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Abstract

In this paper we study the relationship between the
notion of coherence for conditional probability assess-
ments on a family of conditional events and the no-
tion of admissibility with respect to scoring rules. By
extending a recent result given in literature for un-
conditional events, we prove, for any given strictly
proper scoring rule s, the equivalence between the co-
herence of a conditional probability assessment and
its admissibility with respect to s. In this paper we
focus our analysis on the case of continuous bounded
scoring rules. In this context a key role is also played
by Bregman divergence and by a related theoretical
aspect. Finally, we briefly illustrate a possible way
of defining (generalized) coherence of interval-valued
probability assessments by exploiting the notion of ad-
missibility given for precise probability assessments.
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1 Introduction

The theory and the applications of proper scoring
rules have a long history in statistical literature (see,
e.g., [1, 20, 23, 24, 25, 26, 28, 29, 31, 32, 33, 36, 37]).
This theory was central to de Finetti’s ideas about as-
sessing the relative values of different subjective prob-
ability assessments ([9], see also [12]). A review of
the general theory, with applications, has been given
in [25] and, more recently, in [20]. A scoring rule
for the probability of a given event E is a function
of both the observation that comes to be observed, E
true, or E false, and of the assessed probability P (E).
Assume that you were asked to assert P (E), knowing
that your assertion were to be scored according to the
rule s(E,P (E)); moreover, assume that your degree

of belief were P (E) = p, while you announced instead
some other number P (E) = x, in the expectation that
you would achieve a better score. The rule is said to
be proper if you cannot expect a better score by spec-
ifying a value x different from p. Proper scoring rules
encourage sincerity, because for you the best decision
is to announce probabilities which conform to your
beliefs.
The connections between the notions of coherence and
of admissibility for probability assessments have been
investigated in the work of de Finetti ([9, 10, 11]),
by means of a penalty criterion based on the Brier
quadratic scoring rule ([5]). A generalization of the
work of de Finetti to a broad class of scoring rules has
been given by Lindley in [26]. In his paper Lindley
assumes suitable properties for the score function and
admissibility for the numerical values which describe
the uncertainty. Then, he shows that such numeri-
cal values can be transformed into numerical values
which satisfy the basic properties of conditional prob-
abilities.
The relationship between the notions of coherence and
of non-dominance, with respect to strictly proper con-
tinuous scoring rules, has been investigated in [27].
In the same paper the connection of coherence and
strictly proper scoring rules to Bregman divergence
has been clarified.
A rich analysis of scoring rules which extends the re-
sults obtained in [27] to conditional probability as-
sessments has been given in [33], where different no-
tions of coherence have been discussed. In the same
paper, some conditions are given under which the
quadratic scoring rule can be replaced by a general
strictly proper scoring rule, preserving the equivalence
of the notions of coherence introduced through the
gambling and the penalty arguments. In [33] are also
examined the cases of scoring rules which are discon-
tinuous and/or not strictly proper. In particular, in
Example 8 of the same paper, by using a discontin-
uous strictly proper scoring rule it is shown that an
incoherent probability assessment cannot be weakly



dominated by any coherent probability assessment,
while it is dominated by other incoherent assessments.
Moreover, in Example 9 of [33], by using a discontin-
uous merely proper scoring rule it is shown that a
coherent probability assessment is weakly dominated
by another coherent probability assessment.
In our paper we adopt a notion of coherence for con-
ditional events which is different from that ones given
in [33] and is based on the strengthened coherence
principle of de Finetti ([11], vol. 2, Axiom 3, pag.
339). Such a strengthened principle allows to prop-
erly manage conditioning events with zero probability
and, as proved in [14, 15] (see also [18]), is equiva-
lent to the notion of coherence for conditional prob-
ability assessments studied by other authors; see e.g.
[8, 22, 30, 34, 35]. In order to unify the treatment of
unconditional and conditional events, the definition of
coherence given by de Finetti with the penalty crite-
rion was suitably modified in [15] (see also [16]).
As it can be shown by suitable examples (see [8, 17]),
if a function P defined on a family of conditional
events satisfies the axiomatic properties of a condi-
tional probability, but the set of conditioning events
doesn’t have any structure, it may happen that P
is not coherent. On the contrary, if P is coherent,
then P satisfies all the properties of conditional prob-
abilities. In particular, (strengthened) coherence re-
quires that 0 ≤ P (A|B) ≤ 1, for any given condi-
tional event A|B. As another example, let us consider
the assessment P (A1|B) = 0.9, P (A2|B) = 0.7, with
A1 ∧ A2 = ∅ and B 6= Ω (see [33], p. 204). Such an
assessment, which is coherent based on Definition 1
in [33], is not coherent in our approach.
We observe that the notions of coherence given in [33]
and strengthened coherence are equivalent in the case
of unconditional probabilities. Moreover, in Example
8 and Example 9 illustrated above only unconditional
events are considered; hence, the corresponding re-
sults also hold in our approach. Then, in our paper
we focus the analysis on continuous strictly proper
scoring rules.
In this paper, using the strengthened notion of coher-
ence, we extend the result given in [27] to the case
of conditional events. We prove that, for any given
(continuous) bounded strictly proper scoring rule s, a
probability assessment on an arbitrary family of con-
ditional events is coherent if and only if it is admissible
with respect to s.
In ([33], p. 204) the authors leave open the ques-
tion of whether their results still hold if one restricted
the notion of coherence to require that the axioms of
probability conditional on events with zero probabil-
ity be satisfied. Our answer to this open question is
that the equivalence between coherence and admissi-
bility still holds with our notion of coherence (which

restricts the notions of coherence used in [33]).
In our paper, based on the comments of an anony-
mous referee, we briefly examine how the notion of
admissibility for precise probability assessments can
be exploited in the case of interval-valued probability
assessments.
The paper is organized as follows: In Section 2 we
first give some preliminary notions; then, in Subsec-
tion 2.1 we recall the notion of coherence with the
betting scheme; in Subsection 2.2 we give the notion
of coherence with the penalty criterion of de Finetti;
in Subsection 2.3 we illustrate, by a suitable alterna-
tive theorem, the equivalence of the betting scheme
and the penalty criterion. In Section 3 we recall the
notion of strictly proper scoring rule for unconditional
events; then, we consider scoring rules for conditional
events and we give the notions of weak and strong
dominance, and of admissibility, for conditional prob-
ability assessments with respect to a scoring rule.
We also consider a function s(p, x) connected with
the prevision of unconditional and conditional scor-
ing rules. In Section 4 we illustrate some well known
properties of s(p, x). In Section 5 we recall the no-
tion of Bregman divergence and a related theoretical
aspect. Then, we prove for conditional probability
assessments the equivalence between coherence and
admissibility with respect to any continuous bounded
strictly proper scoring rule. In Section 6 we recall
the notions of g-coherence, coherence and total coher-
ence for interval-valued probability assessments and
we briefly examine how these notions can be defined
by means of the admissibility property. Finally, in
Section 7 we give some conclusions.

2 Some preliminary notions

Given a real function P : K → R, where K is an
arbitrary family of conditional events, let us consider
a sub-family Fn = {E1|H1, . . . , En|Hn} ⊆ K, and the
vector Pn = (p1, . . . , pn), where pi = P (Ei|Hi) , i =
1, . . . , n. The vector Pn represents the restriction of
the function P to Fn. We denote by Hn the disjunc-
tion H1 ∨ · · · ∨Hn. Since

EiHi ∨ Ec
iHi ∨Hc

i = Ω , i = 1, . . . , n ,

where Ω is the sure event, by expanding the expres-
sion

∧n
i=1(EiHi ∨ Ec

iHi ∨ Hc
i ), we can represent Ω

as the disjunction of 3n logical conjunctions, some
of which may be impossible. The remaining ones
are the constituents generated by the family F . We
denote by C1, . . . , Cm the constituents contained in
Hn and (if Hn 6= Ω) by C0 the further constituent
Hc

n = Hc
1 · · ·Hc

n, so that

Hn = C1 ∨ · · · ∨ Cm ,

Ω = Hc
n ∨Hn = C0 ∨ C1 ∨ · · · ∨ Cm , m+ 1 ≤ 3n .



2.1 Coherence with betting scheme

Using the same symbols for the events and their in-
dicators, with the pair (Fn,Pn) we associate the ran-
dom gain

G =

n∑
i=1

siHi(Ei − pi) ,

where s1, . . . , sn are n arbitrary real numbers. Let gh
be the value of G when Ch is true. Of course g0 = 0
(notice that g0 will not play any role in the definition
of coherence). Denoting by G|Hn the restriction of G
to Hn, it is G|Hn ∈ {g1, . . . , gm}. Then, the function
P defined on K is said coherent if and only if, for every
integer n, for every finite sub-family Fn ⊆ K and for
every s1, . . . , sn, one has

min G|Hn ≤ 0 ≤ max G|Hn . (1)

Remark 1. If the function P is coherent, then it is
called a conditional probability on K. Notice that, if P
is coherent, then P satisfies all the well known prop-
erties of conditional probabilities (while the converse
is not true; see [8], Example 13; or [17], Example 8).

2.2 Coherence with penalty criterion

Another operational definition of probabilities based
on the quadratic scoring rule has been proposed by de
Finetti ([10, 11]). This definition has been extended
to the case of conditional events in [15].
With the pair (Fn,Pn) we associate the loss L =∑n

i=1Hi(Ei − pi)
2 ; we denote by Lh the value of

L if Ch is true. If You specify the assessment Pn on
Fn as representing your belief’s degrees, You are re-
quired to pay a penalty Lh when Ch is true. Then,
the function P is said coherent if and only if do not
exist an integer n, a finite sub-family Fn ⊆ K, and
an assessment Pn

∗ = (p∗1, . . . , p
∗
n) on Fn such that,

for the loss L∗ =
∑n

i=1Hi(Ei− p∗i )2 , associated with
(Fn,P∗n ), it results L∗ ≤ L and L∗ 6= L; that is
L∗h ≤ Lh , h = 1, . . . ,m , with L∗h < Lh in at least
one case.
We can develop a geometrical approach to coherence
by associating, with each constituent Ch contained in
Hn, a point Qh = (qh1, . . . , qhn), where

qhj =


1, if Ch ⊆ EjHj ,
0, if Ch ⊆ Ec

jHj ,
pj , if Ch ⊆ Hc

j .
(2)

Denoting by I the convex hull of the points
Q1, . . . , Qm, based on the penalty criterion, the fol-
lowing result can be proved ([15], see also [17])

Theorem 1. The function P is coherent if and only
if, for every finite sub-family Fn ⊆ K, one has Pn ∈ I.

2.3 Equivalence between betting scheme and
penalty criterion

The betting scheme and the penalty criterion are
equivalent ([14, 15]). This equivalence can also be
proved by the following steps ([18]):
1. The condition Pn ∈ I amounts to solvability of
the following system Σ in the unknowns λ1, . . . , λm

(Σ)

{ ∑m
h=1 qhjλh = pj , j = 1, . . . , n ;∑m
h=1 λh = 1 , λh ≥ 0 , h = 1, . . . ,m.

2. Let x = (x1, . . . , xm), y = (y1, . . . , yn)t and
A = (aij) be, respectively, a row m−vector, a col-
umn n−vector and a m× n−matrix. The vector x is
said semipositive if xi ≥ 0, ∀ i, and x1+· · ·+xm > 0.
Then, we have (cf. [13], Theorem 2.9)

Theorem 2. Exactly one of the following alternatives
holds.
(i) the equation xA = 0 has a semipositive solution;
(ii) the inequality Ay > 0 has a solution.

We observe that, choosing aij = qij − pj , ∀ i, j, the
solvability of xA = 0 means that Pn ∈ I, while
the solvability of Ay > 0 means that, choosing si =
yi, ∀ i, one has min G|Hn > 0 (and hence Pn would
be incoherent). Therefore, by applying Theorem 2
with A = (qij − pj), we obtain max G|Hn ≥ 0 if and
only if Σ is solvable, that is, max G|Hn ≥ 0 if and
only if Pn ∈ I.

3 Scoring rules and admissibility for
conditional probability assessments

In this section we recall the notion of (strictly) proper
scoring rule for unconditional events; then, based on
this notion, we consider scoring rules for conditional
events, called conditional scoring rules. Then, we il-
lustrate the notions of weak and strong dominance,
and of admissibility, for a probability assessment with
respect to a scoring rule.
A score may represent a reward or a penalty; we think
of scores as penalties, so that to improve the score
means to reduce it. To introduce strictly proper scor-
ing rules, we use the definition given in [27].

Definition 1. A function s : {0, 1}× [0, 1]→ [0,+∞]
is said to be a strictly proper scoring rule if the fol-
lowing conditions are satisfied:
(a) for every x, p ∈ [0, 1], with x 6= p, it is

p s(1, x) + (1− p) s(0, x) > p s(1, p) + (1− p) s(0, p) ; (3)

(b) the functions s(1, x) and s(0, x) are continuous.

We observe that, if x is your announced probability
for the event E, while p represents your degree of



belief on E, then the quantity ps(1, x) + (1−p)s(0, x)
is nothing but your expected score.
For brevity, a strictly proper scoring rule will be called
proper scoring rule.
We indicate by the same symbol the events and their
indicators. Then, given any event E, we have

s(E, x) =

{
s(1, x), E,
s(0, x), Ec.

Given a scoring rule s, with any conditional event
E|H we associate the conditional scoring rule
s(E|H,x) : {0, 1} × [0, 1]→ [0,+∞] defined as

s(E|H,x) = Hs(E, x) =

 s(1, x), EH,
s(0, x), EcH,
0, Hc.

We consider, for any given proper scoring rule s de-
fined on the set {0, 1} × [0, 1], the extension of s to
the set [0, 1]× [0, 1], defined as

s(p, x) = p s(1, x) + (1− p) s(0, x) . (4)

We remark that, if x is your announced probability for
the conditional event E|H, while p numerically repre-
sents your degree of belief on E|H, then the quantity
s(p, x) in (4) represents the conditional prevision

P[s(E|H,x) |H] = P[Hs(E, x) |H] = P[s(E, x) |H] .

Moreover,

P[s(E|H,x)] = s(1, x)P (EH) + s(0, x)P (EcH) ;

of course, s(p, x) 6= s(1, x)P (EH) + s(0, x)P (EcH).
Given a probability assessment Pn = (p1, p2, . . . , pn),
with pi ∈ [0, 1], on a family of conditional event Fn =
{E1|H1, E2|H2, . . . , En|Hn}, where pi = P (Ei|Hi),
and a proper scoring rule s, assuming that the scores
are additive, we define the random penalty, or loss
function, L associated with the pair (Fn,Pn) as

L =

n∑
i=1

s(Ei|Hi, pi) =

n∑
i=1

His(Ei, pi).

For the Brier quadratic scoring rule s(E, x) = (E−x)2

it is s(E|H,x) = H(E − x)2. The loss function asso-
ciated with this conditional scoring rule was used in
[15] (see also [18]), in the framework of the penalty
criterion of de Finetti, to give a unified definition of
the notion of coherence for conditional and uncondi-
tional events.
For the (unbounded and proper) logarithmic scoring
rule ([21]) s(E, x) = − log(1− |E − x|), we have

s(E|H,x) = −H log(1− |E − x|) .

The associated random penalty is

L = −
n∑

i=1

[EiHi log pi + Ec
iHi log(1− pi)] ,

which was proposed in ([25], p. 355) for the case of
unconditional events, with {E1, . . . , En} a partition of
Ω. The above random penalty was used in [7] to intro-
duce a suitable discrepancy measure with the aim of
correcting incoherent conditional probability assess-
ments.
Given the constituents C0, C1, . . . , Cm generated by
Fn, we denote by Lk the value of L associated with
Ck, k = 0, 1, . . . ,m. Of course, L0 = 0.

Definition 2. Let be given a scoring rule s and a
probability assessment Pn on a family of n conditional
events Fn. Given any assessment P∗n on Fn, with
P∗n 6= Pn, we say that Pn is weakly dominated by
P∗n, with respect to s, if denoting by L (resp., L∗)
the penalty associated with the pair (Fn,Pn) (resp.,
(Fn,P∗n)), it is L∗ ≤ L, that is: L∗k ≤ Lk, for every
k = 0, 1, . . . ,m.

We observe that Pn is not weakly dominated by P∗n
if and only if L∗k > Lk for at least a subscript k.

Definition 3. Let be given a scoring rule s and a
probability assessment Pn on a family of n conditional
events Fn. We say that Pn is admissible w.r.t. s if
Pn is not weakly dominated by any P∗n 6= Pn.

Remark 2. We observe that, by Definition 3, it fol-
lows:
- If the assessment Pn on Fn is admissible, then
for every subfamily FJ ⊂ Fn the sub-assessment PJ

associated with FJ is admissible.

In order to manage infinite families of conditional
events we give the following

Definition 4. Let be given a scoring rule s and a
probability assessment P on an arbitrary family of
conditional events K. We say that P is admissible
with respect to s if, for every finite subfamily Fn ⊆ K,
the restriction of P on Fn is admissible w.r.t. s.

By observing that L0 = L∗0 = 0, we give the following

Definition 5. Let be given a scoring rule s and a
probability assessment Pn on a family of n conditional
events Fn. Given any assessment P∗n on Fn, we say
that Pn is strongly dominated by P∗n, with respect to
s, if L∗k < Lk, for every k = 1, . . . ,m.

4 Properties of the function s(p, x)

For the convenience of the reader and to make our
exposition self-contained, in the Proposition below we
illustrate some well known properties of the function
s(p, x) defined in (4).



Proposition 1. Given a proper scoring rule s, the
function s(p, x) satisfies the following properties:

1. s(αp′+(1−α)p′′, x) = α s(p′, x)+(1−α) s(p′′, x);

2. s(p, x) ≥ s(p, p), with s(p, x) = s(p, p) if and only
if x = p;

3. s(p, p) is strictly concave on (0, 1);

4. s(p, x) is partially derivable with respect to x at
(p, p), for every p ∈ (0, 1), and it is

∂s(p, x)

∂x
|(p,p) = 0 ;

5. for every p ∈ (0, 1), s(p, p) is differentiable, with
a continuous decreasing derivative

s′(p, p) = a(p) = s(1, p)− s(0, p) ;

6. for every p ∈ [0, 1], x ∈ (0, 1), it is

s(p, x) = s(x, x) + s′(x, x)(p− x) .

Proof. 1. We have s(p, x) = a(x)p+ b(x), where

a(x) = s(1, x)− s(0, x) , b(x) = s(0, x) ,

so that

s(αp′ + (1− α)p′′, x) =
a(x)[αp′ + (1− α)p′′] + b(x)[α+ (1− α)] =
α s(p′, x) + (1− α) s(p′′, x).

2. The property immediately follows by observing
that the restriction of the function s(p, x) to the set
{0, 1} × [0, 1] is a proper scoring rule.
3. For every x, y, α ∈ (0, 1), by setting z = αx+ (1−
α)y, we have s(x, x) < s(x, z), s(y, y) < s(y, z); then

s(z, z) = s(αx+ (1− α)y, αx+ (1− α)y) =
α s(x, z) + (1− α) s(y, z) > αs(x, x) + (1− α) s(y, y)

4. Given any p ∈ (0, 1) and 0 < ε < 1−p, by property
2 we have

s(p, p+ ε)− s(p, p)
ε

> 0 ,

s(p+ ε, p+ ε)− s(p+ ε, p)

ε
< 0 .

(5)

Moreover

s(p+ε,p+ε)−s(p+ε,p)
ε =

= s(p+ε,p+ε)−s(p,p+ε)
ε − s(p+ε,p)−s(p,p)

ε +

+ s(p,p+ε)−s(p,p)
ε =

= ε[s(1,p+ε)−s(0,p+ε)]
ε − ε[s(1,p)−s(0,p)]

ε +

+ s(p,p+ε)−s(p,p)
ε =

= ε[s(1,p+ε)−s(0,p+ε)]
ε − ε[s(1,p)−s(0,p)]

ε +

+ s(p,p+ε)−s(p,p)
ε =

=[s(1,p+ε)−s(0,p+ε)]−[s(1,p)−s(0,p)]+
s(p,p+ε)−s(p,p)

ε .

Then, by (5), it follows

0 <
s(p, p+ ε)− s(p, p)

ε
<

< [s(1, p)− s(0, p)]− [s(1, p+ ε)− s(0, p+ ε)] ,
(6)

and by continuity of the function s(1, x) − s(0, x) it
follows

lim
ε→0+

s(p, p+ ε)− s(p, p)
ε

= 0 .

Analogously, given any p ∈ (0, 1) and 0 < ε < p, by
property 2 we have

s(p, p− ε)− s(p, p)
ε

> 0 ,

s(p− ε, p− ε)− s(p− ε, p)
ε

< 0 .
(7)

Moreover

s(p−ε,p−ε)−s(p−ε,p)
ε =

= s(p−ε,p−ε)−s(p,p−ε)
ε − s(p−ε,p)−s(p,p)

ε +

+ s(p,p−ε)−s(p,p)
ε =

= −ε[s(1,p−ε)−s(0,p−ε)]
ε − −ε[s(1,p)−s(0,p)]

ε +

+ s(p,p−ε)−s(p,p)
ε =

=−[s(1,p−ε)−s(0,p−ε)]+[s(1,p)−s(0,p)]+
s(p,p−ε)−s(p,p)

ε .

Then, by (7), it follows

0 <
s(p, p− ε)− s(p, p)

ε
<

< [s(1, p− ε)− s(0, p− ε)]− [s(1, p)− s(0, p)] ,

and by continuity of the function s(1, x) − s(0, x) it
follows

lim
ε→0+

s(p, p− ε)− s(p, p)
−ε

=

= − lim
ε→0+

s(p, p− ε)− s(p, p)
ε

= 0 .



Therefore, for every p ∈ (0, 1), there exists the partial
derivative of s(p, x) with respect to x at (p, p) and it
is zero.
5. Given any p ∈ (0, 1) and −p < ε < 1 − p, ε 6= 0,
we have

s(p+ε,p+ε)−s(p,p)
ε =

= s(p+ε,p+ε)−s(p,p+ε)
ε + s(p,p+ε)−s(p,p)

ε =

= ε[s(1,p+ε)−s(0,p+ε)]
ε + s(p,p+ε)−s(p,p)

ε =

= [s(1,p+ε)−s(0,p+ε)] +
s(p,p+ε)−s(p,p)

ε ;

then, by continuity of the function s(1, x)−s(0, x) and
by property 4, it follows

s′(p, p) = lim
ε→0

s(p+ ε, p+ ε)− s(p, p)
ε

=

= a(p) = s(1, p)− s(0, p) .

We observe that, in agreement with the strict concav-
ity of s(p, p) and as shown in (6), a(p) is decreasing.
6. For every p ∈ [0, 1], x ∈ (0, 1), we have

s(p, x)− s(x, x) = [a(x)p+ b(x)]− [a(x)x+ b(x)] =

= s′(x, x)(p− x) ;

hence s(p, x) = s(x, x) + s′(x, x)(p− x).

5 Coherence and admissibility

In this section we recall the notion of Bregman di-
vergence and a related theoretical aspect. Then,
we prove the main result of the paper, by showing
the equivalence between the coherence of conditional
probability assessments and admissibility with respect
to any bounded (strictly) proper scoring rule s.
Given two vectors

Vn = (v1, . . . , vn), Pn = (p1, . . . , pn) ∈ [0, 1]n,

we set

S(Vn,Pn) =

n∑
i=1

s(vi, pi) . (8)

By property 3, the function S is strictly concave;
moreover, by property 5, S is differentiable in (0, 1)n.
By property 6, given any Pn ∈ (0, 1)n we have

S(Vn,Pn) =
∑n

i=1[s(pi, pi) + s′(pi, pi)(vi − pi)] =

= S(Pn,Pn) +∇S(Pn,Pn) · (Vn − Pn) ;
(9)

then, by setting

Φ(Pn) = −S(Pn,Pn) ,

we have

S(Vn,Pn) = −Φ(Pn)−∇Φ(Pn) · (Vn − Pn) . (10)

We recall that the function s(p, p) is continuous on
[0, 1] and strictly concave on (0, 1); then Φ(Pn) is
continuous on [0, 1]n and strictly convex on (0, 1)n.
Moreover, s(p, p) has a continuous first derivative on
(0, 1); then, the function Φ(Pn) has continuous partial
derivatives on (0, 1)n. Hence, Φ(Pn) is differentiable
on (0, 1)n and its gradient ∇Φ(Pn) is a continuous
function on (0, 1)n. If s is bounded, then ∇Φ(Pn) ex-
tends to a bounded continuous function on [0, 1]n.
In the definition below we recall the notion of Breg-
man divergence (see e.g. [6]).

Definition 6. Let C be a convex subset of Rn with
nonempty interior. Let Φ : C → R be a strictly con-
vex function, differentiable in the interior of C, whose
gradient ∇Φ extends to a bounded, continuous func-
tion on C. For Vn,Pn ∈ C the Bregman divergence
dΦ : C × C → R corresponding to Φ is given by

dΦ(Vn,Pn) = Φ(Vn)− Φ(Pn)−∇Φ(Pn) · (Vn − Pn) .

It is dΦ(Vn,Pn) ≥ 0 and, as Φ is strictly convex,
dΦ(Vn,Pn) = 0 if and only if Vn = Pn.
We remark that, assuming s bounded, C = [0, 1]n and
Φ(X ) = −S(X ,X ), by (10) and Definition 6 it follows

dΦ(Vn,Pn) = S(Vn,Pn)− S(Vn, Vn) . (11)

We observe that, for s(E, x) = − log(1− |E − x|), we
have

S(Vn,Pn) = −
n∑

i=1

[vi log pi+(1−vi) log(1−pi)] ; (12)

then, formula (11) becomes

dΦ(Vn,Pn) =

n∑
i=1

[
vi log

(
vi
pi

)
+ (1− vi) log

(
1− vi
1− pi

)]
.

This logarithmic Bregman divergence is connected
with the discrepancy measure proposed in [7] to cor-
rect incoherent conditional probability assessments.
Now, we recall the following result given in [27]; see
also [6].

Proposition 2. Let dΦ : C × C → R be a Bregman
divergence and let I ⊆ C be a closed convex subset of
Rn. For each Pn ∈ C\I, there exists a unique P∗n ∈ I,
called the projection of Pn onto I, such that

dΦ(P∗n,Pn) ≤ dΦ(Vn,Pn) , ∀Vn ∈ I .

Moreover

dΦ(Vn,P∗n) + dΦ(P∗n,Pn) ≤ dΦ(Vn,Pn) ,

∀Vn ∈ I , Pn ∈ C \ I .
(13)



In the next result we illustrate the relationship be-
tween the notion of coherence and the property of
non dominance.

Theorem 3. Let be given a probability assessment
P on a family of conditional events K; moreover, let
be given any bounded (strictly) proper scoring rule
s. The assessment P is coherent if and only if it is
admissible with respect to s.

Proof. (⇒) Assuming P coherent, let s be any
bounded proper scoring rule. Given any subfamily
Fn = {E1|H1, . . . , En|Hn} of K, let Pn = (p1, . . . , pn)
be the restriction to Fn of P. Now, given any
P∗n = (p∗1, . . . , p

∗
n) 6= Pn, we distinguish two cases:

(a) p∗i 6= pi, for every i = 1, . . . , n;
(b) p∗i = pi, for at least one index i.
Case (a). We still denote by C0, C1, . . . , Cm, where
C0 = Hc

1 ∧· · ·∧Hc
n, the constituents generated by Fn

and by Qk = (qk1, . . . , qkn) the point associated with
Ck, k = 1, . . . ,m.

We introduce the following binary quantities

eki =

{
1, Ck ⊆ Ei,
0, Ck ⊆ Ec

i ,
, hki =

{
1, Ck ⊆ Hi,
0, Ck ⊆ Hc

i .

Then, by recalling (2), for every i = 1, . . . , n, k =
1, . . . ,m it is

qki = ekihki + (1− hki)pi . (14)

With the assessment Pn it is associated the loss

L =

n∑
i=1

[EiHis(1, pi) + Ec
iHis(0, pi)] =

n∑
i=1

His(Ei, pi) ;

of course, with any other assessment P∗n on Fn it
associated the loss

L∗ =
n∑

i=1

Hi[Eis(1, p
∗
i ) + Ec

i s(0, p
∗
i )] =

n∑
i=1

His(Ei, p
∗
i ) .

For each constituent Ck, k = 0, 1, . . . ,m, the values
of L and L∗ are, respectively

Lk =

n∑
i=1

[ekihkis(1, pi) + (1− eki)hkis(0, pi)] ,

L∗k =

n∑
i=1

[ekihkis(1, p
∗
i ) + (1− eki)hkis(0, p∗i )] .

By recalling that L0 = L∗0 = 0, in what follows we
will only refer to the values Lk, L

∗
k, k = 1, . . . ,m.

As Pn is coherent, there exists a vector (λ1, . . . , λm),
with λk ≥ 0 and

∑
k λk = 1, such that Pn =∑

k λkQk; that is, by (14)

pi =
∑

k λkqki =
∑

k λkekihki + pi − pi
∑

k λkhki ,

for every i = 1, . . . , n; so that∑
k

λkekihki = pi
∑
k

λkhki , i = 1, . . . , n ,

or equivalently∑
k

λk(1− eki)hki = (1− pi)
∑
k

λkhki , i = 1, . . . , n .

Then,∑
k λkLk =

=
∑

k λk
∑n

i=1 [ekihkis(1, pi) + (1− eki)hkis(0, pi)] =

=
∑

i (
∑

k λkekihki) s(1, pi)+

+
∑

i (
∑

k λk(1− eki)hki) s(0, pi) =

=
∑

i[pi
∑

k λkhki)s(1, pi)+(1−pi)
∑

k λkhki)s(0, pi)]

=
∑

i(
∑

k λkhki) [pi s(1, pi) + (1− pi) s(0, pi)] .

We set I ′ = {i :
∑

k λkhki > 0} ⊆ {1, 2, . . . , n}. We
observe that I ′ is not empty. In fact, for each i =
1, . . . , n, there exists a constituent Ck such that Ck ⊆
Hi and then

∑
i hki ≥ 1. Moreover, as∑

i

∑
k

λkhki =
∑
k

λk
∑
i

hki ≥
∑
k

λk = 1 ,

there exists an index i such that
∑

k λkhki > 0; i.e.
I ′ 6= ∅.
Then, by recalling that for each i = 1, . . . , n it is

pi s(1, pi) + (1− pi)s(0, pi) < pi s(1, p
∗
i ) + (1− pi)s(0, p

∗
i ),

we have∑
k λkLk =

=
∑

i∈I′(
∑

k λkhki)[pi s(1, pi) + (1− pi) s(0, pi)] <

<
∑

i∈I′(
∑

k λkhki)[pi s(1, p
∗
i ) + (1− pi) s(0, p∗i )] =

=
∑

i(
∑

k λkhki)[pi s(1, p
∗
i ) + (1− pi) s(0, p∗i )] =

=
∑

k λkL
∗
k .

The inequality
∑

k λkLk <
∑

k λkL
∗
k implies that

there exists an index k such that Lk < L∗k; that is
L∗ > L in at least one case. Hence Pn is admissible.
Since Fn is arbitrary, it follows that P is admissible.
Case (b). Let be given any P∗n 6= Pn, with p∗i = pi,
for at least one index i. We set J = {i : p∗i 6= pi} ⊂
Jn = {1, . . . , n}. We denote by PJ (resp., PJn\J)
the subvector of Pn associated with J (resp., Jn \ J).



Analogously, we can consider the subvectors P∗J and
P∗Jn\J of P∗n. Then, we have

L = LJ+LJn\J , L
∗ = L∗J+L∗Jn\J , LJn\J = L∗Jn\J .

By the same reasoning as in case (a), it holds that
L∗J > LJ in at least one case. Then, by observing
that L − L∗ = LJ − L∗J , it is L∗ > L in at least one
case; hence Pn is admissible. Since Fn is arbitrary, P
is admissible.
(⇐). We will prove that, given any bounded proper
scoring rule s, if P is not coherent, then P is not
admissible with respect to s. Assume that P is
not coherent. Then, there exists a subfamily Fn =
{E1|H1, . . . , En|Hn} ⊆ K such that, for the restric-
tion Pn = (p1, . . . , pn) of P to Fn, denoting by
In ⊆ [0, 1]n the associated convex hull, it is Pn /∈ In.
For each constituent Ck we set Ik = {i : Ck ⊆
Hc

i }, Jk = {i : Ck ⊆ Hi}; then, by recalling (11),
the value Lk of the penalty L is given by

Lk =
∑n

i=1 s(eki, pi)hki =

=
∑n

i=1 s(qki, pi)−
∑

i∈Ik s(pi, pi) =

=
∑n

i=1 s(qki, pi)−
∑n

i=1 s(qki, qki)+

+
∑n

i=1 s(qki, qki)−
∑

i∈Ik s(pi, pi) =

=
∑n

i=1 s(qki, pi)−
∑n

i=1 s(qki, qki)+

+
∑n

i∈Jk
s(eki, eki) =

= S(Qk,Pn)− S(Qk, Qk) + αk =

= dΦ(Qk,Pn) + αk ,

(15)

where αk =
∑n

i∈Jk
s(eki, eki) and Φ(X ) = −S(X ,X ).

By applying Proposition 2 with C = [0, 1]n and I =
In, by (13) we have

dΦ(Qk,P∗n) + dΦ(P∗n,Pn) ≤ dΦ(Qk,Pn) ,

where P∗n = (p∗1, . . . , p
∗
n) is the projection of Pn onto

In. Moreover, as P∗n 6= Pn it is dΦ(P∗n,Pn) > 0 and
hence

dΦ(Qk,P∗n) < dΦ(Qk,Pn) , k = 1, . . . ,m .

Now, denoting by Q∗1 = (q∗11, . . . , q
∗
1n), . . . , Q∗m =

(q∗m1, . . . , q
∗
mn) the points associated with the pair

(Fn,P∗n), recalling property 2, for each k = 1, . . . ,m
we have

dΦ(Qk,P∗n)− dΦ(Q
∗
k,P∗n) =

= S(Qk,P∗n)− S(Qk, Qk)− S(Q∗k,P∗n) + S(Q∗k, Q
∗
k) =

=

n∑
i=1

[s(qki, p
∗
i )− s(qki, qki)− s(q∗ki, p

∗
i ) + s(q∗ki, q

∗
ki)] =

=
∑n

i=1 [s(qki, p
∗
i )− s(q∗ki, p

∗
i )]+

−
∑n

i=1 [s(qki, qki)− s(q∗ki, q
∗
ki)] =

=
∑

i∈Ik
[s(pi, p

∗
i )− s(p∗i , p

∗
i )]+

−
∑

i∈Ik
[s(pi, pi)− s(p∗i , p

∗
i )] =

=
∑

i∈Ik
[s(pi, p

∗
i )− s(pi, pi)] ≥ 0 .

Therefore, for each k = 1, . . . ,m, it is

dΦ(Q∗k,P∗n) ≤ dΦ(Qk,P∗n) < dΦ(Qk,Pn) .

Then, by (15), for each k = 1, . . . ,m it follows

L∗k = dΦ(Q∗k, P
∗
n) + αk < dΦ(Qk, Pn) + αk = Lk ;

that is, Pn is strongly dominated (and hence weakly
dominated) by P∗n; hence Pn is not admissible. This
implies that P is not admissible.

We remark that in the first part of the proof of the
previous theorem it has not been necessary to use the
Bregman divergence .
We observe that Theorem 3 can be formulated in the
following equivalent way.

Theorem 4. Given an arbitrary family of conditional
events K, let Πc the set of coherent conditional prob-
ability assessments P on K. Moreover, denoting by
Σ the class of bounded (continuous strictly) proper
scoring rules, let be given any s ∈ Σ. Then, let Πs be
the set of conditional probability assessments P on K
which are admissible with respect to s. We have

Πs = Πc , ∀ s ∈ Σ . (16)

Remark 3. The equality (16) in the case s(E, x) =
(E − x)2 has been proved in [15] (see also [18]).

6 The case of imprecise probability
assessments

In this section we illustrate a possible way of study-
ing the relationship between coherence and admis-
sibility with respect to scoring rules in the case of
interval-valued conditional probability assessments.
An anonymous referee observed that “there is an im-
possibility result due to the authors of [33] (probably
still unpublished) showing that there does not exist a
real-valued proper IP-scoring rule”.
Moreover, the referee claims that in the same paper
it is shown that “there is a lexicographic, i.e. non-
standard valued, proper scoring rule for eliciting prob-
ability intervals”.
Here, we just show that the notion of admissibility
given for precise assessments can also be exploited in
the case of imprecise probabilities.
We recall below the notions of generalized coherence
(g-coherence, [2, 3, 4]), coherence and total coherence
([19]) for interval-valued conditional probability as-
sessments.

Definition 7. Let be given an interval-valued prob-
ability assessment An = ([li, ui], i = 1, . . . , n), defined
on a family of n conditional events Fn = {Ei|Hi, i =
1, . . . , n}. We say that:



a) An is g-coherent if there exists a coherent precise
probability assessment Pn = (pi, i = 1, . . . , n) on Fn,
with pi = P (Ei|Hi), which is consistent with An, that
is such that li ≤ pi ≤ ui for each i = 1, . . . , n;
b) An is coherent if, given any j ∈ {1, . . . , n} and any
xj ∈ [lj , uj ], there exists a coherent precise probabil-
ity assessment Pn = (pi, i = 1, . . . , n) on Fn, which is
consistent with An and is such that pj = xj ;
c) An is totally coherent if every precise probability
assessment Pn = (pi, i = 1, . . . , n) on Fn, consistent
with An, is coherent.

We observe that the notions of g-coherence and coher-
ence above amount to the well known notions of avoid-
ing uniform loss and coherence, respectively, used
in the literature on imprecise probabilities (see, e.g.,
[34]). Based on Definition 7 we can give the following
versions of our main result in the case of interval-
valued probability assessments.

Proposition 3. Let be given an interval-valued prob-
ability assessment An = ([li, ui], i = 1, . . . , n), defined
on Fn = {Ei|Hi, i = 1, . . . , n}. Moreover, let be given
any bounded (continuous and strictly) proper scoring
rule s. We have:
a) An is g-coherent if and only if there exists a precise
probability assessment Pn = (pi, i = 1, . . . , n) on Fn,
consistent with An, which is admissible w.r.t. s;
b) An is coherent if, given any j ∈ {1, . . . , n} and any
xj ∈ [lj , uj ], there exists a precise probability assess-
ment Pn = (pi, i = 1, . . . , n) on Fn, with pj = xj ,
consistent with An, which is admissible w.r.t. s;
c) An is totally coherent if every precise probability
assessment Pn = (pi, i = 1, . . . , n) on Fn, consistent
with An, is admissible w.r.t. s.

7 Conclusions

In this paper we have studied the relationship between
the notion of (strengthened) coherence for conditional
probability assessments and the property of admissi-
bility with respect to scoring rules. We have extended
to the case of conditional events a result given in [27]
for unconditional events. We have shown that, given
any bounded (continuous and strictly) proper scoring
rule s, a conditional probability assessment on an ar-
bitrary family of conditional events is coherent if and
only if it is admissible with respect to s. To obtain
our main result a key role has also been played by
Bregman divergence. Finally, we have shown that the
property of admissibility can be exploited to charac-
terize the notions of g-coherence, coherence and total
coherence for interval-valued conditional probability
assessments.
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fat-tailed sequential forecast distributions for
the Dow-Jones index with logarithmic scoring
rules. In: Proc. of 56th Session of the Inter-
national Statistical Institute, Lisbon, 22-29, Au-
gust, 2007.

[32] L. J. Savage. Elicitation of personal probabili-
ties and expectations. J. Amer. Statist. Assoc.,
66:783-801, 1971

[33] M. J. Schervish, T. Seidenfeld, J. B. Kadane.
Proper Scoring Rules, Dominated Forecasts,
and Coherence. Decision Analysis, 6(4):202–
221, 2009.

[34] P. Walley, R. Pelessoni, P. Vicig. Direct Al-
gorithms for Checking Coherence and Making
Inferences from Conditional Probability Assess-
ments, Journal of Statistical Planning and In-
ference, 126(1), 119-151, 2004.

[35] P. M. Williams. Notes on conditional previsions,
Technical report, University of Sussex, 1975.
Reprinted in a revised form in: International
Journal of Approximate Reasoning, 44(3):366–
383, 2007.

[36] R. L. Winkler. Scoring rules and the evaluation
of probability assessors. J. Amer. Statist. Assoc.,
64:1073-1078, 1969.

[37] R. L. Winkler. Scoring rules and the evaluation
of probabilities. Test 5(1):1-60, 1996.


	Introduction
	Some preliminary notions
	Coherence with betting scheme
	Coherence with penalty criterion
	Equivalence between betting scheme and penalty criterion

	Scoring rules and admissibility for conditional probability assessments
	Properties of the function s(p,x)
	Coherence and admissibility
	The case of imprecise probability assessments
	Conclusions

