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Abstract

How sensitive is the natural extension of an upper
prevision against small perturbations in the assess-
ments? We revise some basic results from the theory
of systems of linear inequalities and equalities, and
linear programming, and apply them to the theory
of upper previsions. We find that stability is most
easily characterized through a regularity condition on
the constraints of the primal problem. We then study
stability, and the existence of stable representations,
in detail. We find necessary and sufficient conditions
for the usual representations of natural extension to
be stable, and necessary and sufficient conditions for
natural extension to have a stable representation at
all. We show that, by arbitrary small perturbation,
we can force stability of the usual representations.

1 Introduction

Brevity pertains—see [8] for more about upper previ-
sions.

Let Ω be any finite possibility space. A gamble is a
real-valued function on Ω. The set of all such gambles
is denoted by L, so L = RΩ.

We are uncertain about the true value ω in Ω. A pop-
ular way of modeling our uncertainty about ω goes by
means of an upper prevision P . Specifically, assume
that for each gamble g from a finite set K ⊆ L, we
can specify an upper bound P (g) on its expectation.
We limit ourselves to upper bounds, without loss of
generality: a lower bound P (g) for g simply translates
into an upper bound P (−g) = −P (g) for −g.

A probability mass function x on Ω incurs a special
kind of upper prevision, namely, one that fixes the

expectation exactly, as x(f) = −x(−f):1

x(f) =
∑
ω∈Ω

x(ω)f(ω),

noting that, for convenience, we denote the expecta-
tion with respect to a probability mass function x also
by x. We call x, as a function of gambles, a linear pre-
vision. The set of all linear previsions on L is denoted
by C, and it is a subset of the set P of all positive lin-
ear functionals (those x for which x(ω) ≥ 0 for all ω
but not necessarily x(1) = 1) on L:

C = {x ∈ P : x(1) = 1}.

For a general upper prevision P , its natural extension
E is of particular interest [8, §3.4.1]:

E(f) = max{x(f) : x ∈ P, x(1) = 1, x ≤ P} (1)

Here, x ≤ P means that x(g) ≤ P (g) for all g ∈ K.
Basically, E tells us how to accomplish inference from
P : given the bounds specified by P , it gives us bounds
for all other gambles.

The problem of natural extension in Eq. (1) is easily
seen to be a linear programming problem. If it has
a solution, then P is said to avoid sure loss. If E
coincides with P on K, then P is said to be coherent.

Its dual is (abusing notation for brevity) [8, §3.1.3(e)]:

E(f) = min

{
a+

∑
g∈K λgP (g) : (a, λK) ∈ Q∗,

a+
∑
g∈K λgg ≥ f

}
(2)

where Q∗ = {(a, λK) : a ∈ R and λg ∈ R+}.2

1The notation ‘x’ for a probability mass function follows the
usual convention in the linear programming literature, where x
usually denotes the variable over which we optimize.

2Technically, λK ∈ (R+)K, and we denote λK(g) by λg .



For the purpose of numerical analysis, but also for
elicitation, it is important to know whether the solu-
tion is sensitive to perturbations in the assessments
embodied by P . The main purpose of this paper is to
characterize those upper previsions that are insensi-
tive to such perturbations. We investigate under what
conditions a stable representation exists, and how to
find this stable representation.

We extend, and to some extent, also simplify, earlier
work by Hable, in particular, [2, pp. 118–125, Sec. 5.2]
and [3, Sec. 2]. Doing so, we rely on well-known re-
sults about the stability of systems of linear inequal-
ities and equalities.

The paper is structured as follows. Section 2 intro-
duces and demonstrates the problem of instability of
natural extension by means of a few simple examples.
Section 3 reviews the theory of stability of systems
of linear inequalities and equalities. Section 4 applies
these results on the theory of lower previsions, and
natural extension in particular. Section 5 concludes
the paper.

2 Examples

Before we venture into the realm of the theory of sys-
tems of linear inequalities and equalities, we present
some straightforward, yet insightful, examples. Al-
though these examples present an oversimplified and
naive view of the notion of stability of linear programs,
they do capture the key aspects of the discussion that
will follow.

2.1 Instability of Avoiding Sure Loss

We start with a special case of instability of natu-
ral extension, namely, when small perturbations cause
the lower prevision to incur sure loss.

Consider Ω = {ω1, ω2}, and the following assess-
ments:3

P (Iω2
) = 2/3 P (Iω1

) = 1/3

By Eq. (1), it follows that we can calculate the natural
extension E of for instance Iω1

+2Iω2
by the following

linear program:

maximize
[
1 2

] [x1

x2

]
subject to

x1 ≥ 0, x2 ≥ 0, x1 + x2 = 1 (C)[
0 1
1 0

] [
x1

x2

]
≤
[
2/3
1/3

]
(S)

3By Iω we denote the gamble which is 1 at ω and zero else-
where.

Clearly, (C) + (S) have a non-empty feasible set: it
includes the probability mass function x with x(ω1) =
1/3 and x(ω2) = 2/3 (in fact, this is the only element
of the feasible set).

However, (C) + (Sε), with[
0 1
1 0

] [
x1

x2

]
≤
[
2/3− ε

1/3

]
(Sε)

has an empty feasible set, for any ε > 0. If a fea-
sible system of constraints has no solution for some
(but not necessarily all) arbitrary small perturbations,
then we say that these constraints are unstable. Ob-
viously, in such a case, the linear program is deemed
unstable as well.

The above example shows that carelessly designed lin-
ear programming algorithms may fail to solve even
this simple problem due to simple rounding errors.

In practice, implementations of linear programming
get around this limitation by transforming to a so-
called stable representation. Indeed, by identifying
implicit linearities, the program becomes stable, at
least in this case. Concretely, the modified system
(C) + (S’) [

0 1
] [x1

x2

]
=
[
2/3
]

(S’)

has the same feasible region as original problem. But,
now, unlike the original system, all perturbations to
the modified assessments:

[
0± ε 1± δ

] [x1

x2

]
=
[
2/3± η

]
(S’ε,δ,η)

have a solution for every sufficiently small ε, δ, η.
In other words, the modified constraints are feasible
for every sufficiently small perturbation, and so the
modified system constraints is stable: we say that the
original system has a stable representation. Moreover,
the solution to the perturbed problem

x2 =
2/3 + η − ε
1 + δ − ε

remains close to the original solution x2 = 2/3.
Whence, the linear program, under the stable rep-
resentation, is stable too.

2.2 Instability of Natural Extension

The following example is adapted from an exam-
ple given by Robinson [6, p. 443]. Consider Ω =
{a, b, c, d}, and the following assessments:

P (Ia + 2Ib/3 + 2Id) = 1/2 P (Ib + 3Ic) = 3/2



By Eq. (1), it follows that we can calculate the natural
extension E of for instance 2Ib + 2Ic by the following
linear program:

maximize
[
0 2 2 0

] 
xa
xb
xc
xd


subject to

xa ≥ 0, xb ≥ 0, xc ≥ 0, xd ≥ 0

xa + xb + xc + xd = 1
(C)

[
1 2/3 0 2
0 1 3 0

]
xa
xb
xc
xd

 ≤ [1/23/2

]
(S)

Clearly, (C) + (S) have a non-empty feasible set: it
consists of all the probability mass functions of the
form (with α ∈ [0, 1])

α


1/2
0

1/2
0

+ (1− α)


0

3/4
1/4
0


so E(2Ib + 2Ic) = 2.

However, (C) + (Sε), with

[
1 2/3− ε 0 2
0 1 3 0

]
xa
xb
xc
xd

 ≤ [1/23/2

]
(Sε)

has a very different feasible set, for any ε > 0. Indeed,
regardless of how small ε is chosen, the feasible set of
the perturbed system contains only one probability
mass function: 

1/2
0

1/2
0


so, now, E(2Ib+ 2Ic) = 1. An arbitrary small pertur-
bation can lead to an unproportionally large variation
in the solution of the natural extension.

One can easily check that the system has perturba-
tions that incur sure loss, for instance, by reducing
the upper prevision of the first gamble to 1/2− ε. We
will prove that the natural extension is unstable if and
only if there are perturbations which push the system
into incurring sure loss (or equivalently, that the nat-
ural extension is stable if and only if all sufficiently
small perturbations avoid sure loss).

Observe that the dual problem has an unbounded op-
timal solution:[

0 2 2 0
]
≥ 2 + λ1

(
1/2−

[
1 2/3 0 2

])
+ λ2

(
3/2−

[
0 1 3 0

])
for all non-negative λ1 and λ2 such that λ1 = 3λ2.
We will see that this is also tightly related to the
instability of the primal problem.

Finally, it is unclear whether the system has a sta-
ble representation or not. Intuitively, it seems not;
we will prove this later. For now, we present next
a much simpler example which has clearly no stable
representation.

2.3 Unrepairable Instability

As suggested already, not every upper prevision has a
stable representation. Consider for instance the upper
prevision defined on Iω2 by

P (Iω2) = 0

To calculate its natural extension, we must consider
the constraints (C) + (S2), with

[
0 1

] [x1

x2

]
≤
[
0
]

(S2)

The feasible region is non-empty: it contains the prob-
ability mass function x with x(ω1) = 1 and x(ω2) = 0
(in fact, here again, this is the only element of the
feasible set). However, the perturbation

[
0 1

] [x1

x2

]
≤
[
−ε
]

(S2ε)

has an empty feasible region, no matter how small
ε > 0. In fact, even after recognizing the implicit lin-
earities, the system remains unstable under perturba-
tions. In conclusion, it seems that there is no stable
representation.

2.4 Main Issues

Assuming that we can generalize the above observa-
tions to arbitrary problems of natural extension, we
are left with the following important questions:

1. For the stability of natural extension, does it
matter whether we consider the primal or the
dual representation?

2. In order to establish the stability of natural ex-
tension, is it sufficient to establish stability of the
constraints of the primal linear program?



3. Under what conditions are the constraints of the
usual representation of the primal linear program
stable?

4. If this usual representation is not stable, under
what conditions can it be transformed to a sta-
ble representation? In other words, when does a
stable representation exist?

5. If a stable representation exists, how to find it?

3 Stability of Linear Programming

Robinson [5] characterizes stability of systems of lin-
ear inequalities and equalities, and [6] relates this
characterization to the stability of natural extension.
Here we quickly summarize his results. Also see [10]
and [4].

3.1 Stability of Linear Systems of
Inequalities and Equalities

Let X and Y be real Banach spaces, let Q be a non-
empty convex cone in Y , let P be a non-empty convex
set (usually, but not always, assumed to be a convex
cone) in X, let b be a point in Y , and let A be a
continuous linear operator from X into Y . For two
points y1 and y2 in Y , we write y1 ≤Q y2 if y2 −
y1 ∈ Q. The cone is used to treat equalities and
inequalities homogeneously. Distinguishing between
them is crucial when studying stability.4

The solution set to

Ax ≤Q b, x ∈ P, (*)

is denoted by F , and for the time being, we are inter-
ested in the stability of F with regard to perturbations
in A and b.

3.1.1 Definition of Stability

Note that x ∈ P is a solution of the above system
of inequalities if and only if b − Ax is in Q (this is
immediate by the definition of ≤Q). Hence, for any
arbitrary x ∈ P , we can take the distance between
b − Ax and Q as a measure of how much x deviates
from a solution of the system, or, if you like, as a
measure of infeasibility with respect to the system.

ρ(x) = d(b−Ax,Q) = inf
q∈Q
‖b−Ax− q‖

The distance will be zero exactly when x satisfies the
system.

4For example, x = 0 is obviously stable, but {x ≥ 0, x ≤ 0}
is obviously not (for instance, perturb the first inequality to
x ≥ ε for some ε > 0).

Definition 1 (Robinson [5, p. 755]). The system (*)
is said to be stable if there is a positive number β, such
that for each x0 ∈ F and for any continuous linear
operator A′ : X → Y and any b′ ∈ Y , sufficiently
close to A and b respectively, the distance from x0 to
the solution set of the perturbed system

A′x ≤Q b′, x ∈ P,

is not greater than βρ′(x0), where

ρ′(x) = d(b′ −A′x,Q) = inf
q∈Q
‖b′ −A′x− q‖

is the distance between b′ −A′x and Q.

Note that stability implicitly demands that the origi-
nal system is feasible, and that all (sufficiently small)
perturbations of the original system are feasible.

In order to understand the reasoning behind Robin-
son’s stability condition, let us rewrite the distance
condition into something we can easily interpret:

d(x0, F
′) ≤ βρ′(x0)

= β inf
q∈Q
‖b′ −A′x− q‖

≤ β inf
q∈Q

(
‖b′ − b− (A′x0 −Ax0)‖

+ ‖b−Ax0 − q‖
)

= β
(
‖b′ − b− (A′x0 −Ax0)‖
+ inf
q∈Q
‖b−Ax0 − q‖

)
= β‖(b′ −A′x0)− (b−Ax0)‖

which we can further bound by

= β‖b′ − b− (A′x0 −Ax0)‖
≤ β(‖b′ − b‖+ ‖A′x0 −Ax0‖)
≤ β(‖b′ − b‖+ ‖A′ −A‖‖x0‖)

Roughly speaking, the condition implies that any so-
lution x0 of the original system, is also a solution of
the perturbed system up to an error that is propor-
tional to the size of the perturbation and ‖x0‖.

3.1.2 Stability Criterion

Next, Robinson identifies a simple necessary and suf-
ficient criterion for stability.

Definition 2 (Robinson [5, Def. 1]). The system (*)
is called regular if b ∈ int(AP +Q).

Theorem 3 (Robinson [5]). The system (*) is stable
if and only if it is regular.

Proof. As discussed in [5, p. 755, last paragraph], this
follows immediately from [5, Thm. 1].



The following interesting result is an immediate con-
sequence of [5, Thm. 1] (also see [6, Lem. 3]):

Theorem 4. The system (*) is stable if and only if
there is an ε > 0 such that, for all A′ and b′ satisfying
max{‖A−A′‖, ‖b− b′‖} < ε, the system

A′x ≤Q b′, x ∈ P,

is feasible.

3.1.3 Stable Representation Criterion

In finite dimensions, we have the following result as
well, where riP denotes the topological interior of P
relative to its affine span.

Theorem 5 (Robinson [5, Thm. 3]). The system

Gx ≤ g, Hx = h, x ∈ P (3)

is representable as a regular system of inequalities and
equalities over P with the same solution set F if and
only if F ∩ riP 6= ∅. If the condition is satisfied, then
the system can be made regular by changing certain
inequalities to equalities and deleting certain redun-
dant equalities.

3.2 Stability of Linear Programming

Robinson’s stability criterion for systems of linear in-
equalities and equalities does not say that the Haus-
dorff distance (see [7, Sec. 3] for a study of this metric
in the context of credal sets) between the solution sets
is small: it only says that the solution set of the per-
turbed system is contained, up to a small error, in the
solution set of the original system. In fact, the solu-
tion set of the original system could be much larger
(we hinted already at an example of this earlier, once
realized that the dual constraints for natural exten-
sion are always stable).

Confusingly, when considering the primal constraints
for natural extension, it turns out that stability of
these constraints do imply that the Hausdorff distance
between the credal sets of the original and perturbed
systems is small. One of the underlying reasons for
this is that the set C of probability mass functions is
bounded.

The following result summarizes the relationship be-
tween stability of systems of linear inequalities and
equalities and the stability of linear programs.

Note that we say that a linear program is solvable
whenever it has an optimal solution, and that the dual
Q∗ ⊆ Rn of a cone Q ⊆ Rn is defined as

Q∗ = {z ∈ Rn : (∀x ∈ Q)(zx ≥ 0)}

where zx denotes the dot product of z and x.

Definition 6. Consider a finite dimensional linear
program (P) and its dual (D):

maximize cx subject to Ax ≤Q b x ∈ P
minimize ub subject to uA ≥P∗ c u ∈ Q∗

where P and Q are convex cones. The following condi-
tions are equivalent. If any (and whence, all) of them
are satisfied, then we say that the linear program (P)
is stable.

(A) The constraints of (P) and (D) are regular.

(B) The sets of optimal solutions of (P) and (D) are
non-empty and bounded.

(C) For all sufficiently small perturbations (P’)—with
corresponding dual (D’)—of the linear program
(P), both (P’) and (D’) are solvable.

Proof of equivalence. See Robinson [6, Theorem 1].

Robinson [6, Theorem 1] also shows that, whenever
a linear program is stable in the above sense, every
optimal solution of (P’) and (D’) remains close to the
the optimal solution set of (P) and (D). This obviously
implies that the optimal value will not deviate much,
which is exactly what we are after for the stability of
natural extension. We refer to [6, Theorem 1] for a
rigorous statement of what is meant by “sufficiently
small” and “remains close” (we have omitted it here
to keep the exposition as non-technical as possible).

3.3 Examples Revisited

Before we apply the above results to the specific prob-
lem of natural extension, we check stability and stable
representability on the earlier examples.

For the first example, again look at Eq. (S), which
we demonstrated to be unstable. The cone Q, in this
case, is simply the set of non-negative gambles. Let us
check that b 6∈ int(AC+Q), where Ax ≤Q b embodies
the constraints x ≤ P of Eq. (1), for x ∈ C.

Note that this turns out to be equivalent to checking
that b 6∈ int(AP + Q), where Ax ≤Q b corresponds
to the system including the constraint x(1) = 1, but
x ∈ P (see Theorem 7 further on).

A parametric representation of the set AC+Q follows
readily:

AC +Q =

{[
0 1
1 0

] [
x1

x2

]
+

[
y1

y2

]}



1

1

AC +Q

b

Figure 1: The region AC+Q for (C) + (S). The vector
b lies on the border, so the system is not stable.

1

riC

1

F

Figure 2: The relative interior of C, and solution set
F , for (C) + (S). The solution set F has non-empty
intersection with the relative interior of C, so the sys-
tem has a stable representation.

over all x1, x2, y1, y2 ≥ 0 such that x1 + x2 = 1. The
vector

b =

[
2/3
1/3

]
lies on the border of this set, but not in its interior
(see Fig. 1). Whence, the system is not stable.

However, it has a stable representation: the solution
set

F =

{[
1/3
2/3

]}
intersects with the relative interior of the set C of all
probability mass functions (see Fig. 2).

For the second example, one can similarly show that
it does not satisfy the stability criterion. It is easy
to show that it does not have a stable representation.
Indeed, the feasible set lies on the edge of the set C of
all probability mass functions, because xd = 0 every-
where in the feasible region. So F does not intersect
with the relative interior of C, and therefore there is
no stable representation.

AC +Q

b = 0

Figure 3: The region AC + Q for (C) + (S2). The
vector b lies on the border, so the system is not stable.

1

riC

1

F

Figure 4: The relative interior of C, and solution set
F , for (C) + (S2). The solution set F has empty inter-
section with the relative interior of C, so the system
has no stable representation.

Let us now revisit the third example. Inspect
Eq. (S2). A parametric representation of the region
AC +Q is

AC +Q =

{[
0 1

] [x1

x2

]
+ y1

}
over all x1, x2, y1 ≥ 0 such that x1 + x2 = 1, which
reduces to

= {y1 : y1 ≥ 0}

that is, the set of non-negative real numbers. The
vector

b =
[
0
]

lies on the border of this set, but not in its interior
(see Fig. 3). Whence, the system is not stable.

Moreover, we can now prove our earlier intuition that
it has no stable representation: the solution set

F =

{[
1
0

]}
does not intersect with the relative interior of the set
C of all probability mass functions (see Fig. 4).

4 Stability of Natural Extension

4.1 Canonical Representations

We now rewrite the primal and dual forms of natural
extension using the notation of the previous section



on linear programming. The primal linear program,
Eq. (1), is:

maximize cfx subject to APx ≤Q bP , x ∈ P (P)

with

cf =
[
f(ω1) . . . f(ωn)

]
AP =


1 . . . 1

g1(ω1) . . . g1(ωn)
...

. . .
...

gk(ω1) . . . gk(ωn)

 bP =


1

P (g1)
...

P (gk)



Q =




0
y1

...
yk

 : y1, . . . , yk ∈ R+


P =


x1

...
xn

 : x1, . . . , xn ∈ R+


Note that the feasible region F is exactly the credal
set of P .

We call the linear program (P) the canonical repre-
sentation of the natural extension of P .

If we omit the constraint x(1) = 1 from the system
of inequalities, and consider the reduced optimization
problem over x ∈ C (as we did before in the exam-
ples), then we arrive at the reduced canonical repre-
sentation of the natural extension of P :

maximize cfx subject to A−
P
x ≤ b−

P
, x ∈ C (P−)

where A−
P

is AP without the first row, and b−
P

is bP
without the first element.

Studying the stability of this reduced system sim-
ply means that we do not consider perturbations in
the normalization constraint x(1) = 1, which in fact
seems a natural thing to do. However, the theory
of stability of linear programs demands that the lin-
ear program has a dual, and (P−) does not have a
dual, because the set C is not a cone. Fortunately, as
we shall prove, stability properties are independent of
whether we allow perturbations in x(1) = 1 or not.

Of course, (P) does have a dual program, given earlier
by Eq. (2):

minimize ubP subject to uAP ≥P∗ cf , u ∈ Q
∗ (D)

with P ∗ = {zT : z ∈ P} and

Q∗ =
{[
a λ1 . . . λk

]
: a ∈ R, λ1, . . . , λk ∈ R+

}
The linear program (D) is the canonical dual repre-
sentation of the natural extension of P .

4.2 Stability of the Canonical
Representation of Natural Extension

It will follow from our discussion in Section 3 that, to
determine stability of natural extension in its canon-
ical representation, it suffices to determine the regu-
larity (or, stability) of the system of linear inequalities
and equalities (P) or equivalently, of (P−).

First, we need one more definition: a linear-vacuous
mixture is any coherent upper prevision of the form

(1− α)x+ α sup
ω∈Ω

for some α ∈ [0, 1] and x ∈ C. We say that this
linear-vacuous mixture is non-linear whenever α > 0.

Theorem 7. Let P be any upper prevision. The fol-
lowing conditions are equivalent.

(A) The linear program (P) is stable.

(B) The linear program (D) is stable.

(C) The system of linear inequalities and equalities of
(P) is regular.

(D) The system of linear inequalities and equalities of
(P−) is regular.

(E) All sufficiently small perturbations of P avoid
sure loss, that is, there is an ε > 0 such that

all P
′

on K satisfying P (g) − ε ≤ P
′
(g) ≤ P (g)

avoid sure loss.

(F) There is a linear prevision x such that P (g) >
x(g) for all g in K.

(G) P dominates a non-linear linear-vacuous mix-
ture.

(H) P avoids sure loss and E(g) < E(g) for all g in
K.

Proof. (A) and (B) are equivalent by Definition 6(A).

(A) and (C) are equivalent, again by Definition 6(A),
once established that the system of linear inequalities
and equalities of (D) is always regular. Indeed, it
suffices to show that

cf ∈ int(Q∗A− P ∗)

This holds trivially because

Q∗A− P ∗ =
{
a+

∑
g∈K λgg − p∗ : . . .

}
= Rn

as we vary over all a ∈ R and all p∗ ∈ P ∗.

(C) implies (D), by Theorem 4. [One can also quickly
see that (F) implies (D) by [5, Theorem 2]—also see
the discussion at [6, p. 444].]



Equivalence between (D) and (E) follows from The-
orem 4, once noted that we only need to consider
perturbations in P because probabilities sum one—
whence every small perturbation in A−

P
and b−

P
can

be bounded by a proportionally small perturbation
in b−

P
only—and the usual properties of avoiding sure

loss with respect to dominating upper previsions.

Equivalence between (E), (F), (G), and (H) follows
trivially from the usual properties of lower previsions.

Finally, we establish equivalence between (C) and (F).

We rely on Robinson’s regularity condition, bP ∈
int(APP + Q). It is satisfied if and only if there is
an ε > 0 such that

bP + εB ⊆ APP +Q

where B is the closed unit ball in Y = RK, that is, the
set {b ∈ Y : sup |b| ≤ 1}. Equivalently, now in matrix
notation, we need that

1
P (g1)

...
P (gk)

+ εB ⊆




x(1)
x(g1) + y1

...
x(gk) + yk

 : x ∈ P, y ∈ Q

 .

Equivalently, there must be some ε > 0 such that, for
every b ∈ B (that is, bi ∈ [−1, 1]), there is an x ∈ P
and a y ∈ Q such that

1 + b0ε = x(1)

P (gi) + biε = x(gi) + yi for all i ∈ {1, . . . , k}.

If the above is satisfied, take b0 = 0 and b1 = · · · =
bn = 1 to find that P (gi) > x(gi) for all i, and note
that x ∈ C because b0 = 0.

Conversely, if there is some x′ such that P (gi) > x′(gi)
for all i, then the above is satisfied for sufficiently
small ε. Indeed, fix any 0 < ε < 1, and let x =
(1 + b0ε)x

′—obviously x ∈ P , and the first equality is
satisfied. The second equality can be satisfied as well,
because

P (gi)− ε ≥ max
b′0∈{−1,1}

(1 + εb′0)x′(gi)

can always be achieved for small enough ε, because
P (gi) > x′(gi), whence, for such ε,

P (gi) + biε ≥ P (gi)− ε
≥ max
b′0∈{−1,1}

(1 + εb′0)x′(gi)

≥ (1 + εb0)x′(gi) = x(gi)

which concludes the proof.

Informally, the canonical representation is stable if
and only if P is inherently imprecise. This also means
that we can always enforce stability by perturbation,
for any upper prevision that avoids sure loss: simply
mix P with a stable one, such as the vacuous upper
prevision:

(1− α)P + α sup
ω∈Ω

is always stable, for any α ∈ (0, 1]. So, every upper
prevision that avoids sure loss has arbitrarily close
stable approximations.

Note that the natural extension of the above pertur-
bation will not necessarily behave nicely as a function
of α, particularly when P is unstable. For instance, in
the perturbed example of Section 2.2, E(2Ib+2Ic) = 1
if α � ε and E(2Ib + 2Ic) = 2 if α � ε. In essence,
one should pick α large enough to counter any (pre-
sumably unintended) implicit linearities, or near lin-
earities.

If, for some reason, approximation is not an option, we
have to find a stable representation. The conditions
under which this is possible are uncovered in the next
section.

4.3 Necessary and Sufficient Conditions for
Stable Representations of Natural
Extension

Definition 8. A system of linear inequalities and
equalities is said to be a representation of another
system if it has the same feasible region F as that
system.

Definition 9. A linear program is said to be a repre-
sentation of another linear program if it has the same
feasible region F and objective function as that linear
program.

Theorem 10. Let P be any upper prevision. The
following conditions are equivalent.

(A) The linear program (P) has a stable representa-
tion.

(B) The linear program (D) has a stable representa-
tion.

(C) The system of linear inequalities and equalities of
(P) has a regular representation.

(D) The system of linear inequalities and equalities of
(P−) has a regular representation.

(E) There is a linear prevision x in the credal set F
of P such that x(ω) > 0 for all ω ∈ Ω.

(F) P avoids sure loss and E(Iω) > 0 for all ω ∈ Ω.



Proof. The first part of the proof is similar to the
proof of Theorem 7(A)&(B)&(C): again, the key ob-
servation is that the system of the dual is always reg-
ular. We also rely on the fact that the dual of a rep-
resentation is a representation of the dual.

(C) ⇐⇒ (E). Such x belongs precisely to F ∩ riP .
Apply Theorem 5.

(D) ⇐⇒ (E). Such x belongs precisely to F ∩ riC.
Apply Theorem 5.

(E) =⇒ (F). Immediate, because

E(Iω) = sup
x′∈F

x′(ω) ≥ x(ω) > 0.

(F) =⇒ (E). Condition (F) implies that, for every
ω, there is an xω in F such that xω(ω) > 0. Take
any convex mixture x of xω with non-zero coefficients.
Because F is convex, x belongs to F . Clearly, x(ω) >
0 for all ω in F .

The condition for having a stable representation is
clearly much weaker than the one for stability: in
essence, we only need to ensure that no singleton has
zero upper probability. Again, it is obvious that this
can be achieved by an arbitrary small perturbation,
for any upper prevision that avoids sure loss: simply
mix P with a linear prevision x that satisfies x(ω) > 0
for all ω, such as the uniform one:

(1− α)P + α
1

n

∑
ω∈Ω

where n is the cardinality of Ω, always has a stable
representation, for any α ∈ (0, 1]. So, every upper
prevision that avoids sure loss has arbitrarily close ap-
proximations that admit stable representations, and
whose canonical representation is stable if and only if
the canonical representation of P is stable (indeed, by
Theorem 7!).

4.4 Finding the Stable Representation

Every reasonably advanced application for working
with systems of linear inequalities and equalities has
routines for finding all redundant constraints and all
implicit linearities (see for instance [1]), effectively re-
covering the stable representation, when it exists.

5 Discussion and Conclusion

We have linked Robinson’s stability criterion for sys-
tems of linear inequalities and equalities, and for lin-
ear programming, to the theory of upper previsions.

We found a range of interesting necessary and suf-
ficient conditions for the usual canonical representa-
tions of natural extension to be robust against pertur-
bations, that is, to be stable. Thereby, we provided
theoretical guarantees for small changes in the assess-
ments not to have a large impact on any inferences
made.

This is obviously rather useful in elicitation: if a sub-
ject makes assessments which violate stability, then
the subject should at least be made aware of this. We
provided a simple tool to fix unstable assessments,
through perturbation with a vacuous model.

In case of instability of the canonical constraints, a
subject could be unhappy to perturb with a vacu-
ous model, for instance because she insists on certain
assessments to be precise. We found that a stable
representation may still exist after removal of redun-
dant constraints and recognition of implicit linearities.
Tools for doing so are readily available in the litera-
ture. Of course, it is mandatory to check that the
subject actually agrees with the reduced system, and
particularly that any linearities, or near linearities,
are in agreement with her beliefs. When in doubt, we
recommend the vacuous mixture.

In case the reduced system is still unstable, we found
that it can be made stable via perturbation with for
instance a uniform probability mass function—this
may be preferred over vacuous perturbation in case
the subject insists on particular assessments to remain
precise.

In conclusion, we characterized the robustness of nat-
ural extension in a variety of ways, and we provided
straightforward ways to work around instabilities by
means of perturbation.

Many open problems remain, including the extension
to non-finite spaces, and conditional lower previsions,
which are typically solved by sequences of linear pro-
grams [9], and thus for which stability may be much
harder to characterize.
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