it follows that, for any subset A of
Ω, int(A) = Γ(Γ∗(A)), and cl(A) = Γ(Γ∗(A)), where
Γ∗ and Γ∗ denote the lower and upper inverse of Γ
respectively, that is [7]

Γ∗(A) = {z ∈ [0, 1] : Γ(z) ⊆ A}, and

Γ∗(A) = {z ∈ [0, 1] : Γ(z) ∩A 6= ∅}.

Theorem 17. Let A be any subset of Ω. Then

E(A) =
∑
λ∈Λ

E(Iλ)

E(A) = 1−
∑
λ∈Λ′

E(Jλ)

where (Iλ)λ∈Λ are the full components of Z(int(A)) =
Γ∗(A) and (Jλ)λ∈Λ′ are the full components of
Z(int(Ac)) = Z(cl(A)c) = Γ∗(A

c) = (Γ∗(A))c.



If, in addition, F is left-continuous as a function of
z ∈ [0, 1] and F (0) = 0, then

E(A) =
∑
λ∈Λ

max{0, F (sup Iλ)− F (inf Iλ)}

E(A) = 1−
∑
λ∈Λ′

max{0, F (sup Jλ)− F (inf Jλ)}

For gambles, the lower oscillation is constant on equiv-
alence classes. So, we may also consider osc(f) and
osc(f) in Proposition 16 as functions of z ∈ [0, 1].

7 Constructing Multivariate P-Boxes
from Marginals

Next, we construct a multivariate p-box from
marginal lower previsions under arbitrary rules of
combination. We then focus on two special joint mod-
els: the first without any assumptions about depen-
dence between variables (using the Fréchet-Hoeffding
bounds [13]), and the second assuming epistemic in-
dependence between all variables (using the factoriza-
tion property [3]). Finally, we derive Williamson and
Downs’s [20] probabilistic arithmetic as a special case
of our framework.

Specifically, consider n variables X1, . . . , Xn assum-
ing values in X1, . . . , Xn, and marginal lower pre-
visions P 1, . . . , Pn for each variable. Each P i is a
coherent lower prevision on L(Xi).

7.1 Multivariate P-Boxes

First, we must define a mapping Z to induce a pre-
order � on Ω = X1 × · · · × Xn. The following choice
works perfectly for our purpose:

Z(x1, . . . , xn) =
n

max
i=1

Zi(xi)

where each Zi is a surjective mapping from Xi to [0, 1]
and hence, also induces a marginal preorder �i on Xi.
Each P i can be approximated by a p-box (F i, F i) on
(Xi,�i), defined by

F i(z) = P i(Z
−1
i ([0, z])) F i(z) = P i(Z

−1
i ([0, z]))

This approximation is the best possible one, by The-
orem 2.

Beware that even though different choices of Zi may
induce the same total preorder �i, they might lead to
a different total preorder � induced by Z. Roughly
speaking, the Zi specify how the marginals scale rela-
tive to one another. This means that our choice of Zi
affects the precision of our inferences: a good choice
will ensure that any event of interest can be well ap-
proximated by elements of Ω/ '. Of course, nothing

prevents us, at least in theory, to consider the set of all
Zi which induce some given marginal total preorders
�i, and whence to work with a set of p-boxes. In Sec-
tion 7.4, we will see an example where this approach
is feasible.

Anyway, with this choice of Z, we can easily find the
p-box which represents the joint as accurately as pos-
sible, under any rule of combination of coherent lower
previsions:

Theorem 18. Consider any rule of combination �
of coherent lower and upper previsions, mapping the
marginals P 1, . . . , Pn to a joint coherent lower previ-
sion

⊙n
i=1 P i on all gambles. Suppose there are func-

tions ` and u for which:

n⊙
i=1

P i

(
n∏
i=1

Ai

)
= `(P 1(A1), . . . , Pn(An)) and

n⊙
i=1

P i

(
n∏
i=1

Ai

)
= u(P 1(A1), . . . , Pn(An)),

for all A1 ⊆ X1, . . . , An ⊆ Xn. Then, the couple
(F , F ) defined by

F (z)=`(F 1(z), ..., Fn(z));F (z)=u(F 1(z), ..., Fn(z))

is the least conservative p-box on (Ω,�) whose natu-
ral extension EF,F is dominated by the combination⊙n

i=1 P i of P 1, . . . , Pn.

7.2 Natural Extension: The Fréchet Case

The natural extension �ni=1P i of P 1, . . . , Pn is
the lower envelope of all joint distributions whose
marginal distributions are compatible with the given
marginal lower previsions. So, the model is com-
pletely vacuous about the dependence structure. We
refer to for instance [4, p. 120, §3.1] for a rigorous def-
inition. In this paper, we only need to use the Fréchet
bounds (see [21, p. 131]), in which case the functions `
and u of Theorem 18 are respectively the Lukasiewicz
and the minimum t-norms.

Theorem 19. The p-box (F , F ) defined by

F (z)=max

{
0, 1− n+

n∑
i=1

F i(z)

}
F (z)=

n
min
i=1

F i(z)

is the least conservative p-box on (Ω,�) whose natural
extension EF,F is dominated by the natural extension
�ni=1P i of P 1, . . . , Pn.

It is easily seen that the joint lower prevision �ni=1P i
is in general not completely monotone, hence the joint
p-box of Theorem 19 is in general only an outer ap-
proximation.



7.3 Independent Natural Extension

In contrast, the independent natural extension
⊗ni=1P i of P 1, . . . , Pn models epistemic independence
betweenX1, . . . , Xn. We refer to [3] for a rigorous def-
inition and properties. In this paper we only need the
factorization property, which implies that the func-
tions ` and u of Theorem 18 are the product rule.

Theorem 20. The p-box (F , F ) defined by

F (z) =

n∏
i=1

F i(z) F (z) =

n∏
i=1

F i(z)

is the least conservative p-box on (Ω,�) whose nat-
ural extension EF,F is dominated by the indepedent
natural extension ⊗ni=1P i of P 1, . . . , Pn.

Again, the joint p-box will only be an outer approxi-
mation of the actual joint lower prevision.

7.4 Special Case: Probabilistic Arithmetic

Let Y = X1 + X2 with X1 and X2 real-valued ran-
dom variables. Probabilistic arithmetic [21] estimates
PY ([−∞, y]) = FY (y) and PY ([−∞, y]) = FY (y) for
any y ∈ R under the assumptions that the uncer-
tainty on X1 and X2 is given by p-boxes (F 1, F 1)
and (F 2, F 2), with �1 and �2 the natural ordering of
real numbers, and the dependence structure is com-
pletely unknown. Williamson and Downs [20] provide
explicit formulae for common arithmetic operations,
making inferences from marginal p-boxes very easy.

Let us show, for the particular case of addition, that
their results are captured by our joint p-box proposed
in Theorem 19. Cases of other arithmetic operators,
not treated here to save space, follow from almost
identical reasoning. The lower cumulative distribu-
tion function FX1+X2

(y) resulting from probabilistic
arithmetic is, for any y ∈ R,

sup
x1,x2 : x1+x2=y

max{0, F 1(x1) + F 2(x2)− 1}. (11)

Without much loss of generality, assume that both X1

and X2 lie in a bounded interval [a, b].

Let Z1 and Z2 be any surjective maps [a, b] → [0, 1]
which induce the usual ordering on [0, 1] (so both must
be continuous and strictly increasing).

To apply Theorem 19, consider the total pre-
order � on Ω = [a, b]2 induced by Z(x1, x2) =
max{Z1(x1), Z2(x2)}. Figure 2 illustrates the event4

{X1 +X2 ≤ y}, with y ∈ [2a, 2b], as well as the largest
interval Z−1([0, z]) included in it. For z such that

4{X1 + X2 ≤ y} is {(x1, x2) ∈ [0, 1]2 : x1 + x2 ≤ y}.

y

y

Z−1
2 (z)

Z−1
1 (z)

{X1 +X2 ≤ y}
Z−1([0, z])

Figure 2: The event {X1 + X2 ≤ y}, and the largest
interval Z−1([0, z]) included in it.

Z−1
1 (z) + Z−1

2 (z) = y, we achieve the largest inter-
val Z−1([0, z]) which is still included in {X1 + X2 ≤
y}. There is always a unique such z because also
Z−1

1 + Z−1
2 is continuous and strictly increasing.

Using Theorems 19 and 17, we find that

EF,F ({X1 +X2 ≤ y}) = F (Z−1(z))

= max{0, F 1(Z−1
1 (z)) + F 2(Z−1

2 (z))− 1}

But, this holds for every valid choice of Z1 and Z2,
whence P 1 �P 2({X1 +X2 ≤ y}) dominates Eq. (11).

8 Example

Next, we investigate an example in which p-boxes are
used to model uncertainty around some parameters.

We aim to estimate the minimal required dike height
h along a stretch of river, using a model proposed in
[6]. Although this model is quite simple, it provides
a realistic industrial application. Skipping technical
details, the model results in the following relationship:

h(q, k, u, d) =


(

q

k
√

u−d
` b

) 3
5

if q ≥ 0

0 otherwise,

(12)

with b and ` the river width and length, q the river
flow rate, k the Strickler coefficient and u, d respec-
tively the upriver and downriver water levels.

For this case study, the river width is b = 300m and
the length is ` = 6400m. The remaining parameters
are uncertain. Expert assessment leads to the follow-
ing distributions.

The river flow rate q has a Gumbel distribution with
location and scale parameters µ = 1335m3s−1 and
β = 716m3s−1. To simplify calculations, we introduce
a variable r satisfying q = µ− β ln(− ln(r)). If r is
uniform over [0, 1], then q is Gumbel with parameters
µ and β. So, after transformation,

h(r, k, u, d) =


(
µ−β ln(− ln(r))

k
√

u−d
` b

) 3
5

if q ≥ 0

0 otherwise.



p(k ∈ [30− 15z, 30 + 15z])

k30

p(k)

15 45

Figure 3: Derivation of the p-box for a triangular dis-
tribution.

The Strickler coefficient k has a symmetric triangular
distribution over the interval [15m1/3s−1, 45m1/3s−1].

Upper and downriver water levels u and d are uncer-
tain due to sedimentary conditions. Measured values
are u∗ = 55m and d∗ = 50m, with measurement er-
ror definitely less than 1m. These are also modelled
by symmetric triangular distributions, on [54m, 56m]
and [49m, 51m] respectively.

A natural choice for Z is the distance between the
expected values (r∗ = 1/2, k∗ = 30, u∗ = 55, d∗ = 50)
and the actual values (r, k, u, d):

Z(r, k, u, d) = max{2|r− 1
2 |,
|k−30|

15 , |u− 55|, |d− 50|}.

The scale of the distances has been chosen such that
Z(r, k, u, d) ≤ 1 for all points of interest. Equiva-
lence classes [(r, k, u, d)]' are borders of 4-dimentional
boxes with vertices (with z = Z(r, k, u, d))

((1± z)/2, 30± 15z, 55± z, 50± z).

The marginal p-boxes are, for r:

F 1(z) = F 1(z) = p(2|r − 1/2| ≤ z) = z

because r is uniformly distributed over [0, 1]. For k:

F 2(z) = F 2(z) = p(|k − 30|/15 ≤ z) = 1− (1− z)2

(see Fig. 3). Similarly, for u and d, it is easily verified
that F 3(z) = F 3(z) = F 4(z) = F 4(z) = 1− (1− z)2.

Next, osc(h) and osc(h) are:

osc(h)(z) = inf
(r,k,u,d) : Z(r,k,u,d)=z

h(r, k, u, d) = o(−z)

osc(h)(z) = sup
(r,k,u,d) : Z(r,k,u,d)=z

h(r, k, u, d) = o(z)

with

o(z) =


(
µ−β ln(− ln((1+z)/2))

(30−15z)
√

5−2z
` b

) 3
5

if · · · ≥ 0

0 otherwise.

The function o(z) is increasing, with o(−1) = 0,
o(0) = 3.032, and o(1) = +∞.

Hence, osc(h)(z) and osc(h)(z) are decreasing and in-
creasing in z, respectively. So, the full components of
the events

Lt={z ∈ [0, 1] : osc(h)(z) ≥ t}={z ∈ [0, 1] : o(−z) ≥ t}
Ut={z ∈ [0, 1] : osc(h)(z) ≥ t}={z ∈ [0, 1] : o(z) ≥ t}

are of the form Lt = [0, `t] and Ut = [ut, 1], with

`t = −o−1(t) for t ≤ o(0) ut = o−1(t) for t ≥ o(0)

With unknown dependence, using Theorem 19,

F (z) = max{0,−3 + z + 3(1− (1− z)2)}

and whence

E(h) =

∫ o(0)

0

F (−o−1(t)) dt = 1.515

E(h) = o(0) +

∫ +∞

o(0)

(
1− F (o−1(t))

)
dt = 6.423

Therefore, we should consider average overflowing
heights of at least 6.5m. For comparison, using tradi-
tional methods and assuming independence between
all variables, h has expectation 3.2m, which lies be-
tween our lower and upper expectation, as expected.
Note that the imprecision has two sources: we have re-
duced a multivariate problem to a univariate one and
we have not made any assumption of independence.

Calculations were relatively simple due to the mono-
tonicity of the target function with respect to the un-
certain variables. This may not be the case in general.

9 Conclusions

We studied inferences (lower and upper expectations)
from p-boxes on arbitrary totally preordered spaces.
For this purpose, we represented p-boxes as coherent
lower previsions, and studied their natural extension.
Defining p-boxes on totally pre-ordered spaces allowed
us to unify p-boxes on finite spaces and on real in-
tervals, and to extend the theory to the multivariate
case.

One interesting result is a practical means of calcu-
lating the natural extension of a p-box in this general
setting: we proved that it suffices to calculate the full
components of the cut sets of the lower oscillation, fol-
lowed by a simple Riemann integral (Proposition 16).

As examples of how this model can be used in prac-
tice, we have detailed the cases of p-boxes whose pre-
orders are induced by a real-valued mapping, and of
joint p-boxes built from marginals under various com-
bination rules. We demonstrated our methodology on
inference about a river dike assessment, showing that
calculations are generally straightforward.



Of course, many open problems regarding p-boxes re-
main. For instance, can the dependency model inform
the choice of preorder, to arrive at tighter bounds?
Our choice led to simple expressions, but other choices
giving more precise inference could be investigated.
Also, the connection of p-boxes with other uncertainty
models, such as possibility measures and clouds, de-
serves further investigation.
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