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Abstract

The goal of the paper is to reveal the relationships be-
tween recently introduced concept of conditional in-
dependence in evidence theory and those (dependent
on the choice of conditioning rule) of conditional ir-
relevance.
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1 Introduction

When applying models of artificial intelligence to any
practical problem one must cope with two basic prob-
lems: uncertainty and multidimensionality. The most
widely used models managing these issues are, at
present, so-called probabilistic graphical Markov mod-
els.

The problem of multidimensionality is solved in these
models with the help of the notion of conditional in-
dependence, which enables factorization of a multi-
dimensional probability distribution into small parts,
usually marginal or conditional low-dimensional dis-
tributions (e.g. in Bayesian networks), or generally
into low-dimensional factors (e.g. in decomposable
models). Such a factorization not only decreases the
storage requirements for representation of a multi-
dimensional distribution but it usually also induces
efficient computational procedures allowing inference
from these models.

It is easy to realize that if we need efficient methods
for representation of probability distributions (requir-
ing an exponential number of parameters), the greater
is the need of an efficient tool for representation of be-
lief functions, which cannot be represented by a dis-
tribution (but only by a set function), and therefore
the space requirements for its representation are su-
perexponential. To solve this problem, in [9, 15] we
proposed a new concept of conditional independence

in evidence theory, proved its formal properties and
showed [16] in which sense it is superior to the previ-
ous one [3].

However, another problem appears when one tries to
construct an evidential counterpart of Bayesian net-
work: problem of conditioning, which is not suffi-
ciently solved in evidence theory. There exist many
conditioning rules [6], but is any of them compatible
with our conditional independence concept? In other
words, if one is interested in Bayesian-networks-like
evidential models, he/she will need rather the con-
cept of conditional irrelevance. Therefore, it is also
necessary to find the relationship between conditional
independence and irrelevance. It is not necessary for
Bayesian networks, as in (precise) probability frame-
work the difference between conditional independence
and irrelevance is only subtle.

The contribution is organized as follows. After a short
overview of necessary terminology and notation (Sec-
tion 2), in Section 3 we recall two conditioning rules
(suggested for conditioning of events) and introduce
their generalizations for variables. In Section 4 the
above-mentioned concept of conditional independence
is recalled and a new concept of (conditional) irrele-
vance is presented. In Section 5 the relationship be-
tween (conditional) independence and (conditional)
irrelevance is studied.

2 Basic Concepts

In this section we will briefly recall basic concepts
from evidence theory [11] concerning sets, set func-
tions and marginalization.

2.1 Set projections and extensions

For an index set N = {1, 2, . . . , n} let {Xi}i∈N be
a system of variables, each Xi having its values in a
finite set Xi. In this paper we will deal with multidi-



mensional frame of discernment

XN = X1 ×X2 × . . .×Xn,

and its subframes (for K ⊆ N)

XK =×i∈KXi.

When dealing with groups of variables on these sub-
frames, XK will denote a group of variables {Xi}i∈K

throughout the paper.

A projection of x = (x1, x2, . . . , xn) ∈ XN into XK

will be denoted x↓K , i.e. for K = {i1, i2, . . . , ik}

x↓K = (xi1 , xi2 , . . . , xik
) ∈ XK .

Analogously, for M ⊂ K ⊆ N and A ⊂ XK , A↓M will
denote a projection of A into XM :1

A↓M = {y ∈ XM | ∃x ∈ A : y = x↓M}.

In addition to the projection, in this text we will also
need an opposite operation usually called a cylindrical
extension. The cylindrical extension of A ⊂ XK to
XL (K ⊂ L) is the set

A↑L = {x ∈ XL : x↓K ∈ A}.

Clearly
A↑L = A×XL\K .

A more complicated case is to make common exten-
sion of two sets, which will be called a join. By a join2

of two sets A ⊆ XK and B ⊆ XL (K, L ⊆ N) we will
understand a set

A ./ B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.

Let us note that for any C ⊆ XK∪L naturally C ⊆
C↓K ./ C↓L, but generally C 6= C↓K ./ C↓L.

Let us also note that if K and L are disjoint, then
the join of A and B is just their Cartesian product
A ./ B = A × B, if K = L then A ./ B = A ∩ B.
If K ∩ L 6= ∅ and A↓K∩L ∩ B↓K∩L = ∅ then also
A ./ B = ∅. Generally,

A ./ B = (A×XL\K) ∩ (B ×XK\L),

i.e. a join of two sets is the intersection of their cylin-
drical extensions.

1Let us remark that we do not exclude situations when M =
∅. In this case A↓∅ = ∅.

2This term and notation are taken from the theory of rela-
tional databases [1].

2.2 Set functions

In evidence theory [11] (or Dempster-Shafer theory)
two measures are used to model the uncertainty: be-
lief and plausibility measures. Both of them can be
defined with the help of another set function called a
basic (probability or belief) assignment m on XN , i.e. ,

m : P(XN ) −→ [0, 1],

where P(XN ) is power set of XN and∑
A⊆XN

m(A) = 1.

Furthermore, we assume that m(∅) = 0.

A set A ∈ P(XN ) is a focal element if m(A) > 0. Let
F denote the set of all focal elements, a focal element
A ∈ F is called an m−atom if for any B ⊆ A either
B = A or B ∈/ F . In other words, m−atom is a
setwise-minimal focal element.

Let us note that atomicity of a focal element is not
closed with respect to either marginalization or exten-
sion.

Belief and plausibility measures are defined for any
A ⊆ XN by the equalities

Bel(A) =
∑
B⊆A

m(B). (1)

Pl(A) =
∑

B∩A 6=∅

m(B), (2)

respectively.

It is well-known (and evident from these formulae)
that for any A ∈ P(XN )

Bel(A) ≤ Pl(A), (3)
Pl(A) = 1−Bel(AC), (4)

where AC is the set complement of A ∈ P(XN ). Fur-
thermore, basic assignment can be computed from be-
lief function via Möbius inversion:

m(A) =
∑
B⊆A

(−1)|A\B|Bel(B), (5)

i.e. any of these three functions is sufficient to define
values of the remaining two.

2.3 Marginalization

For a basic assignment m on XK and M ⊂ K, a
marginal basic assignment of m on XM is defined (for
each A ⊆ XM ):

m↓M (A) =
∑

B⊆XK

B↓M=A

m(B). (6)



Analogously we will denote by Bel↓M and Pl↓M

marginal belief and plausibility measures on XM , re-
spectively.

The following simple lemma concerning marginal be-
liefs and plausibilities will be used in the next section.

Lemma 1 Let m be a basic assignment on XN , Bel
and Pl corresponding beliefs and plausibilities and
K ⊂ N . Then for any A ⊂ XK

Bel↓K(A) = Bel(A↑N ), (7)
Pl↓K(A) = Pl(A↑N ). (8)

Proof. Using (1) and (6) one obtains

Bel↓K(A) =
∑

B⊆XK

B⊆A

m↓K(B)

=
∑

B⊆XK

B⊆A

∑
C⊆XN

C↓K=B

m(C)

=
∑

C⊆XN

C↓K⊆A

m(C)

=
∑

C⊆XN

C⊆A↑N

m(C)

= Bel(A↑N ),

where we used the fact that C↓K ⊆ A if and only if
C ⊆ A↑N for any C ⊆ XN and A ⊆ XK .

Similarly, using (2), (6) and the fact that D↓K ⊆
XK , D↓K∩B 6= ∅ if and only if D ⊆ XN , D∩B↑N 6= ∅

Pl↓K(B) =
∑

C⊆XK

C∩B 6=∅

m↓K(C)

=
∑

C⊆XK

C∩B 6=∅

∑
D⊆XN

D↓K=C

m(D)

=
∑

D⊆XN

D∩B↑L 6=∅

m(D)

= Pl(B↑N ),

as desired. ut

3 Conditioning

Conditioning belongs to the most important topics of
any theory dealing with uncertainty. From the view-
point of construction of Bayesian-network-like multi-
dimensional models it seems to be inevitable.

3.1 Conditioning of Events

In evidence theory the “classical” conditioning rule is
so-called Dempster’s rule of conditioning defined for
any ∅ 6= A ⊆ XN and B ⊆ XN such that Pl(B) > 0
by the formula

m(A|B) =

∑
C⊆XN :C∩B=A

m(C)

Pl(B)
(9)

and m(∅|B) = 0.

Let us note that formula (9) is special case of Demp-
ster’s rule of combination, when combining basic as-
signment m with another mB such that mB(B) = 1.

From this formula one can immediately obtain:

Bel(A|B) =
Bel(A ∪BC)−Bel(BC)

1−Bel(BC)
,

P l(A|B) =
Pl(A ∩B)

Pl(B)
. (10)

This is not the only possibility how to make condition-
ing, another — in a way symmetric — conditioning
rule is the following one called focusing defined for any
∅ 6= A ⊆ XN and B ⊆ XN such that Bel(B) > 0 by
the formula

m(A||B) =


m(A)

Bel(B)
if A ⊆ B,

0 otherwise.

From the following two equalities one can see, in which
sense are these two conditioning rules symmetric:

Bel(A||B) =
Bel(A ∩B)

Bel(B)
, (11)

Pl(A||B) =
Pl(A ∪BC)− Pl(BC)

1− Pl(BC)
.

These rules are based on different philosophy. Fo-
cusing assigns positive values only to those elements
which are subsets of B, while Dempster’s rule of con-
ditioning to those which have nonempty intersection
with it.

It is evident, that focusing is applicable in less cases
than Dempster’s rule, because of relation (3), hence
from this point of view the latter seems to be more
advantageous.

On the other hand, from the computational view-
point the latter is more suitable, as it produces less
focal elements (and in any of them a bigger “mass”
is contained; cf. also Example 1). Due to this fact
it may seem that focusing produces bigger intervals



than Dempster’s rule (and it is very often true), but
it is not generally satisfied, as can be seen again from
Example 1.

Formulae (10) and (11) are, in a way, evidential coun-
terparts of conditioning in probabilistic framework.
Let us note that seemingly “natural” way of condi-
tioning

m(A|pB) =
m(A ∩B)

m(B)
(12)

is not possible, since m(A|pB) need not be a basic
assignment, as can be seen from the following simple
example. It is caused by a simple fact that m, in con-
trary to Bel and Pl is not monotonous with respect
to set inclusion.

Example 1 Let X = {a, b, c} and m on X be defined
as follows:

m({a}) = m({b}) = m({c}) =
1
4
,

m({a, b}) = m(X) =
1
8
.

Using (12) one would obtain

m({a}|p{a, b}) = m({b}|p{a, b}) = 2,

which is out of the framework of evidence theory.

Let us use this example also for demonstrating the dif-
ference between Dempster’s rule of conditioning and
focusing. For this purpose let us compute

Bel({b, c} =
1
2

and Pl({b, c} =
3
4
.

Then we have

m({b}|{b, c}) =
m({b}) + m({a, b})

Pl({b, c})
=

1
2
,

m({c}|{b, c}) =
m({c})

Pl({b, c})
=

1
3
,

m({b, c}|{b, c}) =
m(X)

Pl({b, c})
=

1
6
,

as {a, b} ∩ {b, c} = {b} and X ∩ {b, c} = {b, c}, while

m({b}||{b, c}) =
m({b})

Bel({b, c})
=

1
2
,

m({c}||{b, c}) =
m({c})

Bel({b, c})
=

1
2
,

as {b} and {c} are the only subsets of {b, c}. ♦

Nevertheless, rather than in conditional beliefs and
plausibilities of events we are interested in condition-
ing by variables. This problem will be in the center
of our attention in the next subsection.

3.2 Conditional Variables

Definition 1 Let XK and XL (K ∩ L = ∅) be two
groups of variables with values in XK and XL, re-
spectively. Then the conditional basic assignment ac-
cording to Dempster’s conditioning rule of XK given
XL ∈ B ⊆ XL (for B such that Pl(B) > 0) is defined
as follows:

mXK |XL
(A|B) (13)

=

∑
C⊆XK∪L:(C∩B↑K∪L)↓K=A

m(C)

Pl(B)

for A 6= ∅ and mK|L(∅|B) = 0. Similarly, the condi-
tional basic assignment according to focusing of XK

given XL ∈ B ⊆ XL (for B such that Bel(B) > 0) is
defined by the equality

mXK ||XL
(A||B) (14)

=

∑
C⊆XK∪L:C⊆B↑K∪L&C↓K=A

m(C)

Bel(B)

for any A 6= ∅ and mK||L(∅||B) = 0.

Now, let us prove that the definition is correct.

Theorem 1 Set functions mXK |XL
and mXK ||XL

de-
fined for any fixed B ⊆ XL, such that Pl(B) > 0 and
Bel(B) > 0, respectively, by Definition 1 are basic
assignments on XK .

Proof.

(i) Let B ⊆ XL be such that Pl(B) > 0. As nonneg-
ativity of mXK |XL

(A|B) for any A ⊆ XK and the
fact that mXK |XL

(∅|B) = 0 follow directly from
the definition, to prove that mXK |XL

is a basic
assignment it is enough to show that∑

A⊆XK

mXK |XL
(A|B) = 1.

To check it, let us sum the values of the numer-
ators in (13)∑

A⊆XK

∑
C⊆XK∪L

(C∩B↑K∪L)↓K=A

m(C)

=
∑

A⊆XK

A6=∅

∑
C⊆XK∪L

(C∩B↑K∪L)↓K=A

m(C)

=
∑

C⊆XK∪L

C∩B↑L 6=∅

m(C)

= Pl(B↑L).



To finish the proof it is enough to realize that
Pl(B↑K∪L) = Pl↓L(B) for any B ⊆ XL (by (8)
of Lemma 1).

(ii) Analogously we will show that mX||Y is defined
correctly. Let B ⊆ XL be such that Bel(B) > 0.
To prove that mX||Y is a basic assignment, it is
again enough to check that∑

A⊆XK

mXK ||XL
(A||B) = 1.

To do so, let us compute∑
A⊆XK

∑
C⊆XK∪L:

C⊆B↑K∪L:C↓K=A

m(C)

=
∑

C⊆XK∪L:

C⊆B↑LA

m(C)

= Bel(B↑L).

The rest of the proof, i.e. validity of
Bel(B↑K∪L) = Bel↓L(B) follows directly from
(7) of Lemma 1. ut

4 Conditional Independence and
Irrelevance

4.1 Conditional Independence and
Irrelevance in Probability Theory

Independence and irrelevance need not be (and usu-
ally are not) distinguished in the probabilistic frame-
work, as they are almost equivalent to each other.

Supposing XK , XL and XM are groups of random
variables with a joint probability distribution P we
say that XK is conditionally independent of XL given
XM with respect to P if the equality

P (xK , xL, xM ) · P ↓M (xM )
= P ↓K∪M (xK , xM ) · P ↓L∪M (xL, xM )

(where PXKXM
, PXLXM

, PXM
denote correspond-

ing marginal distributions) holds for every value
(xK , xL, xM ) of the variables XK , XL, XM . It means
that in every situation when the value of XM is known
the values of XK and XL are completely unrelated
(from the stochastic point of view).

There exist several equivalent definitions of stochastic
conditional independence, e.g.

PXK |XLXM
(xK |xL, xM ) = PXK |XM

(xK |xM ),

but this definition may be used only in the situation
when P ↓L∪M (xL, xM ) is positive.

Similarly, in possibilistic framework adopting De
Cooman’s measure-theoretical approach [7] (partic-
ularly his notion of almost everywhere equality) we
proved that analogous definitions are equivalent (for
more details see [13]).

4.2 Independence

When constructing graphical models in any frame-
work, (conditional) independence concept plays an
important role. In evidence theory the most common
notion of independence is that of random set indepen-
dence [5].

It has already been proven [14] that it is also the only
sensible one, as e.g. application of strong indepen-
dence to two bodies of evidence may generally lead to
a model which is beyond the framework of evidence
theory. Epistemic independence and irrelevance were
not taken into consideration, as none of them seem
to be a suitable tool for factorization of multidimen-
sional models. Furthermore, they require condition-
ing, so their application is also problematic from this
point of view.

Definition 2 Let m be a basic assignment on XN

and K, L ⊂ N be disjoint. We say that groups of
variables XK and XL are independent with respect to
basic assignment m (in notation K ⊥⊥ L [m]) if

m↓K∪L(A) = m↓K(A↓K) ·m↓L(A↓L)

for all A ⊆ XK∪L for which A = A↓K × A↓L, and
m(A) = 0 otherwise.

This notion can be generalized in various ways [3, 12,
15]; the concept of conditional non-interactivity from
[3], based on conjunction combination rule, is used
for construction of directed evidential networks in [4].
In this paper we will use the concept introduced in
[9, 15], as we consider it more suitable (the arguments
can be found in [15]).

Definition 3 Let m be a basic assignment on XN

and K, L,M ⊂ N be disjoint, K 6= ∅ 6= L. We say
that groups of variables XK and XL are conditionally
independent given XM with respect to m (and denote
it by K ⊥⊥ L|M [m]), if the equality

m↓K∪L∪M (A) ·m↓M (A↓M )
= m↓K∪M (A↓K∪M ) ·m↓L∪M (A↓L∪M )

holds for any A ⊆ XK∪L∪M such that A = A↓K∪M ./
A↓L∪M , and m(A) = 0 otherwise.

It has been proven in [15] that this conditional in-
dependence concept satisfies so-called semi-graphoid



properties taken as reasonable to be valid for any con-
ditional independence concept (see e.g. [10]) and it
has been shown in which sense this conditional inde-
pendence concept is superior to previously introduced
ones [3, 12].

4.3 Irrelevance

Irrelevance is usually considered to be a weaker no-
tion than independence (see e.g. [5]). It expresses
the fact that a new piece of evidence concerning one
variable cannot influence the evidence concerning the
other variable, in other words is irrelevant to it. More
formally: group of variables XL is irrelevant to XK

(K ∩ L = ∅) if for any B ⊆ XL such that Pl(B) > 0

mXK |XL
(A|B) = m(A) (15)

for any A ⊆ XK .3

It follows from the definition of irrelevance that it need
not be a symmetric relation. Its symmetrized version
is sometimes taken as a definition of independence.
Let us note, that in the framework of evidence theory
even in cases when the relation is symmetric, it does
not imply independence, as can be seen from Exam-
ples 2 and 3.

Generalization of this notion to conditional irrele-
vance may be done as follows. Group of variables XL

is conditionally irrelevant to XK given XM (K, L,M
disjoint, K 6= ∅ 6= L) if for any B ⊆ XL and C ⊆ XM

such that Pl(B × C) > 0

mXK |XLXM
(A|B × C) = mXK |XM

(A|C) (16)

for any A ⊆ XK .

Remark. This is not the only way of generalization
of the irrelevance concept, e.g. we could allow for con-
ditioning by general sets and not only by rectangles
on the left side of (16), i.e. the equality

mXK |XLXM
(A|B) = mXK |XM

(A|B↓M ) (17)

is satisfied for any A ⊆ XK and B ⊆ XL∪M . This def-
inition is evidently more general, but it seemingly has
little sense, as the “interesting” sets from the view-
point of (conditional) independence are rectangles, or,
more generally, joins.

Let us note that the conditioning in equalities (15)
and (16) stands for an abstract conditioning rule (any
of those mentioned in the previous section or some
other [6]). Nevertheless, the validity of (15) and (16)
may depend on the choice of conditioning rule. To
demonstrate it let us present two simple examples.

3Let us note that somewhat weaker definition of irrelevance
one can found in [2], where equality is substituted by propor-
tionality. This notion has been later generalized using conjunc-
tive combination rule [3].

Example 2 Let X1 and X2 be two binary variables
(with values in Xi = {ai, āi}) with joint basic assign-
ment m defined as follows:

m({(a1, a2)}) =
1
2
,

m(X1 ×X2 \ {(ā1, ā2)}) =
1
4
,

m(X1 ×X2) =
1
4
.

From these values one can obtain

m↓2({a2}) = m↓2(X2) =
1
2
,

and therefore

Bel↓2({a2}) =
1
2
, Bel↓2({ā2}) = 0.

P l↓2({a2}) = 1, P l↓2({ā2}) =
1
2
.

Computing conditional basic assignments (according
to Dempster’s conditioning rule) one can easily see
that

mX1|X2({a1}|{a2}) = mX1|X2({a1}|{ā2})

=
1
2

= m↓1({a1}),

mX1|X2({ā1}|{a2}) = mX1|X2({ā1}|{ā2})
= 0 = m↓1({ā1}),

mX1|X2(X1|{a2}) = mX1|X2(X1|{ā2})

=
1
2

= m↓1(X1),

i.e. X1 and X2 are irrelevant (with respect to Demp-
ster’s conditioning rule). On the other hand, as e.g.

mX1||X2(({a1}||({a2}))

=
m({(a1, a2)}))

Bel({a2})
= 1 6= 1

2
= m↓1({a1}),

they are not irrelevant with respect to focusing. ♦

Example 3 Let X1 and X2 be two binary variables
(with values in Xi = {ai, āi}) with joint basic assign-
ment m defined as follows:

m({(a1, a2)}) =
1
4
,

m({a1} ×X2) =
1
4
,

m(X1 × {a2}) =
1
4
,

m(X1 ×X2 \ {(ā1, ā2)}) =
1
4
.

From these values one can obtain

m↓2({a2}) = m↓2(X2) =
1
2
,



and therefore

Bel↓2({a2}) =
1
2
, Bel↓2({ā2}) = 0,

P l↓2({a2}) = 1, P l↓2({ā2}) =
1
2
.

Evidently, it is not possible to condition by {ā2} and
we have to confine ourselves to conditioning by {a2}:

mX1||X2({a1}||{a2}) = 1
2 = m↓1({a1}),

mX1||X2({ā1}||{a2}) = 0 = m↓1({ā1}),
mX1||X2(X1||{a2}) = 1

2 = m↓1(X1),

i.e. X1 and X2 are irrelevant (under focusing). On
the other hand, as e.g.

mX1|X2(({a1}|({ā2}))

=
m({a1} ×X2) + m(X1 ×X2 \ {(ā1, ā2)})

Pl({a2})

= 1 6= 1
2

= m↓1({a1}),

they are not irrelevant with respect to Dempster’s
conditioning rule. ♦

5 Relationship Between
Independence and Irrelevance

As we demonstrated at the end of preceding section,
different conditioning rules lead to different irrele-
vance concepts. Therefore we will study the rela-
tionships between independence and irrelevance sepa-
rately for Dempster’s conditioning rule and for focus-
ing.

5.1 Dempster’s rule of conditioning

For (unconditional) independence and irrelevance the
following assertion holds true.

Theorem 2 Let XK and XL (K∪L = ∅) be indepen-
dent groups of variables (under joint basic assignment
m defined on XK∪L). Then XL are irrelevant to XK

with respect to Dempster’s conditioning rule.

Proof. Let XK and XL be independent. Then

m(A) = m↓K(A↓K) ·m↓L(A↓L)

for any A ⊆ XK∩L for which A = A↓K × A↓L, and
m(A) = 0 otherwise, i.e. the only focal elements of
m are rectangles. Therefore we have for arbitrary
A ⊆ XK∪L

Pl(A) =
∑

C:C∩A6=∅

m(C)

=
∑

C:C∩A6=∅

m↓K(C↓K) ·m↓L(C↓L)

=
∑

D:D∩A↓K 6=∅

m↓K(D) ·
∑

E:E∩A↓L 6=∅

m↓L(E)

= Pl↓K(A↓K) · Pl↓L(A↓L).

From this equality we immediately obtain that for all
A such that Pl↓L(A↓L) > 0 equality

Pl(A)
Pl↓L(A↓L)

= Pl↓K(A↓K)

is satisfied. But the left side of this equality is
equal to PlXK |XL

(A↓K |A↓L). As both conditional
and marginal basic assignments can be obtained from
corresponding plausibilities using the equality (4) and
Möbius inversion (5), we immediately obtain that also
for any fixed B ⊆ XL such that Pl↓L(B) > 0

mK|L(A|B) = m↓K(A)

for any A ⊆ XK , i.e. XK and XL are irrelevant. ut

The reverse implication does not hold in general. To
demonstrate it let us recall Example 2.

Example 2 (Continued) We have already shown
that X1 and X2 are irrelevant (with respect to Demp-
ster’s conditioning rule). But they are not indepen-
dent, as the focal elements are not rectangles, which
contradicts Definition 2. ♦

Unfortunately, a generalization of Theorem 2 to
conditional independence and conditional irrelevance
does not hold, as can be seen from the following sim-
ple example.

Example 4 Let X1, X2 and X3 be three variables
with values in X1, X2 and X3 respectively, Xi =
{ai, āi}, i = 1, 2, 3, and their joint basic assignment
is defined as follows:

m({(x1, x2, x3)}) = 1
16 ,

m(X1 ×X2 ×X3) = 1
2 ,

for xi = ai, āi, values of m on the remaining sets being
0, i.e. we have 9 focal elements — 8 singletons and
the whole frame of discernment. Its marginal basic
assignments on X1 ×X3, X2 ×X3 and X3 are

m↓13({(x1, x3)}) = 1
8 ,

m↓13(X1 ×X3) = 1
2 ,

m↓23({(x2, x3)}) = 1
8 ,

m↓23(X2 ×X3) = 1
2 ,

and
m↓3({x3}) = 1

4 ,

m↓3(X3) = 1
2 ,



respectively (values of m of remaining subsets being 0,
again). It is easy (but somewhat time-consuming)
to show that for any A ⊆ X1 × X2 × X3 such that
A = A↓13 ./ A↓23

m(A) ·m↓3(A↓3)
= m↓13(A↓13) ·m↓23(A↓23),

the values of remaining sets being zero, i.e. {1} ⊥⊥
{2}|{3} [m] holds.

Now, let us show, that X2 is not irrelevant to X1

given X3. To do so, we have to compute mX1|X2X3

and mX1|X3 . First, let us take into account that

Pl({(x2, x3)}) =
5
8

for any xi = ai, āi, i = 2, 3 and

Pl({x3}) =
3
4

for both x3 = a3, ā3 and that

(X1 ×X2 ×X3 ∩ {(a2, a3)}↑123)↓1 = X1

and similarly

(X1 ×X3 ∩ {a3}↑13)↓1 = X1.

Then we have

mX1|X2X3({a1}|{(a2, a3)}) =
m({(a1, a2, a3)})
Pl({(a2, a3)})

=
1
10

,

mX1|X2X3({ā1}|{(a2, a3)}) =
m({(ā1, a2, a3)})
Pl({(a2, a3)})

=
1
10

,

mX1|X2X3(X1|{(a2, a3)}) =
m(X1×X2×X3)
Pl({(a2, a3)})

=
4
5
,

while

mX1|X3({a1}|{a3}) =
m({(a1, a3)})

Pl({a3})
=

1
6
,

mX1|X3({ā1}|{a3}) =
m({(ā1, a3)})

Pl({a3})
=

1
6
,

mX1|X3(X1|{a3}) =
m(X1 ×X3)

Pl({a3})
=

2
3
,

i.e. mX1|X2X3 6= mX1|X3 . ♦

5.2 Focusing

In this subsection we will investigate mutual relation-
ship between (conditional) independence and irrele-
vance based on the latter conditioning rule introduced
in Section 3.

Theorem 3 Let XK and XL (K∩L = ∅) be indepen-
dent groups of variables (under joint basic assignment
m on XK∪L). Then XK and XL are irrelevant with
respect to focusing.

Proof. Let XK and XL be independent. Then

m(A) = m↓K(A↓K) ·m↓L(A↓L)

for any A ⊆ XK∪L for which A = A↓K × A↓L, and
m(A) = 0 otherwise, i.e. the only focal elements of
m are rectangles. Therefore we have for arbitrary
A ⊆ XK

Bel(A) =
∑
C⊆A

m(C)

=
∑
C⊆A

m↓K(C↓K) ·m↓L(C↓L)

=
∑

D:D⊆A↓K

m↓K(D) ·
∑

E:E⊆A↓L

m↓L(E)

= Bel↓K(A↓K) ·Bel↓L(A↓L).

From this equality we immediately obtain that for all
A such that Bel↓L(A↓L) > 0 equality

Bel(A)
Bel↓L(A↓L)

= Bel↓K(A↓K)

is satisfied. But the left side of this equality is equal to
BelXK ||XL

(A↓K ||A↓L). As the both conditional and
marginal basic assignments can be obtained from cor-
responding beliefs using Möbius inversion (5) we im-
mediately obtain that also for any fixed B ⊆ XL such
that Bel(B) > 0

mXK ||XL
(A||B) = m↓K(A)

for any A ⊆ XK , i.e. XK and XL are irrelevant. ut

The reverse implication does not hold again, as can be
seen from the following simple example (continuation
of Example 3).

Example 3 (Continued) We have already proven
that X1 and X2 are irrelevant (under focusing). But
they are not independent, as the focal elements are
not rectangles, which again contradicts Definition 2.♦

Up to now the results presented in this subsection
have been exactly the same as in the preceding one.

Now, let us study the problem of the relationship be-
tween conditional independence and irrelevance. For
this purpose, let us recall Example 4.

Example 4 (Continued) We have already shown
that although X1 and X2 are conditionally indepen-
dent given X3, X2 is not irrelevant to X1 given X3

under Dempster’s rule of conditioning.

Now, let us us check whether X2 is irrelevant to X1

given X3 under focusing. To do so, we have to com-
pute mX1||X2X3 and mX1||X3 . Again, we have to take
into account that

Bel({(x2, x3)}) =
1
8



for any xi = ai, āi, i = 2, 3 and

Bel({x3}) =
1
4

for both x3 = a3, ā3 and the fact that there does
not exist any focal element A of m such that A ⊆
{(x2, x3)}↑123 (for any pair (x2, x3)) and A↓1 = X1

and similarly there does not exist any focal element
B of m↓13 such that B ⊆ {x3}↑13 (for any x3) and
B↓1 = X1. Therefore we have

mX1||X2X3({a1}||{(x2, x3)})

=
m({(a1, x2, x3)})
Bel({(x2, x3)})

=
1
2
,

mX1||X2X3({ā1}||{(x2, x3)})

=
m({(ā1, x2, x3)})
Bel({(x2, x3)})

=
1
2
,

mX1||X2X3(X1||{(x2, x3)}) = 0,

for any pair (x2, x3) ∈ X2 ×X3 and

mX1||X3({a1}||{x3}) =
m({(a1, x3)})

Bel({x3})
=

1
2
,

mX1||X3({ā1}||{x3}) =
m({(ā1, x3)})

Bel({x3})
=

1
2
,

mX1||X3(X1||x3) = 0,

for any x3 ∈ X3, i.e. mX1||X2X3 = mX1||X3 when con-
ditioning by singletons, which is quite different from
the previous case, based on Dempster’s conditioning
rule.

Nevertheless, to demonstrate that X2 is irrelevant to
X1 given X3 we have also to check the validity of
equality (16) for a general rectangle B ×C such that
Bel(B×C) > 0. As both X2 and X3 are binary, only
three situations may happen:

B = X2 and C = X3: in this case equality (16) is
trivially satisfied, as conditional basic assign-
ments on both sides are, in fact, marginal basic
assignments on X1, and therefore identical;

B = X2 and C = {x3} for x3 = a3, ā3: in this case
equality (16) is again satisfied, as conditional ba-
sic assignment on the left side is, in fact, the same
as that on the right side;

B = {x2} for x2 = a2, ā2 and C = X3: this is the
nontrivial case, corresponding to unconditional
irrelevance (15); nevertheless, its validity need
not be checked, since X1 and X2 are not (uncon-
ditionally) independent, as can be easily checked.

Therefore X2 is irrelevant to X1 given X3 (under fo-
cusing). ♦

Let us finish the section with a partial generalization
of Theorem 3, which, maybe surprisingly, proves that
conditioning by sets which are not rectangles is sensi-
ble.

Theorem 4 Let XK and XL be conditionally inde-
pendent groups of variables given XM under joint
basic assignment m on XK∪L∪M (K, L,M disjoint,
K 6= ∅ 6= L). Then

mXK ||XLXM
(A||B) = mXK ||XM

(A||B↓M ) (18)

for any m↓L∪M -atom B ⊆ XL∪M such that B↓M is
m↓M -atom and A ⊆ XK .

Proof. Let XK and XL be conditionally independent
given XM . Then

m(C) ·m↓M (C↓M )
= m↓K∪M (C↓K∪M ) ·m↓L∪M (C↓L∪M )

holds for any C ⊆ XK∪L∪M such that C = C↓K∪M ./
C↓L∪M , and m(C) = 0 otherwise. From this equal-
ity we immediately obtain that for all C such that
m↓L(C↓L) > 0 equality

m(C)
m↓L∪M (C↓L∪M )

=
m↓K∪M (C↓K∪M )

m↓M (C↓M )

is satisfied. If C↓L∪M is an atom, then
m↓L∪M (C↓L∪M ) = Bel↓L∪M (C↓L∪M ) (and analo-
gously m↓M (C↓M ) = Bel↓M (C↓M ) if C↓M is an
atom) and this equality may be rewritten into the
form

m(C)
Bel↓L∪M (C↓L∪M )

=
m↓K∪M (C↓K∪M )

Bel↓M (C↓M )
.

If we denote C↓L∪M by B, we obtain

mXK ||XLXM
(C↓K ||B) = mXK ||XM

(C↓K ||B↓M ).

If A 6= C↓K , then m(A↑K∪L∪M ∩B↑K∪L∪M ) = 0 and
therefore equality (18) is trivially satisfied. ut

From this theorem it is evident, that conditions under
which conditional independence implies conditional
irrelevance are rather restrictive.

The requirement in Theorem 4 for B being an atom is
substantial, as can be seen from the following simple
example (again continuation of Example 4).

Example 4 (Continued) Let us consider a set B =
{(a2, a3), (ā2, ā3)} ⊆ X2 × X3. One can easily com-
pute that Bel(B) = 1

4 and therefore

mX1|X2X3({a1}|B)

=
m({a1, a2, a3}) + m({a1, ā2, ā3})

Bel(B)
=

1
2
,



mX1|X2X3({ā1}|B)

=
m({ā1, a2, a3}) + m({ā1, ā2, ā3})

Bel(B)
=

1
2
,

mX1|X2X3(X1|B) = 0,

while,
mX1|X3({a1}|B↓3) = m↓1({a1}) =

1
4
,

mX1|X3({ā1}|B↓3) = m↓1({ā1}) =
1
4
,

mX1|X2X3(X1|B↓3) = m↓1 (X1) =
1
2
.

as B↓3 = X3. ♦

6 Conclusions

We presented two conditional rules for basic assign-
ment and studied the relationship between (condi-
tional) independence and (conditional) irrelevance
(based on these conditioning rules) in evidence the-
ory.

While in unconditional case independence implies ir-
relevance and not vice versa (as expected), for con-
ditional independence such an implication does not
hold, in general. Therefore, it is necessary to be cau-
tious when constructing Bayesian-network-like mod-
els in evidence theory, as the mutual relationship is
more complicated than in probabilistic framework.

It may be of some interest to study another way of
conditioning presented in [8], however, its application
will be more complicated, as conditional basic assign-
ment must be obtained via Möbius transform from
conditional beliefs. Furthermore, we are somewhat
sceptic about the result.

Acknowledgements

The work of the author was supported by the grant
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