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Abstract 

Probabilistic Risk Assessments (PRA) are used to 
achieve a safe design and operation of Nuclear Power 
Plants. The impact of uncertainties which may affect 
PRA results must thus be taken into account in the 
decision making process. These uncertainties due to the 
lack of data have been recently seen as mainly epistemic 
ones and it has been recommended to characterize them 
by the belief functions of Dempster-Shafer Theory rather 
than a presumed single probability distribution. The 
current construction of these functions is based on the 
data provided by PRA data handbooks using traditional 
statistical tools like Maximum Likelihood Estimation 
(MLE). However, this approach is only appropriate when 
data coming from the operating feedback observations 
are sufficiently large as required in the MLE approach. 
Furthermore, when wishing to incorporate other sources 
of information, such as expert’s opinions, the pooling 
data of MLE has limits to account for these kinds of 
information. Therefore, in order to overcome this 
problem, two alternative perspectives based on the 
Dempster’s rule of combination and the Generalized 
Bayesian Theorem for constructing and updating the 
belief functions in a more effective way will be presented 
in this paper. These two approaches will be studied for 
the use in the context of PRA. The comparison of these 
two approaches with the current method is carried out 
through a practical example. Some conclusions about the 
application of these approaches will be drawn. 
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1   Introduction 

Probabilistic Risk Assessment (PRA) [10] is a 
methodology which provides a quantitative assessment 
of the risk of accidents at Nuclear Power Plants (NPP). It 
involves the development of models that delineate the 
response of systems and of operators to initiating events 
that could lead to core damage or a release of 

radioactivity to the environment. The evaluation of the 
frequency of such an accident relies on the assessment of 
the failure probability of systems by means of event/fault 
trees. In PRA, parametric statistical models are used to 
characterize the random occurrence of accidents at 
nuclear power plants [2][10]. Some usual parametric 
models like Poisson model, exponential model…are used 
for this purpose. The parameters associated to these 
models in PRA are reliability parameters such as the 
failure rates of individual components or the probability 
of failure on demand and so on. The values of these 
parameters are generally unknown and estimated with 
statistical tools. These estimated values are therefore 
subjected to uncertainty due to insufficient feedback data 
which can impact the decision making process. As a 
consequence, the results in the nuclear PRA context for 
decision making need to take into account these 
uncertainties.    

In the traditional PRA practice of uncertainty analysis, 
the epistemic parameter uncertainty is generally 
represented by a presumed probability distribution, such 
as the log-normal distribution which is viewed as the 
subjective interpretation of probability (i.e. degree of 
belief) for the possible values of the parameter. 
Nevertheless, the choice of this distribution which is 
made for some practical reasons has been shown to be 
questionable because it could have major impacts on the 
final results of decision making [20]. Recently, a general 
framework of parameter uncertainty quantification within 
the Dempster-Shafer Theory (DST) framework has been 
proposed in the nuclear PRA context [20][21]. In this 
framework, parameter uncertainty is no longer 
characterized by an assumed probability distribution but 
by belief and plausibility functions which represent the 
current state of knowledge about the possible values of 
the parameter. The approach proposed in [20] for the 
construction of these belief functions is based on the 
statistical data provided by EDF PRA data handbooks 
using traditional statistical tools such as Maximum 
Likelihood Estimation (MLE). Therefore, when new data 
become available, statistical tools are first used to 



provide estimated values from the pooled data (e.g. 
nominal values and confidence intervals) from which 
belief functions for uncertainty representation are 
constructed. However, this approach is only appropriate 
to the case where data come from the operating feedback 
observations and when the number of observations is 
sufficiently large. Furthermore, if additional sources of 
information are to be incorporated, such as expert’s 
opinions, the pooling data of MLE has limits to account 
for these kinds of information. The expert’s opinions are 
often used in the context of PRA model for the events 
whose the frequency of occurrence is very small i.e. 
rarely or never observed. Therefore, in order to 
incorporate the experts’ opinions with the available 
operating feedback data, two alternative perspectives for 
constructing belief functions in a more effective way are 
studied in this paper. The updated belief functions are 
built by combining the belief functions given each data. 
In doing so, the incorporation of other sources of 
information, such as expert’s opinions will be done in a 
natural manner. The two proposed approaches also allow 
us to deal with the prior ignorance in a more appropriate 
manner than the classical way. In the first approach, we 
still use the MLE but in a different way. For each 
independent serie of observations, the belief functions 
are firstly built from the confidence intervals provided by 
MLE, and then the updated belief functions are obtained 
by using the Dempster’s rule of combination (ROC) to 
aggregate all the belief functions. In the same manner but 
within the perspective of Bayesian theorem, the second 
approach relies on the General Bayesian Theorem (GBT) 
to provide belief functions given each data. The GBT 
introduced by Smets in [13] performs the same task as 
the classical Bayesian theorem but within the context of 
belief functions instead of probability functions. This 
theorem and the pignistic transformation are the essential 
tools of the so-called Transferable Belief Model (TBM) 
which is a subjective interpretation of the DST [14]. The 
main objective of this paper is to study the use of these 
approaches for updating belief functions in the context of 
nuclear PRA data. 

The section 2 of this article presents shortly basic notions 
of the Dempster–Shafer theory of belief functions. In 
section 3, the updating of belief functions with the ROC 
and the GBT is presented. The section 4 studies the 
application of these two approaches in the context of 
PRA. The comparison of these two approaches with the 
currently used method is carried out through a practical 
example in the section 5. In the section 6, some 
conclusions and perspective are finally given. 

2 The Dempster-Shafer Theory of Belief 

Functions 

The Dempster-Shafer Theory of evidence [6], also 
known as the theory of belief functions, is a 
generalization of the Bayesian theory of subjective 
probability in that it allows less restrictive assumptions 

about the likelihood than in the case of probabilistic 
characterization of uncertainty. In literature, this theory 
has been used in risk assessment for industrial 
applications [11][17][18] and recently studied in the 
context of PRA for treating the uncertainty [20][21]. In 
this framework, the epistemic uncertainty associated to 
the input parameters of PRA is no longer characterized 
by a single probability distribution but by so-called belief 
and plausibility functions. In doing so, we can avoid the 
problem of choosing an appropriate probability 
distribution for uncertainty representation in a context of 
lack of data. The definition of these functions is shortly 
outlined now.  

Let �={�1, �2,…,�N} be a finite set of possible values for 

parameter θ called the frame of discernment. Unlike the 
probability distribution which is completely defined by 
the weight of each singleton θi, the belief functions are 
defined on the set of subsets of �, called 2�. In the DST, 
the basic measure is represented by a so-called basic 
belief assignment  

            : 2 [0,1]m
Θ

→       ( ) 1m AA =� ⊆Θ               (1) 

Where ( ) 1m Θ = and 0)Ø( =m . The basic belief 

assignment (BBA) m(A) represents the degree of belief 
that the actual solution is exactly committed to A and due 
to lack of knowledge cannot be attributed any more 
specific event. The state of complete ignorance is 
represented by the so-called vacuous BBA defined by 
m(�)=1 that is no information is available for the more 

likely values among Θ. A Bayesian BBA is a BBA 
whose focal sets are singletons. A BBA is said to be 
consonant if its focal sets are nested.  

The belief function Bel, the plausibility function Pl and 

the commonality function q are defined for all B  ! � as 
follows  

                � ⊆
=

BA
AmBBel )()(                              (2) 
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Ø
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                � ⊇
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The belief Bel(B) obtained by the summation of BBAs 
for all elements A which are fully included in proposition 
B expresses the “total” degree of belief. The degree of 
plausibility Pl(B) is calculated by adding BBAs of 
elements A whose the intersection with proposition B is 
not an empty set. The commonality function q is used for  
mathematical purposes only. In the perspective of Walley 
[16], these belief and plausibility functions consist of 
lower and upper bounding probability functions of the 
true but unknown probability distribution.  

When a decision needs to be made, we use a so-called 
pignistic(1) transformation which induces a pignistic 
probability function from the belief functions. This is the 

                                                
(1)

Pignistic means ‘bet’ in Latin



result of applying the TBM model introduced by Smets 
[14] which is a subjective interpretation of the DST. The 
TBM is a two-level mental model in which the beliefs 
are represented and quantified at the credal level by 
belief functions, whereas decision making is based on the 
probability distributions and takes place at the pignistic 
level. The use of the TBM model for decision making in 
the context of PRA has been studied in [21].  

In the next sections, the Dempster-Shafer Theory is 
studied for the use of updating the belief functions when 
new evidence is available.  

3  Approaches for updating belief within the 

Theory of Belief functions. 

Combination of different sources of evidence is one of 
the important fields when dealing with uncertainty. The 
Dempster-Shafer Theory of belief functions offers many 
approaches for aggregating belief functions in a natural 
way. Two approaches often studied and used in some 
real applications are outlined hereafter. These two 
approaches allow the belief functions to be updated by 
taking account of the prior sources of information (e.g. 
experts’ opinions or previous data) in addition with new 
available data.  

In the following we consider a random variable X on the 
state space � and characterized by its probability 

distribution Pθ, with the parameter θ  taking its values in 
Θ.  

3.1  Dempster’s Rule of Combination (ROC) 

Suppose that the uncertainty associated to the parameter 
of the model is characterized by belief functions. These 
functions need to be updated when new data on the space 
� become available. If data observations are 
independently collected, the belief functions of the 
parameter given each data can be all combined together 
using the Dempster’s rule of combination (ROC). Let 
BBA m1 and BBA m2 represent respectively the belief 
functions given the first data and the second data over the 
frame �, according to the ROC, then the combined BBA 
is calculated as follows    

))(()( 2112 AmmAm ⊕=

Θ⊆∀
−

= � =∩
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for   )(.)(

1

1
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  (5)

Where )(.)( 22Ø 11
21

AmAmK
AA� =∩

=  is a measure 

of the amount of conflict between the two BBAs. 

Therefore, by considering m1 as the prior BBA and m2 as 
the BBA given new available data, the posterior belief 
functions can be obtained using the above ROC. In some 
contexts, the prior information can be simply vacuous 

belief functions i.e. m(�)=1 which express the total 
ignorance.  

As wee can see in equation (5), since the operator ⊕
used in this rule is both associative and commutative, 
thus the order of these functions to combine is not 
relevant. Note that when the belief functions are 
Bayesian functions, Shafer [7] proved that the Bayes’ 
rule of conditioning is a special case of the Dempster’s 
rule of combination.  

3.2  Generalized Bayesian Theorem in TBM 

The previous approach for aggregating the belief 
functions of the uncertain parameter � involved a fairly 
standard application of DST. However, a generalization 
of the Bayes’ rule within the TBM may be used to update 
the belief functions in a manner more closely aligned 
with updating of probability distributions via the classical 
Bayes’ rule. This approach is now outlined.  

3.2.1  Generalized Bayesian Theorem 

As we know, in probability theory, the Bayesian theorem 
allows the computation of the posterior probability 
function of θ given observed realizations of X from the 
likelihood of X given θ and some prior probability 
distribution of θ . The same idea has been extended in the 
TBM context [13] where conditional belief functions of θ
given observations of X is built from the conditional 
belief function of X given each Θ∈

i
θ  and a vacuous 

prior belief of θ. Thus, if we know the conditional 

plausibilites )|( iθxpl
Ψ  of X given each Θ∈iθ  and 

according to the GBT, the conditional belief functions for 

all A ! � given an observation Ψ∈x  are computed as 
follows: 
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and  
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Where  1
i1 (1 ( | ))

i

C pl x
θ

θ− Ψ

∈Θ

= − −∏  is the  

normalized factor which is introduced when the 
assumption of closed-world is made i.e. the BBA 

0)Ø( =m  is assumed. The interesting point in the GBT 

is that the needed prior belief on � is a vacuous belief 
function which is the perfect representation of total 



ignorance. We can thus avoid one of the delicate 
problems of classical Bayesian approach related to 
choosing an appropriate a priori. In the context of 
updating belief functions, the posterior beliefs can be 
obtained using the Dempster’s rule of combination 
applied to the above conditional belief function given 
new data and the prior belief function built from the 
previous data.   

In the case of having n independent series of 
observations with event counts x1, x2, … xn resulting 
from the same probabilistic model (e.g. Poisson model), 
in order to aggregate belief functions given these 
observations, we can construct n conditional belief 
functions of θ given each event count xi and then 
combine these belief functions by the ROC. The same 
result can be obtained in a different way by considering 
the joint conditional plausibility function 

)|,...,( i1 θnxxpl
Ψ directly obtained from the joint 

observations (x1,x2,…,xn) using the notion of “conditional 
cognitive independence” as proposed in [5][13]. As a 

result, the plausibility function )|,...,( i1 θnxxpl
Ψ  of 

observing the joint observation (x1, x2…xn) given each 

Θ∈
i

θ  is the product of the individual plausibility 

functions of all observations i.e.: 

       ∏
=

ΨΨ =
n

k

kn xplxxpl
1
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Then, the equations above (6,7,8) can be applied to 
calculate the conditional belief functions on � given the 
joint observation. This above property is essential and in 
fact the core of the axiomatic derivations of the GBT 
[12]. Let us now discuss about the performance of two 
ways for calculating the conditional belief functions 
given the data in GBT. From a computational point of 
view, the way of constructing conditional belief 
functions of � given joint observations (x1, x2…xn) is 
more efficient than calculating the conditional belief 
functions of � given each xi and combing them by ROC.  
This is because the former way is simply involved in the 
“product” operations (9) while the later concern with the 
orthogonal sums of ROC which require practically much 
more computational time. However, if we have some 
other sources of information such as expert’s judgments 
or any source which is distinct from the observations 
resulted from the same random process of probabilistic 
model, the Dempster’s rule would be more appropriate to 
use to construct the overall belief functions. This 
situation is often encountered in the context of PRA 
model.

As can be seen so far, the updating of the belief functions 
of the uncertain parameter � of the probabilistic model 

} : {P Θ∈θθ
 using the GBT just requires to calculate the 

conditional plausibility functions )|( iθxpl
Ψ  given each 

Θ∈
i

θ . In the following paragraph we will discuss about 

the calculation of this conditional plausibility function. 

3.2.2 About the calculation of the conditional 

plausibility functions )|( iθxpl
Ψ

As we know, the probabilistic distribution of a random 
variable X describes the degree of chance (estimated by 
the long run frequency) of its independent realizations x1, 
x2,…,xn. If the probability distribution of the random 
variable X is known then the Hacking’s frequency 
principle [8] claims that the degree of belief of an event 
is equal to its probability i.e. Bel=P�. However, in the 
TBM model, the degrees of chance are not equated with 
the degrees of belief. Thus, if asked about the belief held 
by an agent regarding the future realization of X, as 
argued in [1], this degree of belief should be 
distinguished from the degree of chance which is only 
handled at pignistic level in the TBM model. Hence, 
according to [1], “we replace the Hacking’s principle by 

the weaker requirement that pignistic probability of an 

event is considered as its long run frequency when the 

latter is known”. In other words, the belief functions on 
credal level quantifying the belief regarding the next 
realization of a random variable should be such that its 
pignistic probability distribution is the probabilistic 
model } : {P Θ∈θθ

. In order to be consistent with the 

underlying assumptions of the TBM used in our context, 
we will adopt in this paper this point of view to derive 
the beliefs with regard to the future observations of a 
random variable.    

If the pignistic probability distribution equated with a 
probabilistic distribution is known while the 
corresponding belief and plausibility functions are 
unknown, then we can recover these functions using the 
least commitment principle proposed in [3]. Since the 
pignistic transformation is not bijective, an infinite 
number of BBA, called a set of isopignistic belief 
functions, can induce the same BetP. In the absence of 
additional information, the least commitment principle 
suggests to choose, in the set of all isopignistic BBA, the 
one that maximizes the commonality function q, named 
q-least committed (q-LC). Dubois, Prade and Smets [3] 
demonstrated that the (q-LC) BBA associated with a 
given pignistic probability distribution BetP is unique 
and consonant (i.e. a possibility distribution). Therefore, 
according to the results of [3], the conditional plausibility 

)(xpl
Ψ  of observing x over the discrete space � given 

each Θ∈
i

θ  is calculated from BetP as follows: 

               ))(,)(min()( � Ψ∈

Ψ =
y

ypxpxpl                 (10) 

Where p(x)=BetP(x) which is a unimodal discrete 
probability distribution. In the case where � is 
continuous, the conditional plausibility of a probability 
density is defined in the same way by substituting the 
finite sums by integrals. 
                
After calculating the posterior belief functions, similarly 
to the classical way for updating a probability 
distribution with the Baye’s theorem, it is possible to 



estimate the parameter by constructing the pignistic 
probability induced by the posterior belief functions.  

In this section, we studied two approaches for updating 
the belief functions when new knowledge is available. 
The first approach is simply based on a standard 
application of the Dempster-Shafer theory while the 
second is based on the generalization of the Bayes’ rule 
within the TBM. Both approaches do not require prior 
belief functions to be set. In literature, theses two 
approaches have been criticized by [16] and recently 
discussed in [4]. In practice, the use of Dempster’s rule 
and GBT has been studied for updating the belief 
functions in some applications [5][11]. In the next 
sections, we will consider these two approaches in the 
context of nuclear PRA data. 

4   Application of belief updating approaches 
to Nuclear PRA context 

The use of belief functions for modeling the uncertainty 
associated to reliability parameters in the PRA context 
has been studied in [20][21]. In these works, the focal 
elements are constructed from the data as the closed 
intervals (focal intervals) and then the belief functions 
are derived. From a computational point of view, this 
construction is helpful to propagate the uncertainty 
through a given model function by simulation code. In 
this section, we will study the use of the approaches 
presented previously for updating belief functions when 
new data are available. But let us start by recalling the 
method currently used in this purpose and based on the 
MLE [20][21].   

4.1  Belief updating from pooled data with Maximum 

Likelihood Estimation 

The MLE is often used to estimate the value of 
parameters of probabilistic models given observations as 
the current practice of EDF’s Nuclear PRA. Basically, 
this method relies on the principle of long run frequency 
to estimate the value of parameters given the number of 
observations over a time period. For example, the failure 
rate (often noted as �) of a component with exponential 
lifetime is estimated by:  

                                   
t

x
=λ̂                                        (11) 

Where x is the number of observed failure events over 
the time period t. Associated with the estimator, the 
confidence interval is provided to represent the range of 
possible values of parameter in which the true value is 
contained “in most cases” (i.e. for a fraction 100(1-�) of 
the samples). In the practice of PRA, a 90% confidence 
interval is often used. When new observations become 
available, they are combined with previous ones using 
the pooled data technique to give an updated estimator 
and a new confidence interval. The new estimator is 
calculated as:  

                                  

�
�

=

i i

i i

t

x
λ̂                                 (12) 

Where �i ix  is the total number of observations and 

�i it is the total exposure time. The confidence 

interval is also recalculated given this new information. 
In the traditional uncertainty analysis of PRA, on the 
basis of this information, a presumed probability 
distribution such as a log-normal distribution is used in 
the sense that the subjective probability will reflect our 
beliefs regarding the values of parameter. However, this 
point of view has been questioned due to the potential 
impact of the choice of probability distribution on the 
results of decision making. An approach using the belief 
functions of DST is proposed to overcome the issue as 
studied in [19]. The construction of these functions is 
based totally on the information given in the form of a 
nominal value (i.e. an estimated value) and a confidence 
interval. Obviously, the updating of belief functions 
when new information is available is not carried out by 
mean of an aggregation of degrees of belief. Such an 
approach may have difficulty to incorporate with other 
sources of information such as those given by expert’s 
opinion. This problem can be addressed using the ROC 
presented in section 3. This approach allows integrating 
the prior information given by experts’ opinions or past 
experiences in a natural way. We will see hereafter how 
this approach is used in the context of PRA data. 

4.2 Belief updating with Dempster’s rule of 

combination   

When the information about the values of uncertain 
parameters comes from experts’ judgments, the belief 
functions of DST are appropriate to represent the degrees 
of beliefs regarding the uncertainty. As independent 
expert’s judgments are given, the combination of these 
sources of information can be done using the ROC. The 
same manner can be applied to the case where operating 
feedback data become available and new belief functions 
are calculated by taking account of this data as well as 
the information given by expert’s judgments. In this case, 
the belief functions given the operating data are obtained 
from the MLE approach and then aggregated with those 
assessed from expert’s judgments. Obviously, one may 
also apply the ROC for statistical independent data 
within the MLE context by constructing the belief 
functions obtained from the confidence intervals of MLE 
given each data and then aggregating all these functions 
to obtain the updated belief functions. However some 
precautions should be taken when using the ROC since 
the belief functions are constructed on the basis of the 
confidence intervals of MLE which are randomly derived 
from a random probabilistic process. This can lead to 
some cases where the BBA is equal to zero because these 
confidence intervals may not overlap each other, i.e. they 
are disjoint intervals each other. This problem can be 
only addressed if we admit that all the confidence 



intervals contain the true value of parameter although 
this is only true in “most of the cases” (e.g. 90% of 
chance). This is an unavoidable drawback of the 
approaches based on the intervals of confidence of MLE 
to construct belief functions. In [19] some other 
approaches for the combination of sources of evidence 
such as mixing or enveloping approaches can be applied 
for addressing this issue. However, these methods are not 
appropriate in this context because they tend to widen the 
uncertainty while we aim to construct the belief functions 
concentrated around the true value, as new information is 
available. The GBT inspired from the classical Bayes’ 
rule could be more suitable to construct belief functions 
given statistical independent observations since this 
approach does not rely on the use of random confidence 
intervals of MLE. 

4.3 Belief updating with Generalized Bayesian 
Theorem. 

The classical Bayes’ theorem has been studied for the 
parameter estimation and the updating of uncertainty 
probability distributions in the context of nuclear PRA as 
in [2][10]. The major issue of this approach resides in 
choosing an appropriate prior probabilistic distribution 
since results of an uncertainty analysis could be impacted 
by this choice. The GBT approach within the theory of 
belief functions presented in section 3.2 could be the 
solution to this problem and allows us moreover to 
characterize the epistemic uncertainty in a more 
appropriate manner. In general, the probabilistic models 
in PRA are often supposed to be known in order to 
characterize the random occurrence of accidents that may 
occur at nuclear power plants. Therefore, when the belief 
functions are used to represent epistemic uncertainty 
associated to its parameters, the updating of these belief 
functions using GBT can be carried out by considering 
these probabilistic models as pignistic probability 
distributions as discussed in section 3. The conditional 

plausibility )|( iθxpl
Ψ  on the space of data � given 

each Θ∈
i

θ  is calculated using the least commitment 

principle. The probabilistic model in PRA can be divided 
into two principal types: discrete model and continuous 
models. However, since the information provided in PRA 
databook is often given in the form of number of 
observations, it is usually enough to consider the 

conditional plausibility )|( iθxpl
Ψ  on the discrete space 

of data �. Let us study for instance a Poisson model with 
an event rate �(2) over an operational time t, the 
probability of having x accidental events over � given 
the value of event rate Θ∈iλ  is given as follows: 

                         
!

)(
)|( i

x

t
exp

x

iti
λ

λ λ−
=                           (13) 

                                                
(2)

we use the notation � instead of � for this example to keep the same 

notation used in PRA practical example of the section 5.

Therefore, when the evidence in form of x failures is 

available, the conditional plausibility )|( iλxpl
Ψ  is 

simply calculated by: 

       ))|(,)|(min()|( iii � Ψ∈

Ψ =
y

ypxpxpl λλλ       (14) 

For example let us consider a frame of data �={x1, x2, x3, 
x4}, the Poisson model given a specified value of �i has 
the probability distribution such that p(x1)=0.3, p(x2)=0.4, 
p(x3)=0.2 and p(x4)=0.1. The conditional plausibility 

)|( i3 λxpl
Ψ  of having x3 failures according to equation 

(14) is  

      pl
�(x3|�i)=min(0.2,0.3)+ min(0.2,0.4)+ min(0.2,0.2)+ 

                  + min(0.2,0.1)=0.7. 

Having calculated the conditional plausibility over space 

�, the conditional belief functions for all subset A ! �

given any observation x ∈ Ψ can be obtained using 
equations (7,8). Nevertheless, as we can see, these belief 
functions from theses equations are computed for the 
subsets of the discrete frame � while it is proposed to 
construct them on the basis of focal elements which are 
closed intervals (i.e. focal intervals) for uncertainty 
propagation in later [21]. Therefore, in order to allow us 
to update the belief functions using the GBT in our 
context, it is necessary to transform the belief functions 
defined on discrete frame to those defined on the real 
line. We propose for this purpose to build the “empirical” 
cumulative belief functions and then get the focal 
intervals from the discretization process. Some additional 
tasks need therefore to be performed. First of all, to get 
the discrete frame � of a continuous variable �, we 
partition the frame � such that we have an increasing 
ordered set of  �1, �2,…, �N . Then we apply the GBT 
approach using above equations (7,8) or (6) to calculate 
the conditional belief and plausibility functions for sets 
{�1}, {�1, �2}, {�1, �2, �3}…{�1, �2, �3,…, �N}. Since 
these are nested sets, we have always for the belief 
function (the same for the plausibility function) that 
Bel({�1}) ≤ Bel({�1,�2}) ≤  …≤ Bel({�})=1. Therefore, 
similarly to the discrete probability theory if we consider 
elements �1, �2,…, �N as order statistics and previous 
belief (plausibility) values as cumulative probabilities 
then we can build the “empirical” cumulative belief 
functions on the frame � of the continuous variable � by 
using a step function. Thus, let note B sets {�1}, {�1, �2}, 
{�1, �2, �3}…{�1, �2, �3,…, �N}, theses functions are 
expressed as follows 
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and  
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where A1 (x) equals one if x is in A and zero in the 

opposite.  



These two functions could be considered as the bounds 
of a p-box because they are both non-decreasing 
functions from the real values into the interval [0,1] and 
the function )|],(( xBel θ−∞Θ  is less than or equal to 

)|],(( xPl θ−∞Θ  for every value of �. By adopting this 

view, the Dempster-Shafer focal intervals can be 
approximately obtained using the discretization methods 
as described in [19]. The principle of discretization is 
illustrated in the Figure 1.  

Figure 1 Principle of the construction of focal intervals 
from a p-box. 

The lower and upper bounding functions are assumed to 
be right and left continuous, respectively. Each rectangle 
Ai in this figure corresponds to a focal interval [ai ,bi] 
with mass ([ai,bi])=di-ci where di and ci are probability 
values. These focal intervals then can be used to 
propagate the parameter uncertainty as done in the 
framework proposed in [21]. In summary, in order to use 
the GBT for updating the belief functions of an uncertain 
parameter � of a PRA probabilistic model, we go through 
the following steps: 

Step 1: Define the discrete frame � of possible values of 
uncertain parameter � and then sort them in an increasing 
order for example, �1, �2,…,�N. In practice, the uncertain 
parameter � is often given by a bounded confidence 
interval; the frame � can be obtained by discretizing this 
interval into N possible discrete values.  

Step 2:  When a new observation x0 becomes available, 
compute the plausibilities pl(x0| �i) of observing x0 given 
each �i using the formula of least commitment principle

(14). 

Step 3: Use the Generalized Bayesian Theorem, to 
calculate the cumulative beliefs for �1 , �2,…, �N and then 
construct “empirical” cumulative belief functions of 
equations (15,16) for each semi-closed interval (-�, �i] 
on the frame � given the observation x0 . 

Step 4: Use the discretization methods to obtain focal 
intervals from “empirical” cumulative belief functions. 

Step 5: If the belief functions of some other independent 
observations are available and/or the prior belief 
functions come from other sources (e.g. expert’s 

judgment), the final posterior belief functions can be 
obtained using Dempster’s rule of combination. 

Step 6: When it is required to provide a point estimate 
value of parameter � as in the PRA context, compute the 
mean (or median or mode) of the pignistic probability 
distribution induced from posterior belief functions.  

In this section, we considered the application of updating 
belief functions for parameter uncertainty representation 
in the context of PRA. As we can see, since the 
mechanism of constructing the belief functions given 
new information of each method is quite different, thus 
the results obtained from each one could be different 
from one to another. Since our main goal is to build 
posterior  belief and plausibility functions such that they 
should be concentrated around the true value of the 
parameter, the width between the belief function and the 
plausibility function should be reduced as new 
information are available. In order to measure this width 
of the belief functions obtained from each approach, the 
measure uncertainty as proposed in [12] can be applied. 
This measure is defined as follows 

  �
Θ⊆
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)]).(,([                        (17)      

This is called a non-specificity measure which quantifies 
the amount of uncertainty represented by belief 
functions. As we can see, it measures the aggregated 
width of all intervals which is the area between the belief 
and the plausibility functions. The smaller non-
specificity measure AW, the more specific is the resulting 
of belief functions. In the following section, this measure 
will be employed to compare results of updating belief 
approaches through a practical example. 

5   Practical example 

In order to illustrate the above approaches through a 
practical example, we propose to take the example that 
has been used in [2]. The following example is addressed 
for the study of an initiating event of PRA but the 
principle can be applied for other types of failure events. 

Problem: Considering a Poisson model with the true but 
unknown value of an initating event rate �= 1.2 events 
per year (13.69E-5/h) over the time period of observation 
t= 6 years. Thus, the event count follows a Poisson 
distribution with mean �t = 7.2.  In PRA, due to lack of 
data, the event rate � is subjected to epistemic parameter 
uncertainty.  

Suppose that we had already prior information about the 
event rate � given by a point estimate and an error factor 
(EF(3)), say, �mean= 5E-5/h and EF=5 which can be 

                                                
(3)

EF is often used in PRA context to indicate the range of possible 

values of an uncertain parameter.



interpreted as the 90% confidence interval such as 
]525  ,51[ −−∈ EEλ  see [20]. This prior information can 

be viewed as obtained from either expert’s judgment or 
from previous experience. The prior belief functions 
based on this information are constructed by the 
approach studied in [2] by considering the point estimate 
�mean

  as the mean value of the uncertain variable �. These 
belief functions are displayed in the Figure 2.   

Figure 2 Prior belief and plausibility functions 

Now let us suppose that we have new data that are 
observed from nuclear plants. This can be done by 
considering the above Poisson process be repeated in a 
number of times, say, 40 event counts are generated. 
These may be interpreted as counts from 40 identical 
plants, each observed for 6 years, or from 40 possible 
six-year periods at the same plant. Figure 3 shows that 
the first randomly generated event count was 10, the next 
was 5, the next was again 10, and so on. Some of the 
event counts were less than the long-term mean of 7.2, 
and some were greater. The maximum likelihood 
estimates of event rate � are plotted as dots in Figure 3. 
The corresponding 90% confidence intervals for � are 
also plotted. In the Figure 3, the vertical dashed line 
shows the true value of �, 1.2.

Figure 3 Confidence intervals from random data, all 
generated from the Poisson process [2]. 

Given new data, we will next construct the belief 
functions using the studied approaches.  We will consider 
two cases: one observation and multiple independent 
observations. 

Case 1: One observation 

In this case, in order to show the advantage of the GBT 
with regard to the classical Bayes‘ theorem, we will 
distinguish the two following cases. 

a.  No prior information is available (prior ignorance)   

Suppose that we have only the information about the 
initiating event from the first period of observation of  
the Poisson process which gives 10 event counts i.e. 
x=10. In this case, the point estimate value and the 90% 
confidence interval given by the MLE method are 

19.02E-5/h (1.66/year) and [10.32E-5, 32.27E-5] 
respectively. The belief and plausibility functions can be 
constructed from this information as showed in the 
Figure 4. 

Figure 4 Belief and plausibility functions constructed 
from MLE approach and GBT without available prior 
information. 

Since we have only one single data (i.e. the first period of 
observation) while no prior information is available, the 
Dempster’s rule of combination of evidence is not 
necessary. The Figure 4 displays also the belief functions 
obtained from the GBT approach. Unlike the classical 
Baye’s theorem where a prior probability distribution is 
required,  no such requirement is needed in the GBT 
approach. In the absence of prior information, a vacuous 
belief function i.e. m(�)=1 which represents perfectly  



the total ignorance is sufficient. This allows us to avoid 
any assumption about the choice of an appropriate prior 
probability distribution as in the classical Bayes’ 
theorem. As we can see from the Figure 4, compared to 
the belief functions of the MLE approach, the results of 
GBT in this case are more specific because the non-
specificity measure AW  (12.63E-5) is smaller that of the 
MLE (14.7E-5). The mean pignistic value of the GBT is 
17.7E-5/h compared to true value of event rate (13.69E-
5/h). Note that, the construction of belief functions is 
based on the information of 90% confidence interval 
which is viewed as the upper and lower bounds of the 
parameter. As discussed in [20][21], in some context this 
consideration may be helpful to eliminate the values 
outside the interval which are viewed as unrealistic. 
However, in other contexts, this can lead to loss of 
information. The results of the GBT approach are not 
impacted by this consideration.      

b. A priori information is available   

When prior information is available, the belief functions 
of this information can be combined with the belief 
functions given the new observations. Suppose that we 
have the prior information of event rate as from the 
Figure 2 i.e. �mean= 5E-5 and 90% confidence interval 
[1E-5, 25E-5]. This information is often given by 
experts’ opinions, however, if desired, it can be also 
viewed as obtained from a previous observation. In this 
case, the point estimate �mean= 5E-5 can be considered as 
if the event counts over the time period of 6 year was 3. 
As a consequence, when the first data of the Poisson 
process comes with 10 event counts of the first period of 
observation, the event rate estimated from the pooled 
data  by MLE approach is �= (10+3)/(6+6)=1.083 events
per year (12.36E-5/h) and the 90% confidence interval is 
[7.31E-5, 19.66E-5]. The belief functions constructed 
from the pooled data of MLE are showed in the Figure 5. 
On the other hand, instead of constructing the belief 
functions from the pooled data, we can use the ROC to 
build the belief functions given each data. In this case, it 
is merely sufficient to apply the ROC to prior belief 
functions (Figure 2) and the belief functions given the 
first new data (Figure 4). The same way applied to the 
conditional belief functions with GBT approach. The 
results of these approaches are displayed in the Figure 5. 

Figure 5 Posterior belief and plausibility functions of 
approaches vs. prior belief and plausibility functions. 

As can be seen, the area between the belief and 
plausibility functions of GBT approach is smallest since 
its non-specificity measure (AW=6.37E-5) is smaller than 
that of pooled data MLE approach (8.33E-5) and that of 
ROC approach (8.35E-5). The mean pignistic value of 
GBT approach is 12.48E-5/h compared to this value 
given ROC approach (15.8E-5/h). These values are not 
far from the true value (13.69E-5/h). 

In the first case study, we considered that we had only 
one data from the first period of observation. In the next 
case, we suppose having multiple independent 
observations. 

Case 2: Multiple independent observations

In this case, suppose that we have 10 independent  series 
of observations which are collected either from 10 
identical power plants during the same time period or 
from 10 possible six-year periods at the same plant. Thus 
we have a series of event counts (10,5,10,6,10, 
10,7,10,9,2). In the Figure 3, we use the first ten event 
counts among 40 event counts generated from the 
random Poisson process. 
  
As in case 1b, given these observations in conjunction 
with the prior information, the pooled data MLE 
approach gives the estimated value 14.18E-5/h and 90% 
confidence intervals [11.70E-5, 17.04E-5]. The belief 
functions constructed from the pooled data are showed in 
the Figure 6. In this figure, the results of the ROC 
approach are also displayed. As can be seen, the resulting 
belief and plausibility functions do not contain the true  

Figure 6 Posterior belief and plausibility functions of 
approaches in case of multiple independent observations. 

value of the event rate because the highest value of these 
functions on horizontal axe (the maximum value) is 
smaller than 13.69E-5/h. This is explained by the fact 
that the assumption that all 90% confidence intervals 
must contain the true value of parameter is not verified 
(see the 10th event count).The belief and plausibility 
functions coming from the GBT are slightly less specific 
than those coming from the MLE approach in this case 
but the results allow taking into account possible values 
located outside the 90% confidence interval of MLE.

  



6   Conclusions and perspective 

In this paper, we studied different approaches for 
updating belief functions representing parameter 
uncertainty given new available information in the 
context of PRA. Although the method of constructing 
belief functions from pooled data of MLE is intuitive and 
consistent with the current practice of EDF PRA data, it 
has some drawbacks regarding the incorporation with 
other sources of information such experts onions. The 
method of using the ROC to aggregate belief functions 
given data within the MLE context is not recommended 
since its results are too sensitive to random sampling 
process. The GBT approach appears to be the most 
appropriate approach to use in PRA context. This 
approach can address the major issue in the classical 
Baye’s rule about the assumption of prior probability 
distribution and moreover allows us to overcome the 
existing drawbacks associated to the MLE approach. 

The use of DST for uncertainty representation has been 
only recently studied in PRA context. A number of 
challenges of this framework come up for its application 
within the industrial risk analysis. These approaches 
studied in this paper for constructing and updating the 
belief functions need to be reviewed in PRA community 
and studied within industrial contexts to be integrated in 
the formal regulatory process.   
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