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Abstract

Non-conflicting and conflicting parts of belief func-
tions are introduced in this study. The unique decom-
position of a belief function defined on a two-element
frame of discernment to non-conflicting and indecisive
conflicting belief function is presented. Several basic
statements about algebra of belief functions on a gen-
eral finite frame of discernment are introduced and
unique non-conflicting part of a BF on an n-element
frame of discernment is presented here.

Keywords. belief function, Dempster-Shafer theory,
Dempster’s semigroup, conflict between belief func-
tions, uncertainty, non-conflicting part of belief func-
tion, conflicting part of belief function.

1 Introduction

Belief functions are one of the widely used formalisms
for uncertainty representation and processing that
enables representation of incomplete and uncertain
knowledge, belief updating, and combination of evi-
dence. They were originally introduced as a principal
notion of the Dempster-Shafer Theory or the Mathe-
matical Theory of Evidence [17].

When combining belief functions (BFs) by the con-
junctive rules of combination, conflicts often appear,
which are assigned to ∅ by un-normalized conjunctive
rule ∩© or normalized by Dempster’s rule of combina-
tion ⊕. Combination of conflicting BFs and interpre-
tation of conflicts is often questionable in real appli-
cations, thus a series of alternative combination rules
was suggested and a series of papers on conflicting
belief functions was published, e.g. [2, 5, 16, 19].

In [9], new ideas concerning interpretation, definition,
and measurement of conflicts of BFs were introduced.
We presented three new approaches to interpretation
and computation of conflicts: combinational conflict,
plausibility conflict, and comparative conflict. Differ-
ences were made between conflicts between BFs and

internal conflicts of single BF; a conflict between BFs
was distinguished from the difference between BFs.

When analyzing mathematical properties of the three
approaches to conflicts of BFs in [10], there appears
a possibility of expression of a BF Bel as Dempster’s
sum of non-conflicting BF Bel0 with the same plau-
sibility decisional support as the original BF Bel has
and of indecisive BF BelS which does not prefer any
of the elements of frame of discernment. The pre-
sented contribution analyses existence and uniqueness
of such BFs Bel0 and BelS .

The study starts with belief functions and algebraic
preliminaries in Section 2. The situation on 2-element
frame (Section 3) is followed by a study of a/the case
of general finite frames of discernment (Section 4).
Some comments on alternative rules of belief combi-
nation are presented in Section 5.

2 Preliminaries

2.1 General Primer on Belief Functions

We assume classic definitions of basic notions from
theory of belief functions (BFs) [17] on finite frames
of discernment Ωn = {ω1, ω2, ..., ωn}, see also [4–9];
for illustration or simplicity, we often use 2- or 3-
element frames Ω2 and Ω3. A basic belief assignment
(bba) is a mapping m : P(Ω) −→ [0, 1] such that∑

A⊆Ω m(A) = 1; the values of the bba are called
basic belief masses (bbm). m(∅) = 0 is usually as-
sumed, then we speak about normalized bba. A belief
function (BF) is a mapping Bel : P(Ω) −→ [0, 1],
Bel(A) =

∑
∅6=X⊆A m(X). A plausibility function

Pl(A) =
∑
∅6=A∩X m(X). There is a unique corre-

spondence among m and corresponding Bel and Pl
thus we often speak about m as about belief function.

A focal element is a subset X of the frame of discern-
ment, such that m(X) > 0. If all the focal elements
are singletons (i.e. one-element subsets of Ω), then
we speak about a Bayesian belief function (BBF), it



is a probability distribution on Ω in fact. If all the
focal elements are either singletons or whole Ω (i.e.
|X| = 1 or |X| = |Ω|), then we speak about a quasi-
Bayesian belief function (qBBF), it is something like
’un-normalized probability distribution’. If all focal
elements are nested, we speak about consonant belief
function.

Dempster’s (conjunctive) rule of combi-
nation ⊕ is given as (m1 ⊕ m2)(A) =∑

X∩Y =A Km1(X)m2(Y ) for A 6= ∅, where K = 1
1−κ ,

κ =
∑

X∩Y =∅m1(X)m2(Y ), and (m1 ⊕ m2)(∅) = 0,
see [17]; putting K = 1 and (m1 ⊕ m2)(∅) = κ
we obtain the un-normalized conjunctive rule of
combination ∩©, see e. g. [18]. The disjunc-
tive rule of combination is given by the formula
(m1 ∪©m2)(A) =

∑
X∪Y =A m1(X)m2(Y ), see [12].

Yager’s rule of combination Y©, see [21], is
given as (m1 Y©m2)(∅) = 0, (m1 Y©m2)(A) =∑

X,Y⊆Θ, X∩Y =A m1(X)m2(Y ) for ∅ 6= A ⊂
Θ, and (m1 Y©m2)(Θ) = m1(Θ)m2(Θ) +∑

X,Y⊆Θ, X∩Y =∅m1(X)m2(Y );

Dubois-Prade’s rule of combination DP© is given as
(m1DP©m2)(A) =

∑
X,Y⊆Θ, X∩Y =A m1(X)m2(Y ) +∑

X,Y⊆Θ, X∩Y =∅,X∪Y =A m1(X)m2(Y ) for ∅ 6= A ⊆
Θ, and (m1DP©m2)(∅) = 0, see [11].

We say that BF Bel is non-conflicting when conjunc-
tive combination of Bel with itself does not produce
any conflicting belief masses (when (Bel∩©Bel)(∅) =
0, i.e., Bel∩©Bel = Bel⊕Bel), i.e. whenever Pl(ωi) =
1 for some ω ∈ Ωn. Otherwise, BF is conflicting, i.e.,
it contains some internal conflict [9].

Let us recall Un the uniform Bayesian belief function1

[9], i.e., the uniform probability distribution on Ωn,
and normalized plausibility of singletons2 of Bel: the
BBF (probability distribution) Pl P (Bel) such, that
(Pl P (Bel))(ωi) = Pl({ωi})∑

ω∈Ω Pl({ω}) [3, 7].

Let us define an indecisive (indifferent) BF as a BF,
which does not prefer any ωi ∈ Ωn, i.e., BF which
gives no decisional support for any ωi, i.e., BF such
that h(Bel) = Bel⊕Un = Un, i.e., Pl({ωi}) = const.,
i.e., (Pl P (Bel))({ωi}) = 1

n .

2.2 Belief Functions on 2-Element Frame of
Discernment; Dempster’s Semigroup

Let us suppose, that the reader is slightly familiar
with basic algebraic notions like a semigroup (an alge-

1Un which is idempotent w.r.t. Dempster’s rule ⊕, and
moreover neutral on the set of all BBFs, is denoted as nD0′
in [7], 0′ comes from studies by Hájek & Valdés.

2Plausibility of singletons is called contour function by
Shafer in [17], thus Pl P (Bel) is a normalization of contour
function in fact.

braic structure with an associative binary operation),
a group (a structure with an associative binary oper-
ation, with a unary operation of inverse, and with a
neutral element), a neutral element n (n ∗ x = x), an
absorbing element a (a ∗ x = a), a homomorphism f
(f(x ∗ y) = f(x) ∗ f(y)), etc. (Otherwise, see e.g.,
[4, 6, 14, 15].)

We assume Ω2 = {ω1, ω2}, in this subsec-
tion. There are only three possible focal elements
{ω1}, {ω2}, {ω1, ω2} and any normalized basic belief
assignment (bba) m is defined by a pair (a, b) =
(m({ω1}),m({ω2})) as m({ω1, ω2}) = 1−a−b; this is
called Dempster’s pair or simply d-pair in [4, 6, 14, 15]
(it is a pair of reals such that 0 ≤ a, b ≤ 1, a + b ≤ 1).

Extremal d-pairs are the pairs corresponding to BFs
for which either m({ω1}) = 1 or m({ω2}) = 1, i.e.,
(1, 0) and (0, 1). The set of all non-extremal d-pairs
is denoted as D0; the set of all non-extremal Bayesian
d-pairs (i.e. d-pairs corresponding to Bayesian BFs,
where a + b = 1) is denoted as G; the set of d-pairs
such that a = b is denoted as S (set of indecisive3 d-
pairs), the set where b = 0 as S1, and analogically, the
set where a = 0 as S2 (simple support BFs). Vacuous
BF is denoted as 0 = (0, 0) and there is a special BF
(d-pair) 0′ = ( 1

2 , 1
2 ), see Figure 1.

The (conjunctive) Dempster’s semigroup D0 =
(D0,⊕, 0, 0′) is the set D0 endowed with the binary
operation ⊕ (i.e. with the Dempster’s rule) and two
distinguished elements 0 and 0′. Dempster’s rule can
be expressed by the formula (a, b) ⊕ (c, d) = (1 −
(1−a)(1−c)
1−(ad+bc) , 1− (1−b)(1−d)

1−(ad+bc) ) for d-pairs [14]. In D0 it is
defined further: −(a, b) = (b, a), h(a, b) = (a, b)⊕0′ =
( 1−b
2−a−b ,

1−a
2−a−b ), h1(a, b) = 1−b

2−a−b , f(a, b) = (a, b) ⊕
(b, a) = (a+b−a2−b2−ab

1−a2−b2 , a+b−a2−b2−ab
1−a2−b2 ); (a, b) ≤ (c, d)

iff [h1(a, b) < h1(c, d) or h1(a, b) = h1(c, d) and a ≤
c] 4.

The principal properties of D0 are summarized by the
following theorem:

Theorem 1 (i) The Dempster’s semigroup D0 with
the relation ≤ is an ordered commutative (Abelian)
semigroup with the neutral element 0; 0′ is the only
non-zero idempotent of D0.
(ii) G = (G,⊕,−, 0′,≤) is an ordered Abelian group,
isomorphic to the group of reals with the usual order-
ing. Let us denote its negative and positive cones as
G≤0′ and G≥0′ .
(iii) The sets S, S1, S2 with the operation ⊕ and
the ordering ≤ form ordered commutative semigroups
with neutral element 0; they are all isomorphic to the

3BFs (a, a) from S are called indifferent BFs by Haenni [13].
4Note, that h(a, b) is an abbreviation for h((a, b)), similarly

for h1(a, b) and f(a, b).



Figure 1: Dempster’s semigroup D0. Homomorphism
h is in this representation a projection to group G
along the straight lines running through the point
(1, 1). All the Dempster’s pairs lying on the same
ellipse are mapped by homomorphism f to the same
d-pair in semigroup S.

positive cone of the group of reals.
(iv) h is ordered homomorphism: (D0,⊕,−, 0, 0′,≤
) −→ (G,⊕,−, 0′,≤); h(Bel) = Bel ⊕ 0′ =
Pl P (Bel), i.e., the normalized plausibility proba-
bilistic transformation.
(v) f is homomorphism: (D0,⊕,−, 0, 0′) −→
(S,⊕,−, 0); (but, not an ordered one).

For proofs see [14, 15, 20]. Let us denote h−1(a) =
{x |h(x) = a} and similarly f−1(a) = {x | f(x) = a}.
Using the theorem, see (iv) and (v), we can express
⊕ as:

(a⊕ b) = h−1(h(a)⊕ h(b)) ∩ f−1(f(a)⊕ f(b)).

Let us denote D≥0
0 = {(a, b) ∈ D0 | (a, b) ≥ 0} and

analogically D≤0′
0 = {(a, b)≤0′}.

2.3 BFs on n-Element Frames of
Discernment

Analogically to the case of Ω2, we can represent
a BF on any n-element frame of discernment
Ωn by an enumeration of its m values (bbms),
i.e., by a (2n− 2)-tuple (a1, a2, ..., a2n−2), or
as a (2n− 1)-tuple (a1, a2, ..., a2n−2; a2n−1) when
we want to explicitly mention also the redun-
dant value m(Ω) = a2n−1 = 1 − ∑2n−2

i=1 ai.
For BFs on Ω3 we use (a1, a2, ...., a6; a7) =
(m({ω1}),m({ω2}), m({ω3}),m({ω1, ω2}),m({ω1, ω3}),
m({ω2, ω3}); m({Ω3})).
Unfortunately, no algebraic analysis of BFs on Ωn for
n > 2 has been presented till now.

3 Non-conflicting and Conflicting
Parts of Belief Functions on
2-Element Frames of Discernment

For BFs on Ω2 the following holds true:

Proposition 1 BF Bel on Ω2 is non-conflicting iff
Bel ∈ S1 ∪ S2.

Proof. Obviously the simple support elements of
S1, S2 are non-conflicting. Pl({ωi}) = m({ωi}) +
m({ω1, ω2}) = 1 − m({ωj}), where i 6= j. Thus
Pl({ωi}) = 1 iff m({ωj}) = 0 iff Bel ∈ S1 ∪ S2. ¤
We will use the important property of Dempster’s
sum, which is respecting the homomorphisms h and
f , i.e., respecting the h-lines and f -ellipses, when two
BFs are combined on two-element frame of discern-
ment [4, 14, 15]. Using this property we obtain the
following statement.

Proposition 2 Any belief function (a, b) ∈ Ω2 is the
result of Dempster’s combination of BF (a0, b0) ∈
S1 ∪ S2 and a BF (s, s) ∈ S, such that (a0, b0) has
the same plausibility decision support (same normal-
ized plausibility) for the elements of Ω2 as (a, b) does.
(Trivially, (s, s) = (0, 0) ⊕ (s, s) for (s, s) ∈ S, and
(a0, b0) = (a0, b0)⊕ (0, 0) for elements of S1 and S2).

(a0, b0) ∈ S1 ∪ S2 has no internal conflict, and (s, s)
does not prefer any of the elements of Ω2. Let us
call (a0, b0) a non-conflicting part of (a, b). There is
(a0, b0) = (a−b

1−b , 0) for a ≥ b and (a0, b0) = (0, b−a
1−a )

for a ≤ b.

Proof. (a0, b0) is the intersection of h-line containing
(a, b) with S1 ∪ S2. Semigroup S is a part of h-line
containing 0 and 0′, thus the result of combination of
any element (s, s) ∈ S with (a0, b0), i.e, (s, s)⊕(a0, b0)
lies on the same h-line as both (a0, b0) and (a, b).



Pl P (a, b) = Pl P (a0, b0), thus 1−b
2−a−b = 1−b0

2−a0−b0

and 1−a
2−a−b = 1−a0

2−a0−b0
. For a ≥ b there is b0 = 0

and 1−b
2−a−b = 1

2−a0
, thus 2−a−b

1−b = 2−a0
1 , and a0 =

2 − 2−a−b
1−b = a−b

1−b . And similarly for a ≤ b there is
a0 = 0 and 1−a

2−a−b = 1
2−b0

, thus b0 = b−a
1−a . ¤

y
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Figure 2: Conflicting and non-conflicting parts of BF
on 2-element frame of discernment.

Let us look for (s, s) from the proposition now. It
holds true that (a, b) = (a0, b0) ⊕ (s, s), thus it also
holds true f(a, b) = f(a0, b0)⊕ f(s, s). Let us denote
f(a0, b0) = (u, u), f(a, b) = (v, v), f(s, s) = (x, x) for
a moment, thus we have (u, u)⊕ (x, x) = (v, v), where
v = 1 − (1−u)(1−x)

1−2ux = u+x−3ux
1−2ux , hence u + x − 3ux =

v − 2vux and x = v−u
1−3u+2uv . We can express this as

Lemma 1 (i).

The existence of (x, x), thus also a possibility of its
computation from (v, v) and (u, u) follows the fact,
that S is isomorphic to the positive cone of group of
reals, or a property subtraction in S as a substructure
of algebraic structure dempsteroid [14, 15].

We already can compute value f(s, s), the rest is
computation of (s, s) as S-preimage of f(s, s) =
(s, s) ⊕ (s, s) = (x, x). Similarly as before we have
x = 1 − (1−s)(1−s)

1−2ss = 2s−3s2

1−2s2 now, thus 2s − 3s2 =
x − 2s2x and 0 = (3 − 2x)s2 − 2s + x = 0, hence

s1,2 = 2±
√

4−4(3−2x)x

2(3−2x) = 1±
√

(1−x)(1−2x)

3−2x .

We know that 0 ≤ s ≤ x ≤ 1
2 , thus 0 ≤√

(1− x)(1− 2x) ≤ 1, 0 ≤ 1±
√

(1− x)(1− 2x), 2 ≤
3 − 3x. Thus 0 ≤ 1±

√
(1−x)(1−2x)

3−2x always holds true.

It should further hold true that 1±
√

(1−x)(1−2x)

3−2x ≤
1
2 , thus 2 ± 2

√
(1− x)(1− 2x) ≤ 3 − 2x and

±2
√

(1− x)(1− 2x) ≤ 1 − 2x. It always hods true
that −

√
(1− x)(1− 2x) ≤ 0 ≤ 1− 2x for 0 ≤ x ≤ 1

2 .
On the other hand, from 2

√
(1− x)(1− 2x) ≤ 1−2x,

4(1− x)(1− 2x) ≤ (1 − 2x)(1 − 2x), 4(1− x) ≤
(1− 2x), 3 ≤ (2x) and 3

2 ≤ x; this is in contradiction

with x ≤ 1
2 , hence it must be s = 1−

√
(1−x)(1−2x)

3−2x .

We can formulate this as Lemma 1(ii). Finally, we
obtain a summarization in Theorem 2.

Lemma 1 (i) For any BFs (u, u), (v, v) on S, such
that u ≤ v, we can compute their Dempster’s ’dif-
ference’ (x, x) such that (u, u) ⊕ (x, x) = (v, v), as
(x, x) = ( v−u

1−3u+2uv , v−u
1−3u+2uv ).

(ii) For any BF (w, w) on S, we can compute its
Dempster’s ’half ’ (s, s) such that (s, s) ⊕ (s, s) =
(w, w), as (s, s) = ( 1−√1−3w+2w2

3−2w , 1−√1−3w+2w2

3−2w ) =

( 1−
√

(1−w)(1−2w)

3−2w ,
1−
√

(1−w)(1−2w)

3−2w ).

(iii) There is no Dempster’s ’difference’ on D0 in gen-
eral.

Proof. Parts (i) and (ii) were already proved by de-
riving of formulas for computing of (x, x) and (s, s).
Nevertheless, we can alternatively verify the formulas
is it follows.

(a, b)⊕ (c, d) = (1− (1−a)(1−c)
1−(ad+bc)

, 1− (1−b)(1−d)
1−(ad+bc)

) in general,

for a = b and c = d we obtain a special case of the formula:

(a, a)⊕ (c, c) = (1− (1−a)(1−c)
1−(2ac)

, 1− (1−a)(1−c)
1−(2ac)

).

(u, u)⊕ ( v−u
1−3u+2uv

, v−u
1−3u+2uv

) = (1− (1−u)(1− v−u
1−3u+2uv

)

1−(2u v−u
1−3u+2uv

)
,

1−
(1−u)(v−2u+2uv−v)

1−3u+2uv
)

1−3u+2uv−2u(v−u)
1−3u+2uv

)
) = (−3uv+v+2u2v)

1−3u+2u2 , v(1−3u+2u2)

1−3u+2u2 ) =

(v, v).

(s, s)⊕(s, s) = (1− (1−s)2

1−(2s2)
, 2s−3s2

1−(2s2)
) = (

2
1−√(1−w)(1−2w)

3−2w

1−(2s2)
+

−3(
1−√(1−w)(1−2w)

3−2w
)2

1−(2(
1−√(1−w)(1−2w)

3−2w
)2)

,
2

1−√
3−2w

−3
1−2√ +(1−w)(1−2w)

(3−2w)2

1−(2
1−2√ +(1−w)(1−2w)

(3−2w)2
)

) =

(
5w+4w

√ −6w2)

5−6w+4
√ ,

w(5+4
√ −6w)

5−6w+4
√ ) = (w, w).

(iii) There is a lot of counter-examples, e.g., BFs Bel1
and Bel2 on the same f -ellipse: when combining any BF

different from 0 = (0, 0) with any of them, the result is on

a narrower ellipse closer to G. ¤

Theorem 2 Any BF (a, b) on 2-element frame of
discernment Ω2 is Dempster’s sum of its unique non-
conflicting part (a0, b0) ∈ S1 ∪ S2 and of its unique
conflicting part (s, s) ∈ S, which does not prefer
any element of Ω2, i.e. (a, b) = (a0, b0) ⊕ (s, s). It
holds true that s = b(1−a)

1−2a+b−ab+a2 = b(1−b)
1−a+ab−b2 and

(a, b) = (a−b
1−b , 0) ⊕ (s, s) for a ≥ b; and similarly

that s = a(1−b)
1+a−2b−ab+b2 = a(1−a)

1−b+ab−a2 and (a, b) =
(0, b−a

1−a )⊕ (s, s) for a ≤ b.



Proof. The existential part of the statement simply
follows proposition 2 and both parts of Lemma 1.
Uniqueness follows proposition 1, uniqueness of the
h-line containing (a, b) and of its intersection with
S1 ∪ S2, and uniqueness of f -ellipse containing (a, b)
and of its intersection with S. The rest is direct
computation or verification. A verification for a ≥ b
follows:
(a0, b0) ⊕ (s, s) = ( a−b

1−b
, 0) ⊕

( b(1−b)

1−a+ab−b2
, b(1−b)

1−a+ab−b2
) = (1− (1− a−b

1−b
)(1− b(1−b)

1−a+ab−b2
)

1− a−b
1−b

· b(1−b)
1−a+ab−b2

, 1−
(1− b(1−b)

1−a+ab−b2
)

(1−b)(1−a+ab−b2)
(1−b)(1−a+ab−b2)

− (a−b)b(1−b)
(1−b)(1−a+ab−b2)

) = (a(1−b)
(1−b)

, b(1−a)
(1−a)

) =

(a, b).

For a ≤ b we have:
(a0, b0)⊕ (s, s) = (0, b−a

1−a
)⊕ ( a(1−a)

1−b+ab−a2 , a(1−a)

1−b+ab−a2 ) = ...,

a and b and components of the couple are mutually

substituted w.r.t. the case a ≥ b, thus the result is (a, b)

again. For equality of both formulas for s see [10]. ¤
An alternative proof is a derivation of formulas which
is based on a similar idea as the derivation of formu-
las in Lemma 1. As we know the existence of (s, s)
and that a0 = a−b

1−b for a ≥ b, we know that (a, b) =

(a0, 0)⊕(s, s) = (1− (1−a0)(1−s)
1−(a0s+0) , 1− (1−0)(1−s)

1−a0s ). Thus

a = 1 − (1−a0)(1−s)
1−(a0s+0) = s+a−b−2as+bs

1−b−as+bs . Hence a − ab −
a2s+abs = s+a−b−2as+bs and s = b(1−a)

1−2a+b−ab+a2 .

Similarly we have b = 1 − (1−0)(1−s)
1−a0s = s−as

1−b−as+bs .

Hence s = b(1−b)
1−a+ab−b2 . Analogically, we can compute

both versions of s for the case where a ≤ b, see [10].
¤

We can summarize formulas from the theorem as
(a, b) = (a0, b0)⊕ (s, s) = (max(a−b

1−b , 0),max( b−a
1−a , 0))

⊕ ( min(a,b)(1−min(a,b))
1+ab−max(a,b)−min2(a,b) ,

min(a,b)(1−min(a,b))
1+ab−max(a,b)−min2(a,b) ).

And analogically for the second expression of s [10].

Proof. Just a verification for a ≥ b, and that for a ≤ b.
¤

4 Non-conflicting Part of BFs on
General Finite Frames of
Discernment

Let us turn our attention to a question of non-
conflicting and conflicting parts of BFs defined on
an n-element frame of discernment Ωn = {ω1, ..., ωn}.
We start with a characterization of the set of non-
conflicting BFs.

Proposition 3 The set of non-conflicting BFs is just
the set of all BFs such, that all focal elements of a BF
have non-empty intersection.

Consonant BFs are a special case of non-conflicting
BFs.

Proof. Pl({ωi}) = 1 for some ωi ∈ Ω iff ωi ∈ X for
all X such that m(X) > 0 iff ωi ∈

⋃
m(X)>0 X iff⋃

m(X)>0 X 6= ∅.
The least focal element of a consonant BF is inter-
section of its focal elements; there are many non-
conflicting BFs which are not consonant on Ωn, n > 2,
e.g., (0, 0, 0, 0.7, 0.3, 0; 0) on Ω3, i.e., m({ω1, ω2}) =
0.7,m({ω1, ω3}) = 0.3. ¤
We would like to verify that Theorem 2 holds true
also for BFs defined on general finite frames, i.e., to
verify the following hypothesis:

Hypothesis 1 We can represent any BF Bel on n-
element frame of discernment Ωn = {ω1, ..., ωn} as
Dempster’s sum Bel = Bel0⊕BelS of non-conflicting
BF Bel0 and of indecisive conflicting BF BelS which
has no decisional support, i.e. which does not prefer
any element of Ωn to the others, see Figure 3.

Figure 3: Schema of Hypothesis 1.

Similarly to two-element frames, we have simple triv-
ial examples BelN = BelN ⊕ 0 for all non-conflicting
BFs BelN and BelI = 0⊕BelI for all indecisive BFs
BelI , where 0 = (0, 0, ...., 0; 1).

We would like to follow the idea from the case of two-
element frames, see Figure 4. Unfortunately, there
was not presented any algebraic description of BFs
defined on n-element frames till now. We have noth-
ing like Dempster’s semigroup for n-element frames,
we have no n-versions of −Bel and of homomorphisms
f and h, neither group properties of a set of indecisive
BFs.

An issue of homomorphism h is quite promising:
h(Bel) = Bel ⊕ Un = Pl P (Bel). From results on
probabilistic transformations presented in [7] it can be
concluded that, Pl P (Bel) = Bel⊕Un, for proof see
[8]. From [3] we know that Pl P commutes with ⊕,
i.e. Pl P (Bel1⊕Bel2) = Pl P (Bel1)⊕Pl P (Bel2),



thus we have homomorphism h for BFs on an n-
element frame of discernment. To generalize all ho-
momorphic properties of h we have also to verify a
general versions of h(0) = 0′ and h(0′) = 0′. It really
holds true that h(0, 0, ..., 0) = 0 ⊕ Un = (0, 0, ..., 0) ⊕
( 1

n , 1
n , ..., 1

n , 0, 0, ..., 0) = ( 1
n , 1

n , ..., 1
n , 0, 0, ..., 0) = Un.

And similarly h(Un) = Un ⊕ Un = Un. Hence the
following theorem is proved. As there is no ordering
of either BFs or elements of a frame of discernment,
we cannot speak of ordered homomorphism as in two-
element case.

Theorem 3 The mapping h(Bel) = Bel ⊕ Un =
Pl P (Bel) is an homomorphism of an algebra of BFs
on an n-element frame of discernment with the binary
operation of Dempster’s sum ⊕ and two nulary oper-
ations (constants) 0 and Un.

Thus, we can apply h with its homomorphic prop-
erties also in a general case. We have Bel and
h(Bel) = Pl P (Bel) which is BBF, i.e., BF which
has upto n positive m-values (bbms). h(Bel) =
(h1(Bel), h2(Bel), ..., hn(Bel), 0, 0, ...; 0); when inter-
preting h(Bel) as a probability distribution on Ω, we
have h(Bel)(ωi) = hi(Bel). We can use the following
procedure to compute a related unique consonant BF
Bel0 to any h(Bel).

- Bel  +  Bel

- Bel  + Bels s

Bel

- Bel   +  Belo o

Belo

Bel- Bel

- Belo

Un

s

Figure 4: Schema of a decomposition of BF Bel.

Let there are k different values hi(Bel) for i = 1, ..., n,
thus 1 ≤ k ≤ n. According to this, we have splitting
of the frame Ω into k disjoint subsets Ω = Ω1 ∪ Ω2 ∪
...∪Ωk, such the the elements of the same subset have
the same value h(Bel)(ω). Let Ω1 = {ω11, ..., ω1j1}
be a set of elements of the frame with the high-
est m-value (bbm) (h(Bel)(ω11) = h(Bel)(ω12) =
... = h(Bel)(ω1j1), where 1 ≤ j1 ≤ n − k + 1), and
Ω2 = {ω21, ..., ω2j2} be a set of elements with the 2nd
highest bbm (h(Bel)(ω21); 1 ≤ j2 ≤ n − j1 − k + 2),

then we define mw(Ω1) = h(Bel)(ω11)− h(Bel)(ω21),
further we define mw(Ω1 ∪ Ω2) = h(Bel)(ω21) −
h(Bel)(ω31), where h(Bel)(ω31) is the 3rd largest
m-value of h(Bel). We continue similarly defin-
ing mw(

⋃m
i=1 Ωi) = h(Bel)(ωm1) − h(Bel)(ω(m+1)1),

where Ωi = {ωi1, ..., ωiji} is the set of elements with
the i-th highest m-value of h(Bel), until mw(Ω) =
h(Bel)(ωk1) is defined, where Ωk = {ωk1, ..., ωkjk

} is
the set of elements with the least (possibly zero), m-
value h(Bel)(ωk1), jk = n−∑k−1

i=1 ji. mw(
⋃m

i=1 Ωi) >
0 for all m < k because less value is always decreased,
mw(Ωk) ≥ 0,

∑k
m=1 mw(

⋃m
i=1 Ωi) = h(Bel)(ω11.

Then m0 is a normalization of working bba mw, thus
focal elements of m0 are nested and Pl(ω) = 1 for
ω ∈ Ω1, hence Bel0 is normalized consonant, i.e.,
non-conflicting BF. For detail and verification that,
Bel0 ⊕ Un = h(Bel) and that m0 = (a−b

1−b , 0) is a spe-
cial case of general m0, see [10].

Finally, we can simplify the construction of Bel0 in
the following way: there is one normalization in com-
putation of Bel ⊕ Un = Pl P (Bel) and the follow-
ing normalization in the transformation of mw to m0.
Normalization commutes with the construction of mw

from Pl P (Bel), thus when computing Bel0, we can
use Pl(Bel) instead of h(Bel) = Pl P (Bel) and ap-
ply only one normalization in the end, where nor-
malization factor is the multiple of the original ones.
Thus we obtain m′

w({ω11, ..., ω1j1}) = Pl(Bel)(ω11)−
Pl(Bel)(ω21), etc. This computational simplification
is important also from the theoretical point of view,
because it removes Dempster’s rule ⊕ hidden in h
from the construction of Bel0. Hence any Bel0 has
defined its non-conflicting part independently of any
belief combination rule.

Lemma 2 For any BF Bel defined on Ωn there exists
unique consonant BF Bel0 such that,

h(Bel0 ⊕BelS) = h(Bel) (1)

for any BF BelS such that BelS ⊕ Un = Un.

Proof. The existence follows the construction of Bel0
when replacing (1) with Bel0⊕Bels⊕Un = Bel⊕Un.
For uniqueness we will also follow the construction of
Bel0: h(Bel) is unique, thus also set of its m-values
hi(Bel) is unique, k of them are different, hi(Bel) are
real values from [0, 1], thus their order is also unique,
hence splitting of Ω into k disjoint subsets is unique as
well, i.e. set of focal elements of mw and m0 is unique.
Computation of differences is also unique thus we have
unique mw values and also their normalization m0

values, hence m0 is unique consonant bba such that
h(m0) = h(Bel).
Futher it holds true that, h(Bel0⊕BelS) = h(Bel0)⊕
h(BelS) = h(Bel)⊕h(BelS) = h(Bel)⊕Un = h(Bel).
¤



Let us notice, that the stronger statement for a gen-
eral non-conflicting BFs does not hold true on Ωn.
There could be several different non-conflicting BFs
Beli such that h(Beli⊕BelS) = h(Bel) for any inde-
cisive BF BS . See, the following example.

Example 1 To BF Bel = (0.25, 0.175, 0.075, 0.35,
0.15, 0) with h(Bel) = (0.25, 0.175, 0.075, 0.35, 0.15,
0) ⊕ ( 1

3 , 1
3 , 1

3 , 0, 0, 0) = (0.50, 0.35, 0.15, 0, 0, 0) there
are following non-conflicting BFs: Bel0 = (0.3, 0, 0,
0.4, 0, 0; 0.3), Bel1 = (0, 0, 0, 0.7, 0.3, 0; 0), Bel2 =
(0.2, 0, 0, 0.5, 0.1, 0; 0.2); Pli({ω1}) = 1, thus Belis
are all non-conflicting, we can simply verify that
h(Beli) = h(Bel), thus (Beli ⊕ BelS)⊕ U3 = Beli ⊕
(BelS ⊕ U3) = Beli ⊕ U3 = h(Bel).

Let us turn our attention to f(Bel) and −Bel now.
f(a, b) = −(a, b) = (b, a) on Ω2, thus we will try to
generalize −Bel to BFs on Ωn now. We have nothing
like S defined for BFs on Ωn, thus we suppose h(Bel⊕
−Bel) = Un for −Bel. On Ω2 it holds true that
−m({ω1}) = m({ω2}) = m(Ω2 \ {ω1}), −m({ω2}) =
m(Ω2\{ω2}), and −m(Ω2) = m(Ω2)5. Unfortunately,
the simple idea to define −m as −m(X) = m(Ωn \X)
does not work in general, not even for general conso-
nant BFs, e.g., for Bel = (0.5, 0, 0, 0.2, 0, 0; 0.3) and
∼Bel = (0, 0, 0.2, 0, 0, 0.5; 0.3) we have Bel⊕ ∼Bel =
( 15
61 , 10

61 , 6
61 , 6

61 , 0
61 , 15

61 ; 9
61 ), ( 15

61 , 10
61 , 6

61 , 6
61 , 0

61 , 15
61 ; 9

61 ) ⊕
( 1
3 , 1

3 , 1
3 , 0, 0, 0; 0) = ( 30

70 , 40
70 , 30

70 , 0, 0, 0; 0) = ( 3
7 , 4

7 , 3
7 ,

0, 0, 0; 0) 6= U3. Thus h(Bel⊕ ∼ Bel) 6= Un, hence
∼ Bel 6= −Bel. The idea of complements (Ω \ X)
works only in some special cases, e.g., for (0.7, 0, 0,
0, 0, 0) ⊕ (0, 0, 0, 0, 0, 0.7) = (21/51, 0, 0, 0, 0, 21

51 ) .=
(0.41, 0, 0, 0, 0, 0.41), h(0.41, 0, 0, 0, 0, 0.41) = U3 on
Ω3 and for other simple support BFs in general.

To simplify the investigated situation, we will start
with qBBFs on 3-element frame of discernment Ω3

(i.e., with BFs such that m(X) = 0 for |X| = 2). The
set of qBBFs on Ω3 can be represented by a three di-
mensional triangle which simply generalizes the trian-
gle of Dempster’s pairs, see Figure 5. Unfortunately,
the only consonant, i.e. non-conflicting, BFs are sin-
gleton simple support functions as (a, 0, 0, 0, 0, 0; 1−a),
thus only a small part of the triangle is mapped to
non-conflicting BFs within the triangle (Bel0 is out-
side of the triangle for a majority of qBBFs). Thus,
this is not a good domain to search for −Bel0.

Let us look at BBFs now, i.e. BFs as
(a, b, c, 0, 0, 0; 0) = (a, b, 1 − a − b, 0, 0, 0; 0). Let
−(a, b, 1−a−b, 0, 0, 0) = (x, y, 1−x−y, 0, 0, 0), thus

5Note that −m(X) is an abbreviation for (−m)(X), thus
both m(X) and −m(X) may be positive in general. Specially
−m(Ω2) is an abbreviation for (−m)(Ω2), thus −m(Ω2) =
m(Ω2), where both sides of the equation are positive in general.

Figure 5: Quasi Bayesian BFs on 3-element frame Ω3.

−(a, b, 1−a−b, 0, 0, 0) ⊕ (x, y, 1−x−y, 0, 0, 0) = U3

should hold true.

Thus ax = by = (1 − a − b)(1 − x − y), y =
a
b x, (1 − x − y) = a

1−a−bx, hence 1 − x − a
b x =

a
1−a−bx. Solving the previous equation we obtain

x = b(1−a−b)
a+b−a2−b2−ab and further y = a(1−a−b)

a+b−a2−b2−ab .
Using c = 1 − a − b, we obtain x = bc

ab+ac+bc ,
y = ac

ab+ac+bc and 1 − x − y = z = 1 − bc+ac
ab+ac+bc =

ab
ab+ac+bc . E.g. (a, b, c, 0, 0, 0) = (0.5, 0.3, 0.2), x =

0.3·0.2
0.5·0.3+0.5·0.2+0.3·0.2 , y = 5·2

5·3+5·2+3·2 z = 3·2
5·3+5·2+3·2 ,

thus −(0.5, 0.3, 0.2, 0, 0, 0) = ( 6
31 , 10

31 , 15
31 , 0, 0, 0).

Thus we have −Bel for any BBF (a, b, 1−a−b, 0, 0, 0)
on Ω3 such that 0 < a, b < 1, a + b < 1.

Analogically to the case of Ω3, we can gen-
eralize the −Bel to BBFs on Ωn, to BFs
(a1, a2, ..., an, 0, 0, ..., 0; 0) such that 0 < ai < 1,
for i = 1, ..., n and an = 1 − ∑n−1

i=1 ai.
Let us denote −(a1, a2, ..., an, 0, 0, ..., 0; 0) =
(x1, x2, ..., xn, 0, 0, ...., 0; 0) (where xn = 1−∑n−1

i=1 xi),
thus we obtain x1 = 1/(1 +

∑n
i=2

a1
ai

), xi = a1
ai

x1, or
similarly to x1: xi = 1/(1 +

∑
i 6=j

ai

aj
).

An alternative expression for xi is xi =
∏

i 6=j aj∑n
k=1

∏
j 6=k aj

,
for detail see [10].

Lemma 3 For any BBF (a1, a2, ..., an, 0, 0, ..., 0; 0)
such that, ai > 0 for i = 1, ..., n, there ex-
ists uniquely defined −(a1, a2, ..., an, 0, 0, ..., 0; 0) =
(x1, x2, ..., xn, 0, 0, ..., 0; 0) = (1/(1 +

∑n
i=2

a1
ai

),
a1
a2

x1,
a1
a3

x1, ...,
a1
an

x1, 0, 0, ..., 0; 0) such that,

(a1, a2, ..., an, 0, 0, ..., 0)⊕−(a1, a2, ..., an, 0, 0, ..., 0) = Un.



Figure 6: General BF on 3-element frame Ω3.

We have already observed, that −Bel for a simple
support function (SSF) is another SSF with a com-
plementary focal element such that, −m(Ωn \ X) =
m(X); similarly we can define −Bel also for sim-
ple support BBFs (i.e. categorical BBFs), see e.g.,
−(1, 0, 0, 0, 0, 0) = (0, 0, 0, 0, 0, 1), but we have to no-
tice that (1, 0, 0, 0, 0, 0)⊕ (0, 0, 0, 0, 0, 1) is not defined
(similarly to (1, 0) ⊕ (0, 1) on Ω2). A definition of
−Bel for BBFs like (a, 1 − a, 0, 0, ..., 0) remains still
open for more-element frames Ωn, n > 2.

Summarising the previous results, we can step by step
compute h(Bel), −h(Bel) and (−h(Bel))0 from any
Bel such that Pl({ωi}) > 0 for all ωi ∈ Ωn, see Figure
7. Thus the following theorem holds true:

Theorem 4 For any BF Bel defined on Ωn there ex-
ists unique consonant BF Bel0 such that,

h(Bel0 ⊕BelS) = h(Bel)

for any BF BelS such that BelS ⊕ Un = Un. If for
h(Bel) = (h1, h2, ..., hn, 0, 0, ..., 0) holds true that, 0 <
hi < 1, then further exists unique BF −Bel0 such
that,

h(−Bel0⊕BelS)=−h(Bel) and h(Bel0)⊕−h(Bel0)=Un.

Proof. For existence and uniqueness of Bel0 see
Lemma 2. Existence of −Bel0 follows its construc-
tion, h(Bel) is unique according to its definition, for
uniqueness of −h(Bel) see Lemma 3 and final unique-
ness of −Bel0 follows Lemma 2 again. ¤

Corollary 1 (i) For any consonant BF Bel such
that Pl({ωi}) > 0 there exist a unique BF −Bel;
−Bel is consonant in this case.

Figure 7: Detailed schema of a decomposition of BF
Bel.

(ii) There is one-to-one correspondence between
Bayesian BFs and consonant BFs.

Proof. (i) Just take a consonant BF Bel, due to
uniqueness of Bel0 we have Bel = Bel0, and also
−Bel = −Bel0. Pl({ωi}) > 0 for all ωi in the case
of a consonant BF implies that m(Ω) > 0, thus also
mh({ωi}) > 0 for all ωi, where Belh = h(Bel) =
Bel⊕Un, thus we have −Belh and (−Belh)0 = −Bel;
according its construction −Bel is consonant and
unique. If Pl({ωi}) = 0 for some ωi ∈ Ω, then
m(Ω) = 0, thus there exists ωj such, that mh({ωj}) =
0, hence we have not defined either −Belh or −Bel.
(ii) Taking any BBF Bel, we obtain unique consonant
Bel0; h(Bel0) is also unique. ¤
We observed that −m(X) = m(Ω \ X) for X ⊂ Ω
and SSF m. We can verify that the definition of
−Bel using −h(Bel) agree with this observation.
E.g., Bel = Bel0 = ( 2

3 , 0, 0, 0, 0, 0; 1
3 ), h(Bel) =

( 3
5 , 1

5 , 1
5 , 0, 0, 0; 0), −h(Bel) = ( 1

7 , 3
7 , 3

7 , 0, 0, 0; 0),
and −Bel = (−h(Bel))0 = (0, 0, 0, 0, 0, 2

3 ; 1
3 ). In

general we have m(X) = a and m(Ω) = 1 − a,
where |X| = k, |Ω| = n. Thus h(m)(ωi) =

a+(1−a)
k(a+(1−a))+(n−k)(1−a) = 1

n−(n−k)a for ωi ∈ X and
h(m)(ωj) = 1−a

k(a+(1−a))+(n−k)(1−a) = 1−a
n−(n−k)a

for ωj ∈ Ω \ X. Further, −h(m)(ωi) =
1k−1(1−a)n−k

k·1k−1(1−a)n−k+(n−k)1k(1−a)n−k−1 = 1−a
n−ka ,

−h(m)(ωj) = 1k(1−a)n−k−1

k·1k−1(1−a)n−k+(n−k)1k(1−a)n−k−1 =
1

n−ka , hence −m(Ω \ X) = (−h(m))0(Ω \ X) =

(−h(m))(ωj)− (−h(m))(ωi) =
1

n−ka− 1−a
n−ka

1
n−ka− 1−a

n−ka + 1−a
n−ka

= a,

and −m(Ω) = (−h(m))0(Ω) = (−h(m))(ωi) =



1−a
n−ka

1
n−ka− 1−a

n−ka + 1−a
n−ka

= 1 − a. Thus really

−m(Ω \X) = m(X) and −m(Ω) = m(Ω). ¤
For completion of the diagram in Figure 7, we need
a definition of −Bel for general BFs on Ω to com-
pute Bel ⊕ −Bel and analysis of indecisive BFs
(i.e. BFs Bel such that, h(Bel) = Un) to compute
BelS ⊕−BelS and resulting BelS and specify condi-
tions under which BelS is defined and unique. Hence
an algebraic analysis of BFs on a general finite frame
of discernment is required.

5 Comments on other belief
combination rules

There arises an interesting question about similar
kind of decomposition of belief functions with another
combination rules.

As it was already mentioned, the non-conflicting part
Bel0 of a belief function Bel defined above is indepen-
dent from Dempster’s rule of combination, as we can
use the representation of homomorphism h using nor-
malized plausibility of singletons Pl P (Bel) instead
of the original h(Bel) = Bel ⊕ Un. Thus Bel0 can
be computed without any relation to Dempster’s rule
and Pl P (Bel0) = Pl P (Bel) independently from
any combination rule.

On the other hand Pl P (Bel) 6= Bel0 Y©Un,
Pl P (Bel) 6= Bel0DP©Un, Pl P (Bel) 6= Bel0 ∪©Un, see
Example 2. Even Pl P (Bel) 6= Pl P (Bel0 ?©Un),
where ?© is either Y©, DP©, ∪© or some other combination
rule. The equality holds true only for Dempster’s rule:
Pl P (Bel) = Bel0⊕Un; in the case of un-normalized
conjunctive rule ∩© we can apply additional normaliza-
tion to obtain the equality, thus we have normalized
conjuntive rule, i.e., Dempster’s rule ⊕ again.

Example 2 Let us take Bel = (0.3, 0.2, 0.1, 0.2,
0.1, 0.0; 0.1), thus there is Pl = (0.7, 0.5, 0.3, 0.9, 0.8,
0.7; 1.0), Pl P (Bel) = ( 7

15 , 5
15 , 3

15 ), and Bel0 = ( 2
7 , 0,

0, 2
7 , 0, 0; 3

7 ). Hence we obtain ( 2
7 , 0, 0, 2

7 , 0, 0; 3
7 ) ⊕

( 1
3 , 1

3 , 1
3 , 0, 0, 0; 0) = ( 7

15 , 5
15 , 3

15 , 0, 0, 0; 0); but ( 2
7 , 0,

0, 2
7 , 0, 0; 3

7 ) Y©( 1
3 , 1

3 , 1
3 , 0, 0, 0; 0) = ( 7

21 , 5
21 , 3

21 , 0, 0, 0;
6
21 ) 6= ( 7

15 , 5
15 , 3

15 , 0, 0, 0; 0), ( 2
7 , 0, 0, 2

7 , 0, 0; 3
7 )DP©( 1

3 , 1
3 ,

1
3 , 0, 0, 0; 0) = ( 7

21 , 5
21 , 3

21 , 2
21 , 2

21 , 0; 2
21 ) 6= ( 7

21 , 5
21 , 3

15 ,
0, 0, 0; 0), and similarly ( 2

7 , 0, 0, 2
7 , 0, 0; 3

7 ) ∪©( 1
3 , 1

3 , 1
3 , 0,

0, 0; 0) = ( 2
21 , 0, 0, 6

21 , 2
21 , 0; 11

21 ) 6=( 7
15 , 5

15 , 3
15 , 0, 0, 0; 0).

Further Pl P ( 7
21 , 5

21 , 3
21 , 0, 0, 0; 6

21 ) = ( 13
33 , 11

33 , 9
33 ) 6=

( 7
15 , 5

15 , 3
15 ), Pl P ( 7

21 , 5
21 , 3

15 , 2
21 , 2

21 , 0; 2
21 ) = ( 13

29 , 9
29 ,

7
29 ) 6= ( 7

15 , 5
15 , 3

15 ), and Pl P (( 2
21 , 0, 0, 6

21 , 2
21 , 0; 11

21 ) =
( 21
51 , 17

51 , 13
51 ) 6= ( 7

15 , 5
15 , 3

15 ).

Nevertheless, if there is a couple of homomorphisms
for any combination rule ?© analogic to morphisms f

and h from Dempster’s semigroup, then there exists
an analogy of Bel0 also for the combination rule ?©.

When expressing h using Pl P (Bel) there arises an-
other interesting question about similar kind of non-
conflicting part and decomposition of belief functions
using a different probabilistic transformations.

Considering Smets’ pignistic transformation BetT for
computing pignistic probability BetP we obtain non-
conflicting BF Bel0−BetP , where mw−BetP (

⋃m
i=1 Ωi) =

|⋃m
i=1 Ωi|(h(Bel)(ωm1) − h(Bel)(ω(m+1)1)), which is

normalized, hence m0−BetP = mw−BetP . BetT does
not commute either with Dempster’s rule nor with
other rules defined for belief combination, thus we
cannot use Bel0−BetP for decomposition of belief func-
tions to conflicting and non-conflicting parts. For
counter-examples see [10].

The most perspective pignistic transformation is nor-
malized belief of singletons Bel P which is compat-
ible with disjunctive rule of combination [7], unfor-
tunately, the reverse transformation maps any Bel
and Bel P (Bel) to the vacuous belief function 0 =
(0, 0, ....., 0; 1), which is really non-conflicting, but it
does not reprezent non-conflicting part of the belief
function Bel. In this case it represents zero conflict-
ing part, as the disjunctive rule is completely non-
conflicting; thus it holds true Bel = Bel ∪©0, where
Bel is trivial ’disjunctive non-conflicting’ part of itself
and 0 is trivial ’disjunctive conflicting’ part of any BF
Bel.

Moreover, it is possible to show that there is no similar
decomposition of belief functions for Y©, DP©, ∪© and a
for a series of other combination rules, see [10]. Any
Bayesian BF serves as counter-example there.

6 Conclusion

Decomposition of a belief function (BF) defined on
a two-element frame of discernment to Dempster’s
sum of its unique non-conflicting and unique indeci-
sive conflicting part is defined and presented here.

Homomorphic properties of mapping h(Bel) = Bel⊕
Un which corresponds to normalized plausibility of
singletons were verified for BFs defined on a general
finite frame of discernment. −Bel was generalized to
Bayesian BFs and for consonant BFs on a general n-
element frame.

Further a unique consonant non-conflicting part Bel0
of a general BF Bel on a finite frame was defined.
For specification of a corresponding conflicting part
of Bel and its uniqueness/existence properties, an al-
gebraic analysis of BFs on a general finite frame of
discernment is required.



The presented topic is finally discused also from the
point of view of alternative rules of combination and
alternative probabilistic transformations.

The presented results improve general understand-
ing of belief functions and their combination, espe-
cially in conflicting cases. They can be used as one
of corner-stones to further study of conflicts between
belief functions.
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