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Abstract

In realistic decision problems there is more often than
not uncertainty in the background information. As for
representation of uncertain or imprecise probability
values, second-order probability, i.e. probability dis-
tributions over probabilities, offers an option. With
a subjective view of probability second-order proba-
bility would seem to be impractical since it is hard
for a person to construct a second-order distribution
that reflects his or her beliefs. From the perspective
of probability as relative frequency the task of con-
structing or updating a second-order probability dis-
tribution from data is somewhat easier. Here a very
simple model for updating lower bounds of probabil-
ities is employed.

But the difficulties in choosing second-order distribu-
tions may be further alleviated if structural properties
are considered. Either some of the probability values
are dependent in some way, e.g. that they are known
to be almost equal, or they are not dependent in any
other way than what follows from that the values sum
to one.

In this work we present the unique family of dis-
crete second-order probability distributions that cor-
respond to the case where dependence is limited.
These distributions are shown to have the property
that the joint distributions are equal to normalised
products of marginal distributions. The distribution
family introduced here is a generalisation of a spe-
cial case of the multivariate Pdlya distribution and is
shown to be conjugate prior to a compound hyperge-
ometric distribution.

Keywords. Discrete probability, second-order prob-
ability, imprecise probability, multivariate Pdlya dis-
tribution, conjugate prior, compound hypergeometric
likelihood.

1 Introduction

In non-trivial decision problems there is often uncer-
tainty about background data. A decision support
system or any system that is meant to work with such
uncertain data needs a form of representation for un-
certain information or else ignore the uncertainty, i.e.
allow for false certainty or false precision. Here we
are concerned with representation of uncertain or im-
precise probability values. Uncertainty and impreci-
sion will be treated the same way, whether a decision
maker believes that there is a precise value but is un-
certain as regards to what it is, or if imprecision is
inherent, the end result is that there is a set of feasi-
ble probability values.

Among models for imprecise probability there are
interval based approaches, [8, 9, 14, 19, 20, 21],
where the probability of an event is represented by
two numbers, the lowest and highest possible value.
There are also hierarchical models such as those in
[11, 10, 23, 6, 4, 2, 22, 18, 17, 5, 12], where each prob-
ability value in the interval is weighed. The poten-
tial for discrimination that is present in hierarchical
models may be utilized to express that some probabil-
ity values are more reasonable than others. However,
this power is difficult to wield since on the one hand
local, one-dimensional, changes have global, multi-
dimensional, effects that might be hard to grasp, and
on the other hand since given some beliefs about im-
precise values there appears to be countless sets of
weights that are consistent with the beliefs.

1.1 Structural Considerations

The solution might lie in adding structural informa-
tion, information that is not asked for in traditional
models for imprecise probability, but is nonetheless
crucially important and not necessarily hard to ex-
tract. The importance of structural information in
general is argued for in [3]. Here we will focus on
one such property, dependency. Dependency is a fun-



damental concept in probability theory. In this pa-
per we work with one particular hierarchical model,
second-order probability, where the weights are them-
selves probabilities. Since second-order probability is
a concept that resides fully inside probability theory
there is no reason to assume that issues of dependency
would be unimportant in that context.

Now the stochastic variables in a second-order prob-
ability distribution are probabilities of events in the
same outcome space, so the variables are non-negative
and sum to one. This fact alone obviously rules out
independence. But two first-order probabilities might
be dependent beyond the summing to one, it is con-
ceivable that two probability values are almost the
same in all situations, or that if one value increases
by a certain amount, another value decreases even
more. As an example of the first mentioned case we
could take the probabilities of three mutually exclu-
sive events A, B and C. We have that Pr(BUC) =
1 — Pr(A), but assume that Pr(B) = Pr(C) = =z.
Then all probability vectors (Pr(A),Pr(B),Pr(C))
have the form (1 — z,z,2) and B and C have a
higher degree of dependency than what is prescribed
by Pr(A4) + Pr(B) + Pr(C) = 1. Then again, cases
where there are no such further dependencies are also
conceivable and this is the case that we explore in this
paper since independence usually is less complicated
than dependence.

Below we suggest a notion that is intended to capture
such limited dependency, i.e. that the probabilistic
constraint of non-negative variables summing to one
is the only source of dependency. Further we demon-
strate that such limited dependency means that the
joint second-order probability distribution factors into
its own marginal distributions, almost as a joint dis-
tribution of independent variables. The difference is
that since the variables are not really independent the
joint distribution is equal to the normalised product
of marginal distributions, the product is multiplied
with a factor not equal to one.

A family of continuous second-order probability dis-
tribution with this property is in [16] shown to be a
shifted or contracted variant of the Dirichlet distri-
bution. In fact, the parameters of that version of the
Dirichlet distributions are locked to 1/(n—1), where n
is the number of possible outcomes, instead a new set
of parameters a;, i = 1,...,n, are introduced. The
a; are lower bounds of the first-order probability vari-
ables. In other words, the lower bounds determine the
distribution. The topic of this paper is the discrete
counterpart of the contracted Dirichlet distribution
that factors into marginals.

Among the reasons for looking at discrete second-

order probability distributions as opposed to the
shifted Dirichlet distribution are determination and
updating of lower bounds. A lower bound for a prob-
ability in a continuous second-order distribution can
usually not be the result of an observation, but af-
ter seeing one black tulip among 20 in a flower shop
I know that the probability of a random tulip in the
shop being black is at least 1/20. There could also
be computational advantages to discrete distributions
and in practice the limited resolution of a discrete dis-
tribution might be sufficient.

Since an important advantage of discrete second-order
distributions as opposed to their continuous counter-
parts is that they fit nicely into a simple model for
updating we consider the conditions under which the
distribution considered here are conjugate. Conju-
gacy is of interest here since it would be important to
know whether the structural properties represented
by a family of distributions such as that shown here
can remain after updating.

The main result of this paper is then twofold; the
unique family of discrete second-order probability dis-
tributions that factor into marginals and the com-
pound hypergeometric likelihood that is needed for
these distributions to be conjugate.

2 Limited Dependency

We assume that all first-order probability values can
be written as a ratio k;/N, where k; > 0 and
>, ki = N. For simplicity we will use the nomina-
tors k; as variables, the denominator N would always
be the same. We want to capture and formalise the
notion that Z?:l k; = N, k; > 0 is the only source of
dependency among the variables k;. When this is the
case, the value of a variable would depend on other
variables but dependency would only be a function of
the sum of variables. For instance, considering the
value of k; it is important what value the sum of say,
ks and kg holds, but it is irrelevant if k3 increases and
k¢ decreases as long as the sum ks + kg stays the same.

Let X # k; be a subset of the set {k1,ko,...,k,} of
random variables (3" ; k; = N). By definition of
conditional probability p;(k;|X) = %. The p:s
are probability mass functions, indexed where needed
to indicate marginal functions. If we wish k;:s depen-
dency of X to be limited to a function of the sum of

variables we should be able to describe p;(k;|X) as
f(kz + ZkieX kjﬂ |X| + 1)
Flkex ki 1XT)

In the functions f we need not only sums of variables
but also the number of variables in the sum; the value

pi(ki| X) = pi(k;)



of a sum of many variables have more information
than a sum of few variables even if the sums are equal.

Since
P(kry, Bre2)s oo br(ny) =

Pr1) (kr1))Pr2) (Br(2) | kr(1))
Pr3) (kr3yEr(1), 7r(2)) (2)
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for any permutation m, if

f(kz + ZkiEX kja |X| + 1)
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as in Equation (1) we have that
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= praiy (ki)
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The numerator f(kr(1) + ... + kr(n),n) is obviously
constant since Y . k; is constant equal to N. But
the denominator is apparently dependent on the per-
mutation 7: if f(k;,1) is not constant it is not
possible to express the joint probability distribution
p(k1,...,k,) in this way. On the other hand, if
f(k;, 1) is constant p(ki,...,k,) equals the product
of marginal distributions multiplied with a constant.
That is, if the type of limited dependency described
by Equation (1) is achievable the joint probability dis-
tribution must factor into marginals.

3 Factoring into Marginals

We have seen that dependence limited to the sum
of random variables means that the joint probabil-
ity density function is proportional to the product of
marginal distributions. In the case of discrete second-
order probability distributions the limitation is that
random variables k;,1 < i < n are such that k; > 0
and Y1 | k; = N. Note that the k;/N are probabili-
ties, not the k;. We could have the rational numbers

k;/N as random variables, but presentation is simpli-
fied by dropping the denominator.

Before delving into the calculations, some words
about the z transform might be in place. Below we
solve the problem at hand by using the convolution
property that Z{pi(k) * p2(k)} = Zp1(k)Zp2(k) so
that the integrals involved in computing marginal dis-
tributions can be computed by eliminating products
in a system of equations of products. That we can
use convolutions is due to the variables having a fixed
sum. The z transform most used below is that of
% which is (1_%%27 In turn, the Gamma
function I'() is defined as [ t*~te~" dt for complex
numbers with positive real parts. For integers it is just
the sg hifted factorial, I'(n) = (n — 1)!. For more on
the z transform, see [7] and on the Gamma function,
see e.g. [1]

Dependence limited to the sum of k; being constant
equal to NV means that

p(k17k27~-~ n = H

where p; is the marginal distribution corresponding
to variable k;. Please observe that 2?21 ki = N
throughout the paper.

Then the marginal distribution p;(k;) equals

%pi(ki)*j#%‘ (N = ki) , @)

where *;; is the n — 1-fold repeated convolution p; *
Po ko kD1 % Pig1 k- x Py, and K = xI p;(N).

In the transform domain,

HZ{pJ

J#i

)} = Z{KH(ci — ki)} (5)

for all 4,7 = 1,...,n, where H is the Heaviside func-
tion and the support of p; ends at k; = ¢;. Cancelling
in these n equations in the z domain implies that ex-
cept for different shifts all marginals p; are equal.

(ki)

is any shifted function ¢;(k; — a;),

2 i) = (22 ) L (6)

z—1 z%i

due to the shift property Z{z(n —k)} = Z{z(n)}zF

and
H Z{pj(k;

J#i

Kz 1
1 Z]#? aj ’ (7)



hence

Kz 1
X (k) =271 — Yk =
j#ipi(k;) 21 i (ki)

KH (k=) a; ]|, (8)
J#i

giving

Kjepi(N = k) =KH | N—ki - a; (9)
JFi
which equals KH (¢; —k;) if ¢; = N — 3., a5, ie.
the upper limit of the support of p; is N — Zj# aj,
where a; is the lower limit of the support of marginal
distribution p;.

So
pi(ki) = 27" {(Zfizl) - Z}” } (ki) =
K# (kifaz+ n—l) 10)
(ki —a;)'T (ﬁ)
And

Kﬂz—l{(zzl)ﬂ}w—iai):

L N ()
(=1 (N+1- 0 0+ 55

n—1

(N =i a)T (ﬁ)
(n—1)0 (N+1—Z§;1a7;+n%l)

and the marginal distributions are
pi(ki) =
(N = Sy )T (ki — i+ 1)
(=1 (N + 1= 7 a5+ 515 ) (i — a0)!

1=1,....n

The joint distribution is

p(kla .. akn) -

(N = e Tl — e

(n—1)T (ﬁ)n_l r (N +1-3ait ﬁ)

Going back to Section 2 we have now seen that the
form of limited dependency that implies factoring into
marginals is possible to realise, in fact by consider-
ing the multivariate marginal distributions it can be
shown that the functions in Equation (3) have the
desired properties, that is f(ki,...,kn,n) = 1/K and
f(ki, 1) is constant equal to one. The corresponding
reasoning could also justify the constraint of factoring
into marginals for the contracted Dirichlet distribu-
tion of [16].

3.1 Basic Properties

Since T'(k + z)/k! approaches k*~! as k grows when
x << k, the discrete distribution described above be-
comes, appropriately normalised, equal to the shifted
Dirichlet distribution of [16] when N tends to infin-
ity. In this, k;/N and a;/N of the discrete distribution
corresponds to the real-valued first-order probability
z; and a; in the continuous distribution.

Just as the continuous distribution in [16] is a gener-
alization of a Dirichlet distribution with parameters
1/(n—1), the discrete probability distribution consid-
ered here is, when the parameters a; = 0, a multivari-
ate Pélya distribution [13] with parameters 1/(n—1).

The mean of a marginal probability density function

p;(k;) of the type described here is

N-Y" q
a; + 721:1 i 5 (15)
n

c.f. the mean a; + # of the shifted Dirichlet
distribution.
The variance is

(n—1)*(N =31, ai)
n?(2n — 1)

(n—1)(N =3 a)
n(2n —1)

(16)
which approaches N? times the variance of the shifted
Dirichlet distribution with lower bounds a;/N.

The multivariate Pdlya distribution is obtained by
drawing the underlying probabilities p; from a Dirich-
let distribution and integrating out p = (p1,...,0n)
from the multinomial distribution. In the same way, if



we compound the Dirichlet distribution with param-
eters 1/(n — 1) with the shifted multinomial distribu-
tion

(N_Z?:l ai)!Hz 1175€ T

I (s ! "
that is used in [15], we have
/ 1
P (n—1)"T(n/(n— )" Ty p
=S a0, phi
(N %_11(]1)' Hal;'pz dp = (18)
(V=i @)

(n—1)IA/(n— 1) IT(N +1+1/(n—1))
ST (ki —ai+1/(n— 1))
H (k/’l — ai)!

i=1

That is, the joint discrete distribution that factors
into marginals.

4 Example

Let n=4,N =8 and a; = 0,as = 1,a3 = 3,a4 = 0.
Then

p(k1, ko, k3) =
40 (k1 + 1/3)T (ke — 1 +1/3)
3T(1/33T(5 + 1/3)kr ! (kz — 1)!
T(ks —34+1/3) (8 — k1 — ko — ks +1/3)
(]{33 - 3)'(8 - kl - ]{32 - kg)'

k1 0 1 2 3 4

0.534 0.178 0.119 0.0923 00769
ko 1 2 3 4 5
0.534 0.178 0.119 0.0923 0.0769
ks 3 4 5 6 7
0.534 0.178 0.119 0.0923 0.0769
Table 1: Marginal probability density values for
pl(kl)akl = 0,...,4,p2(k2),k2 = .,5 and
pg(kg), kd = 3, ey 7
and the marginal distributions are
5—k1 8—k1—ka
=Y > plhi ke ks) =
ko=1 k3=3
4T'(k1 +1/3)
30(5 + 1/3)k! (19)
5—k2 8—k1—ka
=Y Y plhrkaks) =
k1=0 k3=3
AT (ks —1+1/3) 7 (20)
30(541/3)(ky —1)!
T—ks 8—k1—k3
=Y > plhi ko ks) =
k1=0 ka=1
AT (ks —3+1/3) (21)
30(5+1/3)(ks —3)!’
palka) = pa(8 — by — ko — k) =
4—kq 5—k1—ka
S0 plkika,8— ki —ky — ks) =
k1=0 ko=1
AT (ks +1/3) A8 — k1 — ko — k3 +1/3)
3U(5+1/3)ks!  30(5+1/3)(8 — k1 — ko — k3)!
(22)

The means of py, p2, p3s and p4 are 1,2,4 and 1, respec-
tively, corresponding to mean first-order probabilities
of 1/8,1/4,1/2 and 1/8. Since k; and k4 share the
same conditions, their respective marginal probabil-
ity density functions are equal. We see a table with
values of the marginal distribution functions in Table
1. The values reveal that the distributions are essen-
tially equal but differently shifted according to their
respective lower bounds of support.

5 Updating

One advantage of treating relative frequencies as first-
order probabilities is that updating of lower bounds
of probabilities may come about in a natural way.
See [15], where this is discussed and exemplified with
(shifted) multinomial distributions as prior and poste-
rior distributions and a hypergeometric likelihood. In



this paper we are concerned with a shifted version of
the multivariate Pélya distribution where the param-
eters of the Pélya distribution are locked at 1/(n — 1)
but a new vector ( ai as an, ) of parameters
is introduced, where the a; are lower bounds, i.e. for
whatever reason we know that there are at least a;
objects of type ¢ among the total N objects.

As described above in Section 3 this variant of the
multivariate Pélya distribution represents a situation
where the variables k;, the number of objects of re-
spective type, are in a sense minimally dependent.
This property does not necessarily remain after up-
dating and since the case of further dependencies than
those incurred by >°""  k; = N remains to be inves-
tigated we choose to consider the conditions under
which updating must be done for the shifted multino-
mial Pélya distribution to be a conjugate distribution.
First though, the model for updating deserves some
explanation.

5.1 The Urn and the Plate

Since the lower bounds a; are the only parameters it
is these values that can be affected by updating. The
idea behind the model proposed in [15] is that if I
observe a; objects of type ¢ I know with absolute cer-
tainty that there were at least a; such objects to begin
with. In terms of the ubiquitous urn, we have N balls
with n different colours in an urn and the question
is as usual how many balls there are of each colour
in the urn. Updating consists of picking a handful
(3", a;) of balls from the urn and observing that a;
of them have colour 3.

Then we know that there were at least a; balls with
colour ¢ in the urn to begin with. But in terms of
probabilities and relative frequencies we are only in-
terested in these numbers in relation to the original
number N of balls in the urn, e.g. after observing
three green balls from an urn with 20 balls I know
that the relative frequency of green balls in the urn
was at least 3/20. Thus one might think that replace-
ment is in order so that there remains N balls in the
urn. However, if I after replacement pick three green
balls again in the next round I have no justification
for claiming that there at least six green balls out of
20 since some of the balls might be the same as in the
previous updating. Omne solution could be to mark
the already observed balls and ignore them in future
updating but then I would not know the results of
previous experiments without taking notes. Putting
the observed balls on a plate on the side in full sight
saves ink and paper and reminds us that observed
balls are not simply not replaced in the sense of being
discarded. The balls on the plate count but updating
is only done by probing the urn.

5.2 Shifted Pdélya as Conjugate Prior

First let us observe that since the discrete second-
order distributions that are topic of this paper fac-
tor into marginals, if prior and posterior are both
from this family, the likelihood must also factor into
marginals. We look at the one-variable marginal case
first for ease of presentation. W..o.g. we assume
that the prior distribution have parameters a; = 0, i.e.
nothing has been observed and apart from a structural
assumption of minimal dependency we know nought
but N, the total number of objects in the urn, and
n, the number of different colours. As described in
Section 5.1 above the experiment consists of drawing
>, a; balls from the urn and thus rule out the pos-
sibility that the number k; of balls with colour ¢ would
be less than a;.

The i:th marginal of the prior is Beta-binomial with
parameters a = — and 8 = 1. i.e.

<N)B<kl-+nil,N—ki+1> o)

kii 1 ’
B (m1>

the i:th marginal of the posterior is Beta-binomial
with the same parameters o = ﬁ,ﬂ =1 as in the
prior but k; replaced with k; — a; and N substituted
for N — E?:l a;:

N — Z?:l a;
k‘i — a;

B(k‘z—alJrﬁ,N—Zj#zal—quLl)

5 ()

(24)

The corresponding likelihood is achieved by a
weighted hypergeometric distribution

(N*Z?:1aj) .
sy - Siae(29)

(i)

where p is drawn from Beta (kl + ﬁ,N —k;+1
so that the likelihood is the compound distribution



k,—n=2 N—k;
P T =1 (] — i
(1-p) dp =
B (ki+ i N —ki+1)
(N*Z;'Lzlaj)
Soke (26)

N
(k)
B(ki7ai+ﬁ,N*Z?:1aj+ai7ki+l)

B(ki—o—ﬁ,N—ki—kl)

The multivariate likelihood is the weighted hypergeo-
metric distribution

n (N*Z_;‘lzl aj)
H—%ﬁLwﬁ, (27)
i=1 ki

where p is drawn from the Dirichlet distribution with
parameters k; + ﬁ That is,

(NfZ}”‘:} aj) T (Z?:l ki + ﬁ)

- ki—a;
E ) T (k)
/ P T ap = (28)
Pi=1
F@+1yw—;%W

BNV = k) (ki = ai + 1)

n

1

it V(N = S0 0 — K+ aa) (ks — 0T (ks + 52 )

Admittedly this likelihood function appears rather ex-
otic, particularly in the factors p; * which mean that
it is more likely to draw a larger number of balls of a
certain colour. In contrast, as seen in Section 4 the
prior and posterior distributions are such that lower
values of the number of objects of type i have higher
probability. The full implications of this are yet to
be considered but one possible interpretation is that
such likelihood functions would rarely be seen in na-
ture as it were. In that case the limited dependency
of the original proportions in the urn is fragile and
easily disturbed when removing objects.

6 Conclusions

Structural properties such as dependency might be
worth considering when choosing a second-order dis-
tribution for the purpose of expressing imprecise prob-
abilities. Second-order probability distributions have

probability values as variables, hence independence
is impossible. We have however suggested that joint
second-order probability distributions that are equal
to the normalised products of their own marginal dis-
tributions capture the property of a form of minimal
dependency. A continuous family of second-order dis-
tributions has been found earlier but here a corre-
sponding discrete family is discovered. This family
can be described as a generalisation of a special case
of the multivariate Pélya distribution where the pa-
rameters are fixed but new parameters in the form of
lower bounds on the variables are introduced.

The raison d’étre of discrete second-order distribu-
tions is that they allow for interpreting relative fre-
quencies as first-order probabilities in a natural way.
Such a context makes the interpretation of the mean-
ing of second-order probability values easier in that
concrete examples in the form of urn models etc. are
readily available. An example is updating where a so-
called urn-and-plate model gives a simple description
of updating of lower bounds. Discrete second-order
distributions are also versatile since they apart from
relative frequencies also lend themselves to subjective
probabilities. That is as long as the subjective prob-
abilities do not involve statements about irrational
numbers such as “I am sure that the probability is
at least 1/7”. Reasonably the lower bound could be
given as 8/25 or some other rational number instead,
infinite precision is meaningless in subjective proba-
bility judgements.

The family of distributions discussed here represents
a form of limited dependency. We have seen that the
family being conjugate requires a rather special like-
lihood function which suggests that the property of
limited dependency is sensitive to the removal of ob-
jects that occurs in updating of lower bounds in the
plate-and-urn model. Full understanding of the mean-
ing of the parameters of the compound likelihood is
however a matter for further investigation.
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