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Abstract

The application of imprecise reliability models is often 

hindered by the rapid growth in imprecision that occurs 

when many components constitute a system and by the 

fact that time to failure is bounded from above. The latter 

results in the necessity to explicitly introduce an upper 

bound on time to failure which is in reality a rather 

arbitrary value. The practical meaning of the models of 

this kind is brought to question. We suggest an approach 

that overcomes the issue of having to impose an upper 

bound on time to failure and makes the calculated lower 

and upper reliability measures more precise. The main 

assumption consists in that failure rate is bounded. 

Lagrange method is used to solve the non-linear 

program. Finally, an example is provided.

Keywords. Imprecise reliability, variational calculus, 

bounded failure rate.

1   Introduction

The appropriate incorporation of uncertainty into 

reliability and risk analyses is a topic of importance and 

widespread interest. Perhaps the most widely recognised 

distinction in uncertainty types is between aleatory and 

epistemic uncertainty and the presence of these two in 

the analyses of complex systems is a challenge systems 

analysts face. To address it, a number of mathematical 

structures able to capture the both types have been 

developed. The reader can find good overviews of the 

methods of uncertainty representation in different 

sources, for example, in [1] – [4]. Some of the 

mathematical structures are based on the two simple 

notions: interval-valued probabilities and imprecisely 

specified probability distributions. These structures are 

interval probability, probability bound analysis, 

Dempster-Shafer theory, robust Bayes methods, and the 

theory of imprecise probabilities that can be considered 

as the most general approach. The theory of imprecise 

probabilities, as it was introduced in [1] and [5], has 

served as the theoretical basis for generalising a large 

number of reliability models to imprecise probabilities. 

For a brief overview see [6]. More specifically, the 

reliability models of non-reparable systems of general 

structures (series, parallel and complex connection) 

generalised to imprecise probabilities are presented in 

[7], generalised discrete Markov chains used to model 

repairable systems are described in [8] and [9], stress-

strength models for structural reliability are reported in

[10] and [11]. The theory of imprecise probabilities has 

been applied to other important issues for reliability and 

risk analyses like aggregation of imprecise data having’

different degrees of confidence to different pieces of 

evidence, expert judgement elicitation procedures, and 

decision making based on imprecise probabilities.

In spite of the seemingly rich arsenal of applied models 

built on imprecise statistical reasoning, they are 

nevertheless hesitantly used in practice and remain firmly 

in the academic realm. Do they lack adequate promotion 

by their practitioners, or are there other primary obstacles 

that prevent them from being widely applied? In [12] the 

authors’ belief was that the main obstacle to the practical 

application of this knowledge is a tangible imprecision in 

lower and upper probability bounds constructed from a 

set of imprecise probabilistic pieces of evidence or/and

the rapid growth in imprecision that occurs when 

intervals are propagated through mathematical models.

The main cause in mathematical terms of the tangible 

imprecision was arguably identified as lying in the main 

mechanism of constructing coherent imprecise 

probability measures, which was originally called by 

Walley natural extension [1], and which in fact is a linear 

program. The crux of this linear program is that the 

solutions obtained are defined on the family of 

degenerate probability distributions
1
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, which are included 

on equal footing in the set of all admissible probability 

distributions over which the solution is sought. As 

proven in [ ], solving this optimisation problem on the

set of all admissible probability distributions gives the 

same solution as that obtained on only the set of 

degenerate distributions. This would simply be 

1
The probability distribution of a continuous random 

variable is referred to as degenerate if the probability 

masses are concentrated in a finite number of points 

belonging to the continuous set of possible states.



mathematical subtlety – that is, of little interest to 

practitioners – if it did not give us a clue to deriving 

more precise previsions of interest for continuous 

random variables. For some variables it is often not 

realistic to assume that the probability masses are 

concentrated in a few points as opposed to being 

continuously distributed over the set of possible 

outcomes. In reliability applications probability masses 

of time to failure cannot (except for very special cases) 

concentrate in a very few points of the positive real line. 

Ignoring this fact is one of the causes (we hold it to be 

the root cause) of high imprecision in reliability as well 

as in other applications. Or at least this is where some 

improvements are possible.

Several attempts have been undertaken to introduce some 

extra judgements to the set of constraints of the natural 

extension to limit the set of admissible probability 

distributions on which a solution is sought. That is, the 

desire is to remove from the admissible set the 

distributions that are obviously do not provide a 

reasonable model of the underlying random values like 

time to failure.

An attempt to mitigate the influence of degenerate 

probability distributions on the solutions was undertaken 

in [14]. No significant effect was obtained through the 

introduction of judgements on the skewness and 

unimodality of the distributions as, in this case, the peaks 

of degenerate distributions simply become repositioned 

and probability masses become redistributed among the 

peaks. The nature of the distributions defining the 

solutions remains unchanged.

Another approach was suggested in [15]. It consists in 

employing the calculus of variations to solve the 

optimisation problems instead of attempting to solve 

them with linear programming techniques. As it was 

demonstrated in [15] and then in [12] and [16] this way 

enables us to utilise a broader spectrum of statistical 

judgements, which results in tighter bounds on 

probability measures. The introduction of direct 

constraints on probability distributions like an upper 

bound on a probability density function (pdf) or/and on 

the absolute value of its derivative turned to be especially 

efficient. This type of constraints is not possible to utilise 

if the conventional natural extension in the form of a

linear program is used as a tool for construction of 

imprecise probability measures. Direct constraints on 

pdfs make the problem nonlinear that can be solved with 

variational calculus. The direct constraints result in good 

improvements in precision so that we can see room for 

even better improvements.

Despite the obvious improvements in the precision of the 

constructed measures there is yet one more obstacle on 

the way of applying the theory of imprecise probabilities 

to reliability calculations. This obstacle stems from the 

underlying constraint imposed on the values of random 

variables. The random variables are bounded and this 

feature has a pernicious consequence on imprecise

reliability models. This consequence consists in having 

an upper bound on time to failure explicitly present in the 

reliability models. (The lower bound is present too but 

since it is equal to zero, seemingly it is not part of the 

models.) Why the consequence is so harmful? This is 

because the upper bound on time to failure of any 

systems cannot be known. That is to say, the imposed 

necessity to choose this bound makes the reliability 

measures rather arbitrary values, as the upper bound is 

not known. The only non-arbitrary and true assertion 

about the sample space of time to failure is that it 

stretches from zero to infinity. All conventional 

reliability models reside in this presupposition.

In this paper we continue to use the calculus of variations 

for constructing imprecise probability measures and we 

introduce constraints on failure rate. It has a double 

effect: better precision in the results and avoidance of the 

necessity to have the upper bound on time to failure.

2 Exhibiting imprecise reliability models 

with the troublesome parameter

Let us look at several reliability models generalised to

imprecise probabilities. The notations used are the 

following: !" and !" are a lower and upper m-th moments 

of time to failure of an i-th component for # $ %, & and &
are a lower and upper m-th moments of a system 

compounded of n components, and T is an upper bound 

of time to failure that is assumed the same for all 

components.

For a system with independent components connected in 

series from the reliability point of view the following 

results are valid [7]:

& =
1

('()*)+, !"(
"-* , & = min"-*,…,( !"

If the components are connected in parallel, then [7]

& = max"-*,…,( !" , & = ' . ', /1. !"'0
(
"-*

Consider a couple of more examples. Let K is an upper 

bound of the pdf of time to failure of a component and 

this is the only reliability data available. Then we have 

the following results for the mean time to failure M(t)

[12]: 

1(2) =
1

23  ,       1(2) = ' . 1

23



If in addition to K a bound on the absolute value of the 

pdf’s derivative L is known, then [16]

1(2) =
1

23 +
3
24 ,       1(2) = ' . 1

23 .
3
24

As seen from the above expressions, one of the bounds of 

the expected values is explicitly dependent on the upper 

bound of time to failure T. Assuming that ' 5 6 gives 

us a very imprecise result that in many cases is 

practically useless. The two interrelated issues - high 

imprecision and dependence on the upper bound of time 

to failure – have motivated us to attempt to find a better 

solution.

The following section suggests a new problem statement 

that - as it will be demonstrated further in this paper -

results in improved solutions.

3 Problem statement

Let us formulate first a rather general problem of 

computing bounds 1 and 1 on the expected value of an 

arbitrary function 7(8) given the upper, 9" = 1:9"(2);,
and lower, 9" = 1:9"(2);, bounds of the expected values 

of other arbitrary functions 9"(2),  # $ %. As a particular 

case, the expected values can be known precisely 

meaning that the bounds are equal to each other. If 9"(2) = 2, the expected value is the first moment. If 9"(2) = 2<, the expected value is the second moment, etc. 

In case 9"(2) = =[>?,>@](2), where =[>?,>@](2) is an indicator 

function equal to 1 when 2 A [2*, 2<], and equal to 0 

otherwise, the expected value is the probability BC(2 A
[2*, 2<]).

The problem is stated as follows:
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where D(8) is the pdf of a random variable x defined on 

[0,T]. Here the inf and sup are taken over the set {D(8)}

of all pdfs matching constraints (2). That is, each 

constraint in (2) is associated with a subset of {D(8)},

and the intersection of those subsets, if not empty, 

defines the solutions of the optimization problems (1)-

(2). If some of the subsets of {D(8)} become disjoint, the 

solution does not exist. It should be noted that problems 

(1)-(2) are linear and the dual optimization problems can 

be written for them. The primal optimisation problems 

(1)-(2) and their duals have served as the key tools to 

derive a number of imprecise reliability models (see, for 

example, [7], [8] and [14]). The results were explicitly 

dependent on the upper bound, T, imposed on the random 

variable time to failure, as it was demonstrated in the 

previous section.

This is namely problems (1)-(2) the solutions to which 

are defined on the family of degenerate probability 

distributions [13]. This finding was a point of departure 

for introducing constraints that rule out the degenerate 

distribution from the set of admissible ones. Being

guided by this finding, tighter bounds for probability 

measures have been derived for several problem 

statements [12], [15], [16]. In this paper we seek to solve 

the more ambitious problem: obtaining tighter bounds for 

a constructed probability measure of interest and getting

rid of the need to impose an upper bound, T, on time to 

failure.

Now we introduce some new constraints and reformulate 

problems (1)-(2). In the following we will think of the 

random variable t as time to failure.

The cumulative distribution function of time to failure 

takes the form

#$
t

dxxtF

0

)()( %

and the reliability function is B(2) = 1 . E(2).

According to its definition (see, for example, [17]) the 

failure rate is

F(2) =
D(2)
B(2) ,

from which B(2) = G8H I.J F(8)K8>
L M.

Denote ),()(

0

tydtt

t

$#( then F(2) =
NO(>)

N> = PQ(2)
Based on the above formulas and introduced notation the 

expression for the pdf, D(2), appears as follows

D(2) = B(2)F(2) = PR(2)G8H(.P(2)).



Assuming that the failure rate is bounded from below and 

above by F and F, that is F $ F(2) = PR(2) $ F and 

considering the lower, 9", and upper, 9", bound on the 

expected value of random variable 9"(2) known, the 

following optimisation problem can be formulated
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F $ PR(2) $ F (6)

Problems (3)-(6) are nonlinear and in order to solve them 

we suggest employing the calculus of variations as it was 

done in [12], [15], and [16].

4 Solving the problem with the calculus of 

variations

Problems similar to (3)-(6) have to be modified slightly 

to make them amenable to the calculus of variations. The 

constraint F $ PQ(2) $ F can be rewritten as follows:
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Here u(t), v(t) are unknown real-valued functions.

The solution of problems (3) subject to constraints (4), 

(5) and (7) is based on the following theorem

Theorem. If for any interval S $ 2 $ T, 0 $ S < T $ '
and for any -nhhh ,...,, 10 R it holds that

.
$
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n

i

ii tfhhtg
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then the failure rate F(2) = PQ(2), on which inf and sup 

are attained in problems (3) subject to constraints (4), 

(5) and (7), is a step-wise function which is equal either 

to F or to F.

The proof of this theorem is given in the Appendix and 

the meaning of it is that  F(2) cannot take any other 

values between U and U but only either U or U. This 

statement has a direct influence on the pdf, D(2), on 

which inf and sup are attained in problems (3). That is, 

the pdf consists of the pieces D(2) = H(2L, … , 2") V F V
G8H:.F(2 . 2");, 2 W 2"  and D(2) = H(2L, … , 2")*) V F V
G8H:.F(2 . 2")*);, 2 W 2")* that switch at some 

instances 2*, 2<, … , 2". The term H(2L, … , 2") is 

interpreted as the probability of being free of failure 

until time instant 2" . The correspondence between 

F, F and optimizing X(t) is shown in Fig. 1.

Noticeable, the distribution of probability masses over 

time tends to zero when time tends to infinity. This in 

fact means that the very strong limiting requirement of 

imprecise probability theory that the random variable 

must be bounded is no longer valid and the “troublesome 

parameter” will not enter the expressions for reliability 

measures. It will be demonstrated in an example below.

As now the optimizing pdf is known (except for 2") we 

can return to optimization problems (1)-(2) where D(2)
explicitly appears in the formulas. That what is not 

known now is the instances 2" when F(2), and 

consequently, D(2) switch from one to the other value. 

Assume that the optimal failure rate F(2) commutes 2m

times between U and U. That is, 

),...,[),...,,[),,[),,0[ 12254321 ,jj ttttttt

are intervals of time in which F(2) = U. Similarly, 

),...,[),...,,[),,[),,[ 2212654321 ,, jj tttttttt are the 

intervals on which F(2) = F, Y $ Z.

Note that if m = 0, we have 2 intervals: one with the 

failure rate equal to  U and other with the failure rate 

equal to F. There may be some cases for which the 

optimizing failure rate for the whole time interval [0, T]

is constant and equal either to  U or F.

 F(2)  

U 

U 

D(2) 
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Figure 1. Optimizing pdf, [(\), and connected to it ] 
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Finally, the reformulated problem statement is as 

follows:
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This is rather an easy optimisation problem with 

algebraic constraints. Once one knows the number of 

intervals m, this optimization problem can be solved by 

using standard numerical techniques such as gradient 

methods, simplex-based search methods, genetic 

algorithms, etc. In simple cases, the solution can be 

obtained in an analytical form as it takes place in the 

example below.

The number of intervals in which the failure rate remains 

constant is a priori unknown. In the following we suggest 

an algorithm, similar to that introduced in [12] and [16], 

which solves this problem. We start with the verification 

if only one of the two ( or ( for the whole time period 

[0, T] satisfies the constraints. If the result is positive we 

can compute the value of the objective function. Then we 

set m = 0, solve the optimization problem and compare 

the obtained value of the objective function with the 

previous result. If it is different, we may continue and 

increase m by 1, and so on. The process will be stopped 

if the expression for the density function D(2) does not 

change (or changes negligibly) and the improvement of 

the objective function also is not observed.

5   Example

Assume we are interested in knowing bounds 88 and on 

the mean time to failure #
9

$
0

)( dttt%8 of a system and the 

following data (constraints) are known:

pdtttIq q $+$ #
9

0

],0[ )()(1)Pr( % and ((( && )(t .

That is, we know precisely the probability )Pr(q , which 

we interpret as system’s reliability at time q, and the 

lower ( and upper bound ( on the failure rate. 

)(],0[ tI q is the indicator function equal to 1 if ],0[ qt-

or equal to 0 otherwise. The consistency relation between 

the reliability and failure rate is expressed by the two 

inequalities ).exp()exp( qpq (( +&&+ If 

pq $+ )exp( ( or )exp( qp (+$ , the solution to the 

problem is simple, as there is only one pdf satisfying the 

either equality. The problem of this kind was described 

in [17]. This problem becomes more complicated if the 

strong inequalities hold )exp()exp( qpq (( +::+ . For 



this case, there are intervals on which the failure rate 

switches. Hence we start with m = 0. However, 

immediately it becomes clear that for m = 0 the 

expression for )(t% contains only one unknown 

parameter 1t while there are two constraints

pdtttIq q $+$ #
9

0

],0[ )()(1)Pr( % , #
9

$
0

.1)( dtt%

This is why we have to increase m by 1

Determining 8 . The graph of the pdf, )(t% , for which 

#$%&&%'()$'&)$*'('*+*$&%,-)$&.-$/01* as shown in Fig. 2:

Hence ) * ptqtq $++7+$ 11 (exp)exp()Pr( (( .

From this equation we obtain 

) * ) *qpqpt (
((

(
((

,
+

+$7
+

+$ ln
1

)exp(ln
1

1

Now we compute the value of 2t . First, assume that 

).(e.g. 22 qtqt ;/ Then the following equation must 

hold:

) *) *

) * ) *) * .1)(exp)(exp1(

)(exp1

2

2

22 $+++++

,++,+

#

#
9

t

t

q

dtttqtp

dtqtpp

(((

((

It is true if .2 qt $ Finally, 

) * ) *

) * ) * ).exp()(exp(1
1

)exp(1
1

)(exp)(exp)exp(

)exp()(

111

11

00

1

1

ttqtp

dtqtpdtttt

dttdttP

q

q

t

t

((
(

(
(

(((

(8

+7+++,++,

$++7,++7+

,+$$

##

##
9

9

Increasing m by 1 does not lead to any improvement. 

Thus the obtained formula value is optimal one.

Determining 8 . The graph of the pdf, )(t% 2$/01$3.'4.$#$

attains its maximum takes the form as shown in Fig. 3.

Figure 3. 5.-$6-.%7'0+1$0/$&.-$89/$/01$3.'4.$#$%&&%'()$'&)$

maximum

For this case we can perform computations similar to the 

above and arrive at the result
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6 Concluding notes

In spite of the existence of a number of risk/reliability 

and other applied models built on imprecise statistical 

reasoning, only a few of them have ever been used in 

practice – and then only hesitantly –, the rest remaining 

firmly in the academic realm. Perhaps the complexity of 

imprecise statistical reasoning as a whole is such as to 

severely limit the accessibility of this kind of models to 

potential practitioners. We nevertheless believe that the 

main obstacles to the practical application of this 

knowledge are different. One which is thoroughly 

familiar to the group of experts who practise interval 

computations and which we have repeatedly mentioned

[12], [16]: it is namely the rapid growth in imprecision 

that occurs when intervals are propagated through 

mathematical models and when the number of 

components in a system is large. The other one stems

1t qt $2 t

)(t%
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)(t"
 

Figure 2. 5.-$6-.%7'0+1$0/$&.-$89/$/01$3.'4.$#$%&&%'()$

its minimum



from the requirement of imprecise probability theory that 

the random value is to be bounded. This requirement 

appears very restrictive for reliability applications, as 

some reliability models explicitly contain an upper bound 

on time to failure which is in reality an arbitrary value.

Our main finding was that bounding the failure rate 

allows deriving reliability measures devoid of an upper 

bound on time to failure. That is, the sample space of 

time to failure is now as it must be from zero to infinity. 

This is the basic assumption on which all conventional 

reliability models rest and deviations from that can 

hardly be practical. Making judgements on the lower and 

upper bounds of failure rates is meaningful and can often 

be substantiated by observed events taking place in the 

system of interest or analogous ones.
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Appendix

Theorem. If for any interval S $ 2 $ T, 0 $ S < T $ '
and for any -nhhh ,...,, 10 R it holds that
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then the failure rate F(2), on which inf and sup are 

attained in problems (3) subject to constraints (4), (5) 

and (7), is a step-wise function which is equal either to F
or to F.

Proof. According to the method of Lagrange [18] the 

primal form of optimization problem (3) subject to 

constraints (4), (5) and (7) is to be replaced by the 

equivalent unconstrained optimization problem. To do so 

the following function is introduced
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Where ^, # $ % and ^_(2), ^__(2) are unknown Lagrange 

multipliers.

Then the Euler-Lagrange equations (the necessary 

condition of optimality) take the form:
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In our case these equations become:
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^_(2)`(2) = 0 and ^__(2)a(2) = 0

Here 
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It can be concluded that if `(2) b 0 and a(2) b 0

simultaneously then ^_(2) = ^__(2) = 0. Hence 
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or after integration
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in which c is arbitrary constant. (9) contradicts to (8). To 

resolve this conflict, one of the functions u(t), v(t) must 

be equal to zero inside the interval  S $ 2 $ T. On the 

other hand, they cannot be both equal to zero because the 

equalities F(2) = F and F(2) = F cannot hold 

simultaneously.

Finally, we conclude that the failure rate alternates 

between F and F within the time period [0,T].


