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Abstract

By its capability to deal with the multidimensional
nature of uncertainty, imprecise probability provides
a powerful methodology to sensibly handle prior-data
conflict in Bayesian inference. When there is strong
conflict between sample observations and prior knowl-
edge the posterior model should be more imprecise
than in the situation of mutual agreement or com-
patibility. Focusing presentation on the prototypical
example of Bernoulli trials, we discuss the ability of
different approaches to deal with prior-data conflict.

We study a generalized Bayesian setting, including
Walley’s Imprecise Beta-Binomial model and his ex-
tension to handle prior data conflict (called pdc-
IBBM here). We investigate alternative shapes of
prior parameter sets, chosen in a way that shows im-
proved behaviour in the case of prior-data conflict and
their influence on the posterior predictive distribu-
tion. Thereafter we present a new approach, consist-
ing of an imprecise weighting of two originally sepa-
rate inferences, one of which is based on an informa-
tive imprecise prior whereas the other one is based
on an uninformative imprecise prior. This approach
deals with prior-data conflict in a fascinating way.

Keywords. Bayesian inference; generalized iLUCK-
models; imprecise Beta-Binomial model; imprecise
weighting; predictive inference; prior-data conflict.

1 Introduction

Imprecise probability has shown to be a powerful
methodology to cope with the multidimensional na-
ture of uncertainty [8, 2]. Imprecision allows the qual-
ity of information, on which probability statements
are based, to be modeled. Well supported knowl-
edge is expressed by comparatively precise models,
while highly imprecise (or even vacuous) models re-
flect scarce (or no) knowledge on probabilities. This
flexible, multidimensional perspective on uncertainty

modeling has intensively been utilized in generalized
Bayesian inference to overcome the criticism of the ar-
bitrariness of the choice of single prior distributions in
traditional Bayesian inference. In addition, only im-
precise probability models react reliably to the pres-
ence of prior-data conflict, i.e. situations where “the
prior [places] its mass primarily on distributions in
the sampling model for which the observed data is
surprising” [9, p. 894]. Lower and upper probabilities
allow a specific reaction to prior-data conflict and of-
fer reasonable inferences if the analyst wishes to stick
to his prior assumptions: starting with the same level
of ambiguity in the prior specification, wide posterior
intervals can reflect conflict between prior and data,
while no prior-data conflict will lead to narrow inter-
vals. Ideally the model could provide an extra ‘bonus’
of precision if prior assumptions are very strongly sup-
ported by the data. Such a model would have the ad-
vantage of (relatively) precise answers when the data
confirm prior assumptions, while still rendering more
cautionary answers in the case of prior-data conflict,
thus leading to cautious inferences if, and only if, cau-
tion is needed.

Although Walley [18, p. 6] explicitly emphasizes this
possibility to express prior-data conflict as one of the
main motivations for imprecise probability, it has re-
ceived surprisingly little attention. Rare exceptions
include two short sections in [18, p. 6 and Ch. 5.4]
and [14, 7, 23]. The popular IDM [19, 3] and its gen-
eralization to exponential families [15] do not reflect
prior-data conflict. [21] used the basic ideas of [18,
Ch. 5.4] to extend the approach of [15] to models that
show sensitivity to prior-data conflict.

In this paper a deeper investigation of the issue of
prior-data conflict is undertaken, focusing on the pro-
totypic special case of predictive inference in Bernoulli
trials: We are interested in the posterior predictive
probability for the event that a future Bernoulli ran-
dom quantity will have the value 1, also called a ‘suc-
cess’. This event is not explicitly included in the nota-



tion, i.e. we simply denote its lower and upper proba-
bilities by P and P, respectively. This future Bernoulli
random quantity is assumed to be exchangeable with
the Bernoulli random quantities whose observations
are summarized in the data, consisting of the number
n of observations and the number s of these that are
successes. In our analysis of this model, we will of-
ten consider s as a a real-valued observation in [0, n],
keeping in mind that in reality it can only take on
integer values, but the continuous representation is
convenient for our discussions, in particular in our
predictive probability plots (PPP), where for given n,
P and P are discussed as functions of s.

Section 2.1 describes a general framework for gener-
alized Bayesian inference in this setting. The method
presented in [18, Ch. 5.4.3], called ‘pdc-IBBM’ in this
paper, is considered in detail in Section 2.2 and we
show that its reaction to prior-data conflict can be
improved by suitable modifications of the underlying
imprecise priors. A basic proposal along these lines
is discussed in Section 2.3 with further alternatives
sketched in Section 2.4. Section 3 addresses the prob-
lem of prior-data conflict from a completely different
angle. There we combine two originally separate infer-
ences, one based on an informative imprecise prior and
one on an uninformative imprecise prior, by an im-
precise weighting scheme. The paper concludes with
a brief comparison of the different approaches.

2 Imprecise Beta-Binomial Models

2.1 The Framework

The traditional Bayesian approach for our basic prob-
lem is the Beta-Binominal model, which expresses
prior beliefs about the probability p of observing
a ‘success’ by a Beta distribution. With1 f(p) ∝
pn

(0)y(0)−1(1 − p)n(0)(1−y(0))−1, y(0) = E[p] can be in-
terpreted as prior guess of p, while n(0) governs the
concentration of probability mass around y(0), also
known as ‘pseudo counts’ or ‘prior strength’.2 These
denominations are due to the role of n(0) in the up-
date step: With s successes in n draws observed, the
posterior parameters are3

n(n) = n(0) + n, y(n) =
n(0)y(0) + s

n(0) + n
. (1)

Thus y(n) is a weighted average of the prior parame-
ter y(0) and the sample proportion s/n, and potential
prior data conflict is simply averaged out.

1Our notation relates to [18]’s as n(0) ↔ s0, y(0) ↔ t0.
2(0) denotes prior parameters; (n) posterior parameters.
3The model is prototypic for conjugate Bayesian analysis

in canonical exponential families, for which updating of the
parameters n(0) and y(0) can be written as (1).

Overcoming the dogma of precision, formulating gen-
eralized Bayes updating in this setting is straightfor-
ward. By Walley’s Generalized Bayes Rule [18, Ch. 6]
the imprecise priorM(0), described by convex sets of
precise prior distributions, is updated to the imprecise
posterior M(n) obtained by updating M(0) element-
wise. In particular, the convenient conjugate analysis
used above can be extended: One specifies a prior
parameter set Π(0) of (n(0), y(0)) values and takes as
imprecise prior the set M(0) consisting of all convex
mixtures of Beta priors with (n(0), y(0)) ∈ Π(0). In
this sense, the set of Beta priors corresponding to Π(0)

gives the set of extreme points for the actual convex
set of priorsM(0). UpdatingM(0) with the General-
ized Bayes’ Rule results in the convex setM(n) of pos-
terior distributions that conveniently can be obtained
by taking the convex hull of the set of Beta posteriors,
which in turn are defined by the set of updated param-
eters Π(n) = {(n(n), y(n)) | (n(0), y(0)) ∈ Π(0)}. This
relationship between the sets Π(0) and Π(n) and the
sets M(0) and M(n) will allow us to discuss different
models M(0) and M(n) by depicting the correspond-
ing parameter sets Π(0) and Π(n). When interpreting
our results, care will be needed with respect to con-
vexity. Although M(0) and M(n) are convex, the pa-
rameter sets Π(0) and Π(n) generating them need not
necessarily be so. Indeed, convexity of the parame-
ter set is not necessarily preserved in the update step:
Convexity of Π(0) does not imply convexity of Π(n).

Throughout, we are interested in the posterior pre-
dictive probability [P,P] for the event that a future
draw is a success. In the Beta-Bernoulli model, this
probability is equal to y(n), and we get4

P = y(n) := min
Π(n)

y(n) = min
Π(0)

n(0)y(0) + s

n(0) + n
, (2)

P = y(n) := max
Π(n)

y(n) = max
Π(0)

n(0)y(0) + s

n(0) + n
. (3)

2.2 Walley’s pdc-IBBM

Special imprecise probability models are now ob-
tained by specific choices of Π(0). If one fixes n(0)

and varies y(0) in an interval [y(0), y(0)], Walley’s [18,

Ch. 5.3] model with learning parameter n(0) is ob-
tained, which typically is used in its near-ignorance
form [y(0), y(0)] → (0, 1), denoted as the imprecise

Beta (Binomal/Bernoulli) model (IBBM)5, which is a
special case of the popular Imprecise Dirichlet (Multi-
nomial) Model [19, 20]. Unfortunately, in this basic
form with fixed n(0) the model is insensitive to prior-

4[15, 21, 22] use the prototypical character of (1) underly-
ing (2) and (3) to generalize this inference to models based on
canonical exponential families.

5We use ‘IBBM’ also for the model with prior information.
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Figure 1: Posterior parameter sets Π(n) for rectangu-
lar Π(0). Left: spotlight shape; right: banana shape.

data conflict [21, p. 263]. Walley [18, Ch. 5.4] there-
fore generalized this model by additionally varying
n(0). In his extended model, called pdc-IBBM in this
paper, the set of priors is defined via the set of prior
parameters Π(0) = [n(0), n(0)] × [y(0), y(0)], being a
two-dimensional interval, or a rectangle set. Study-
ing inference in this model, it is important to note
that the set of posterior parameters Π(n) is not rect-
angular anymore. The resulting shapes are illustrated
in Figure 1: For the prior set Π(0) = [1, 5]×[0.4, 0.7]—
thus assuming a priori the fraction of successes to be
between 40% and 70% and rating these assumptions
with at least 1 and at most 5 pseudo observations—
the resulting posterior parameter sets Π(n) are shown
for data consisting of 3 successes in 6 draws (left) and
with all 6 draws successes (right). We call the left
shape spotlight, and the right shape banana. In both
graphs, the elements of Π(n) yielding y(n) and y(n),

and thus P and P, are marked with a circle.

The transition point between the spotlight and the
banana shape in Figure 1 is the case when s

n = y(0).

Then y(n), being a weighted average of y(0) and s
n , is

attained for all n(0) ∈ [n(0), n(0)], and the top border
of Π(n) in the graphical representation of Figure 1
is constant. Likewise, y(n) is constant if s

n = y(0).
Therefore, (2) and (3) can be subsumed as

P =


n(0)y(0)+s

n(0)+n
if s ≥ n · y(0) =: S1

n(0)y(0)+s

n(0)+n
if s ≤ n · y(0) =: S1

,

P =


n(0)y(0)+s
n(0)+n

if s ≤ n · y(0) =: S2

n(0)y(0)+s

n(0)+n
if s ≥ n · y(0) =: S2

.

The interval [S1, S2] gives the range of expected suc-
cesses [n · y(0), n · y(0)] and will be called ‘Total Prior-
Data Agreement’ interval, or TPDA. For s in the
TPDA, we are ‘spot on’: y(n) and y(n) are attained
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Figure 2: P and P for models in Sections 2.2 and 2.3.

for n(0) and Π(n) has the spotlight shape. But if the
observed number of successes is outside TPDA, Π(n)

goes bananas and either P or P is calculated with n(0).

To summarize, the predictive probability plot (PPP),
displaying P and P for s ∈ [0, n], is given in Figure 2.
For the pdc-IBBM, the specific values are

A =
n(0)y(0)

n(0) + n
C =

n(0)y(0) + n

n(0) + n

B =
n(0)y(0)

n(0) + n
D =

n(0)y(0) + n

n(0) + n

sl. 1 =
1

n(0) + n
E1 = y(0) E2 =

n(0)y(0) + ny(0)

n(0) + n

sl. 2 =
1

n(0) + n
F2 = y(0) F1 =

n(0)y(0) + ny(0)

n(0) + n
.

As noted by [18, p. 224], the posterior predictive im-
precision ∆ = P− P can be calculated as

∆ =
n(0)(y(0) − y(0))

n(0)+ n
+

n(0)− n(0)

(n(0)+ n)(n(0)+ n)
∆(s,Π(0)),

where ∆(s,Π(0)) = inf{|s− ny(0)| : y(0) ∈ [y(0), y(0)]}
is the distance of s to the TPDA. If ∆(s,Π(0)) 6= 0, we
have an effect of additional imprecision as desired, in-
creasing linearly in s, because Π(n) is going bananas.
However, when considering the fraction of observed
successes instead of s, the onset of this additional im-
precision immediately if s

n 6∈ [y(0), y(0)] seems very
abrupt. Moreover, and even more severe, it happens
irrespective of the number of trials n. When updat-
ing successively, this means that all single Bernoulli
observations, being either 0 or 1, have to be treated
as if being in conflict (except if y(0) = 1 and s = n
or if y(0) = 0 and s = 0). Furthermore, regarding
s/n = 7/10 as an instance of prior-data conflict when
y(0) = 0.6 had been assumed seems somewhat picky.
To explore possibilities to amend this behaviour, al-
ternative approaches are explored next.
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Figure 3: Π(0) and Π(n) for the anteater shape.

2.3 Anteater Shape Prior Sets

Choosing a two-dimensional interval Π(0) seems log-
ical but the resulting inference is not fully satisfac-
tory in case of prior data conflict. Recall that Π(0)

is used to produce M(0), which then is processed by
the Generalized Bayes rule. Any shape can be cho-
sen for Π(0), including the composure of single pairs
(n(0), y(0)). In this section we investigate an alter-
native shape, with y(0) a function of n(0), aiming at
a more advanced behaviour in the case of prior-data
conflict. To elicit Π(0), one could consider a thought
experiment6: Given the hypothetical observation of
sh successes in nh trials, which values should P and
P take? In other words, what would one like to learn
from data sh/nh in accordance with prior beliefs? As
a simple approach, we can define Π(0) such that P = c
and P = c are constants in n(n) = n(0) + nh. Then,
the lower and upper bounds for y(0) must be

y(0)(n(0)) =
(
(nh + n(0))c− sh

)
/n(0) ,

y(0)(n(0)) =
(
(nh + n(0))c− sh

)
/n(0) ,

(4)

for n(0) in an interval [n(0), n(0)] derived by the range
[n(n), n(n)] one wishes to attain for P and P given the
nh hypothetical observations.7 The resulting shape of
Π(0) is as in Figure 3 (left) and called anteater shape.
Rewriting (4), Π(0) is now defined as{

(n(0), y(0)) | n(0) ∈ [n(0), n(0)],

y(0)(n(0)) ∈
[
c− nh

n(0)

( sh
nh
−c
)
, c+

nh

n(0)

(
c− s

h

nh

)]}
.

With the reasonable choice of c and c such that
c ≤ sh/nh ≤ c, Π(0) can be interpreted as follows:
The range of y(0) protrudes over [c, c] on either side
far enough to ensure P = c and P = c if updated
with s = sh for n = nh, the amount of protrusion de-
creasing in n(0) as the movement of y(0)(n(0)) towards

6AKA ‘pre-posterior’ analysis in the Bayesian literature.
7For the rest of the paper, we tacitly assume that nh, sh,

n(0) and c/c are chosen such that y(0) ≥ 0 resp. y(0) ≤ 1 to
generate Beta distributions as priors.

sh/nh is slower for larger values of n(0). As there is
a considerable difference in behaviour if n > nh or
n < nh, these two cases are discussed separately.

If n > nh, the PPP graph in Figure 2 holds again,
now with the values

A = c(n(0)+nh)−sh
n(0)+n

S1 = sh + c(n− nh) E1 = c

B = c(n(0)+nh)−sh

n(0)+n
S2 = sh + c(n− nh) F2 = c

C = c(n(0)+nh)−sh+n

n(0)+n
sl. 1 = 1/(n(0) + n)

D = c(n(0)+nh)−sh+n
n(0)+n

sl. 2 = 1/(n(0) + n)

E2 = c+
n(0) + nh

n(0) + n
(c− c) = c− n− nh

n(0) + n
(c− c)

F1 = c− n(0) + nh

n(0) + n
(c− c) = c+

n− nh

n(0) + n
(c− c) .

As for the pdc-IBBM, the TPDA boundaries S1 and
S2 mark the transition points where either y(n) or y(n)

are constant in n(0). We now have

S1

n
= c+

nh

n

( sh
nh
− c
)
,

S2

n
= c− nh

n

(
c− sh

nh

)
,

so this TPDA is a subset of [c, c]. The anteater shape
is, for n > nh, even more strict than the pdc-IBBM,

as, e.g., y(0)(n(0)) = c− nh

n(0)

(
sh

nh − c
)
< S1

n .

The situation for n < nh is illustrated in Figure 4,
where A, B, C, D, E1, F2 and slopes 1 and 2 are the
same as for n > nh, but

E2 = c+
n(0) + nh

n(0) + n
(c− c) = c+

nh − n
n(0) + n

(c− c) ,

F1 = c− n(0) + nh

n(0) + n
(c− c) = c− nh − n

n(0) + n
(c− c) .

Note that now S2 < S1, so the TPDA is [S2, S1]. In
this interval, P and P are now calculated with n(0); for
s 6∈ [S2, S1] the same situation as for n > nh applies,
with the bound nearer to s/n calculated with n(0) and
the other with n(0).

The upper transition point S1 can now be between
y(0)(n(0)) and y(0)(n(0)), and having S1 decreasing in
n now makes sense: the smaller n, the larger S1, i.e.
the more tolerant is the anteater set. The switch over
S1 (with s/n increasing) is illustrated in the three
graphs in Figures 3 (right) and 5 (left, right): First,
Π(0) from Figure 3 (left) is updated with s/n = 3/6 <
S1/n, leading again to an anteater shape, and so we
get P and P from the elements of Π(n) at n(n), as
marked with circles. Second, the transition point is
reached for s = S1 = 4.27, and now P is attained
for any n(n) ∈ [n(n), n(n)], as emphasized by the ar-
row. Third, as soon as s exceeds S1 (in the graph:
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Figure 4: P and P for the anteater shape if n < nh.
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prior sets Π(0). Left: the transition point where y(n)

is attained for all n(n), right: the banana shape.

s/n = 6/6), it holds that y(n)(n(n)) > y(n)(n(n)), and

P is now attained at n(n). As for the pdc-IBBM, for s
outside the TPDA Π(n) goes bananas, leading to ad-
ditional imprecision. The imprecision ∆ = P − P if
n < nh is

∆ =
n(0)+ nh

n(0)+ n
(c− c) +

n(0) − n(0)

(n(0)+ n)(n(0)+ n)
∆(s, n, c),

where ∆(s, n, c) = n
∣∣c∗ − s

n

∣∣ − nh
∣∣c∗ − sh

nh

∣∣ and
c∗ = arg maxc∈[c,c] | sn − c| is the boundary of [c, c]
with the largest distance to s/n. For s ∈ [S2, S1],
∆(s, n, c) = 0, giving a similar structure as for the
pdc-IBBM except that ∆(s, n, c) does not directly
give the distance of s/n to Π(0) but is based on [c, c].
The imprecision increases again linearly with s, but
now also with n. The distance of s/n to the oppo-
site bound of [c, c] (weighted with n) is discounted by
the distance of sh/nh to the same bound (weighted
with nh). In essence, ∆(s, n, c) is thus a reweighted
distance of s/n to sh/nh. The more dissimilar these
fractions are, the larger the posterior predictive im-
precision is.

For n = nh, S1 = S2 = sh so the TPDA is reduced
to a single point. In this case, the anteater shape

n > nh
s < S1 s ∈ [S1, S2] s > S2

banana spotlight banana

n = nh
s < sh s = sh s > sh

banana rectangular banana

n < nh
s < S2 s ∈ [S2, S1] s > S1

banana anteater banana

Table 1: Shapes of Π(n) if Π(0) has the anteater shape.

can be considered as an equilibrium point, with any
s 6= sh leading to increased posterior imprecision. In
this case, the weights in ∆(s, n, c) coincide, and so the
posterior imprecision depends directly on |s− sh|.

For n > nh the transition behaviour is as for the pdc-
IBBM: As long as s ∈ [S1, S2], Π(n) has the spotlight
shape, where both P and P are calculated with n(n);
∆ for s ∈ [S1, S2] is thus calculated with n(n) as well.
If, e.g., s > S2, P is attained with n(n), and ∆(s, n, c)
gives directly the distance of s/n to sh/nh, the part
of which is inside [c, c] is weighted with n, and the
remainder with nh. Table 1 provides an overview of
the possible shapes of Π(n).

2.4 Intermediate Résumé

Despite the (partly) different behaviour inside the
TPDA, both pdc-IBBM and the anteater shape dis-
play only two different slopes in their PPPs (Fig-
ures 2 and 4), with either n(n) or n(n) used to
calculate P and P. It is possible to have shapes
such that for some s other values from [n(n), n(n)]
are used. As a toy example, consider Π(0) =
{(1, 0.4), (3, 0.6), (5, 0.4)}, so consisting only of three
parameter combinations (n(0), y(0)). P is then derived
as y(n) = max{ 0.4+s

1+n ,
1.8+s
3+n ,

2+s
5+n}, leading to

y(n) =


0.4+s
1+n if s > 0.7n+ 0.3

1.8+s
3+n if 0.1n− 1.5 < s < 0.7n+ 0.3
2+s
5+n if s < 0.1n− 1.5

.

So, in a PPP we would observe the three different
slopes 1/(1 + n), 1/(3 + n) and 1/(5 + n) depending
on the value of s. Our conjecture is therefore that
with carefully tailored sets Π(0), an arbitrary num-
ber of slopes is possible, and so even smooth curva-
tures. Using a thought experiment as for the anteater
shape, Π(0) shapes can be derived to fit any required
behaviour. Another approach for constructing a Π(0)

that is more tolerant with respect to prior-data con-
flict could be as follows: As the onset of additional
imprecision in the pdc-IBBM is caused by the fact
that y(n)(n(n)) > y(n)(n(n)) as soon as s/n > y(0),
we could define the y(0) interval at n(0) to be nar-
rower than the y(0) interval at n(0), so that the ba-
nana shape results only when s/n exceeds y(0)(n(0))



far enough. Having a narrower y(0) interval at n(0)

than at n(0) could also make sense from an elicitation
point of view: We might be able to give quite a precise
y(0) interval for a low prior strength n(0), whereas for
a high prior strength n(0) we must be more cautious
with our elicitation of y(0), i.e. giving a wider inter-
val. The rectangular shape for Π(0) as discussed in
Section 2.2 seems thus somewhat peculiar. One could
also argue that if one has substantial prior informa-
tion but acknowledges that this information may be
wrong, one should not reduce the weight of the prior
n(0) on the posterior while keeping the same informa-
tive interval of values of y(0).

Generally, the actual shape of a set Π(0) influences
the inferences, but for a specific inference only a few
aspects of the set are relevant. So, while a detailed
shape of a prior set may be very difficult to elicit, it
may not even be that relevant for a specific inference.
A further general issue seems unavoidable in the gen-
eralized Bayesian setting as developed here, namely
the dual role of n(0). On the one hand, n(0) governs
the weighting of prior information y(0) with respect to
the data s/n, as mentioned in Section 2.1: The larger
n(0), the more P and P are dominated by y(0) and

y(0). On the other hand, n(0) governs also the degree
of posterior imprecision: the larger n(0), the larger c.p.
∆. A larger n(0) thus leads to more imprecise poste-
rior inferences, although a high weight on the supplied
prior information should boost the trust in posterior
inferences if s in the TPDA, i.e. the prior information
turned out to be appropriate. In the next section,
we thus develop a different approach separating these
two roles: Now, two separate models for predictive
inference, each resulting in different precision as gov-
erned by n(0), are combined with an imprecise weight
α taking the role of regulating prior-data agreement.

3 Weighted Inference

We propose a variation of the Beta-Binomial model
that is attractive for prior-data conflict and has small
yet fascinating differences with the models in Sec-
tions 2.2 and 2.3. We present a basic version of the
model in Section 3.1, followed by an extended version
in Section 3.2. Opportunities to generalize the model
are mentioned in Section 3.3.

3.1 The Basic Model

The idea for the proposed model is to combine the
inferences based on two models, each part of an im-
precise Bayesian inferential framework using sets of
prior distributions, although the inferences can also
result from alternative inferential methods. The com-
bination is not achieved by combining the two sets of

prior distributions into a single set, but by combin-
ing the posterior predictive inferences by imprecise
weighted averaging. When the weights assigned to
the two models can vary over the whole range [0, 1] we
actually return to imprecise Bayesian inference with
a prior set, as considered in this subsection. In Sec-
tion 3.2 we restrict the values of the model weights.
The basic model turns out to be relevant from many
perspectives, in particular to highlight similarities and
differences with the methods presented in Sections 2.2
and 2.3, and it is a suitable starting point for more
general models. These aspects will be discussed in
Subsection 3.3.

We consider the combination of the imprecise poste-

rior predictive probabilities [Pi,P
i
] and [Pu,P

u
] for

the event that the next observation is a success with

Pi =
si + s

ni + n+ 1
and P

i
=

si + s+ 1

ni + n+ 1
, (5)

Pu =
s

n+ 1
and P

u
=
s+ 1

n+ 1
. (6)

The superscript i indicates ‘informative’, in the sense
that these lower and upper probabilities relate to an
‘informative’ prior distribution reflecting prior beliefs
of similar value as si successes in ni observations. The
superscript u indicates ‘uninformative’, which can be
interpreted as absence of prior beliefs. These lower
and upper probabilities can for example result from

Walley’s IBBM, with Pi and P
i

based on the prior set

with n(0) = ni + 1 and y(0) ∈
[

si

ni+1 ,
si+1
ni+1

]
, and Pu

and P
u

on the prior set with n(0) = 1 and y(0) ∈ [0, 1].
There are other methods for imprecise statistical in-
ference that lead to these same lower and upper proba-
bilities, including Nonparametric Predictive Inference
for Bernoulli quantities [4]8, where the si and ni would
only be included if they were actual observations, for
example resulting from a second data set that one
may wish to include in the ‘informative’ model but
not in the ‘uninformative’ model.

The proposed method combines these lower and upper
predictive probabilities by imprecise weighted averag-
ing. Let α ∈ [0, 1], we define

Pα= αPi + (1− α)Pu, Pα= αP
i
+ (1− α)P

u
, (7)

and as lower and upper predictive probabilities for
the event that the next Bernoulli random quantity is
a success9

P = min
α∈[0,1]

Pα and P = max
α∈[0,1]

Pα .

8See also www.npi-statistics.com.
9While in (2) and (3), prior and sample information are im-

precisely weighted, here informative and uninformative models
are combined.



Allowing α to take on any value in [0, 1] reduces this
method to the IBBM with a single prior set, as dis-
cussed in Section 2, with the prior set simply gener-
ated by the union of the two prior sets for the ‘infor-
mative’ and the ‘uninformative’ models as described
above. For all s these minimum and maximum values
are obtained at either α = 0 or α = 1. With switch
points S1 = (n + 1) s

i

ni − 1 and S2 = (n + 1) s
i

ni , they
are equal to

P =

{
Pu = s

n+1 if s ≤ S2

Pi = si+s
ni+n+1 if s ≥ S2 ,

P =

{
P
i

= si+s+1
ni+n+1 if s ≤ S1

P
u

= s+1
n+1 if s ≥ S1 .

.

The PPP graph for this model is displayed in Figure 6.
The upper probability for s = S1 and the lower prob-

ability for s = S2 are both equal to si

ni . The TPDA
contains only a single possible value of s (except if S1

and S2 are integer), namely the one that is nearest to
si

ni . The specific values for this basic case are

A = 0 B =
si + 1

ni + n+ 1
C =

si + n

ni + n+ 1

D = 1 E =
si

ni
− 1

n+ 1
F =

si

ni
+

1

n+ 1

sl. 1 =
1

ni + n+ 1
sl. 2 =

1

n+ 1
.

If s is in the TPDA it reflects optimal agreement of
the ‘prior data’ (ni, si) and the (really observed) data
(n, s), so it may be a surprise that both the lower and
upper probabilities in this case correspond to α = 0,
so they are fully determined by the ‘uninformative’
part of the model. This is an important aspect, it
will be discussed in more detail and compared to the
methods of Section 2 in Subsection 3.3. For s in the
TPDA both P and P increase with slope 1

n+1 and

∆ = 1
n+1 .

Figure 6, with the specific values for this basic case
given above, illustrates what happens for values of s
outside this TPDA. Moving away from the TPDA in
either direction, the imprecision increases as was also
the case in the models in Section 2. For s decreas-
ing towards 0, this is effectively due to the smaller
slope of the upper probability, while for s increas-
ing towards 1 it is due to the smaller slope of the
lower probability. For s ∈ [0, S1], the imprecision is

∆ = si+1
ni+n+1 −

sni

(ni+n+1)(n+1) . For s ∈ [S2, n] the im-

precision is ∆ = 1
n+1 −

si

ni+n+1 + sni

(ni+n+1)(n+1) . For

the two extreme possible cases of prior data conflict,
with either si = ni and s = 0 or si = 0 and s = n, the

imprecision is ∆ = ni+1
ni+n+1 . For this combined model

with α ∈ [0, 1], we have P ≤ s
n ≤ P for all s, which is

attractive from the perspective of objective inference.

1

0
0 s n

A

B

S1 S2

E

F C

D

si

ni

sl. 1

sl.
2

sl.
2

sl.
2

sl.
2

sl. 1

Figure 6: P and P for the weighted inference model.

3.2 The Extended Model

We extend the basic model from Subsection 3.1, per-
haps remarkably by reducing the interval for the
weighting variable α. We assume that α ∈ [αl, αr]
with 0 ≤ αl ≤ αr ≤ 1. We consider this an extended
version of the basic model as there are two more pa-
rameters that provide increased modelling flexibility.
It is important to remark that, with such a restricted
interval for the values of α, this weighted model is
no longer identical to an IBBM with a single set of
prior distributions. One motivation for this extended
model is that the basic model seemed very cautious
by not using the informative prior part if s is in the
TPDA. For αl > 0, the informative part of the model
influences the inferences for all values of s, includ-
ing the one in the TPDA. As a consequence of taking
αl > 0, however, the line segment (s, sn ) with s ∈ [0, n]
will not always be in between the lower and upper
probabilities anymore, specifically not at, and close
to, s = 0 and s = n, as follows from the results pre-
sented below.

The lower and upper probabilities resulting from the
two models that are combined by taking an impre-
cise weighted average are again as given by formulae
(5)-(6), with the weighted averages Pα and Pα, for
any α ∈ [αl, αr], again given by (7). This leads to
the lower and upper probabilities for the combined
inference

P = min
α∈[αl,αr]

Pα and P = max
α∈[αl,αr]

Pα .

The lower and upper probabilities have, as func-
tion of s, the generic forms presented in Figure 6,

with [S1, S2] =
[
(n+ 1) s

i

ni − 1, (n+ 1) s
i

ni

]
as in Sec-

tion 3.1. The specific values for Figure 6 are

A = αls
i

ni+n+1 B = 1
n+1 + αr[si(n+1)−ni]

(ni+n+1)(n+1)

D = 1− αl(n
i−si)

ni+n+1 C = n
n+1 −

αr[(ni−si)(n+1)−ni]
(ni+n+1)(n+1)



sl. 1 = ni+n+1−αrni

(ni+n+1)(n+1) E = si

ni − 1
n+1

[
1− αln

i

ni+n+1

]
sl. 2 = ni+n+1−αlni

(ni+n+1)(n+1) F = si

ni + 1
n+1

[
1− αln

i

ni+n+1

]
.

The increase in imprecision when s moves away from
the TPDA can again be considered as caused by the
informative part of the model, which is logical as the
uninformative part of the model cannot exhibit prior-
data conflict.

The possibility to choose values for αl and αr provides
substantially more modelling flexibility compared to
the basic model presented in Section 3.1. One may,
for example, wish to enable inferences solely based
on the informative part of the model, hence choose
αr = 1, but ensure that this part has influence on
the inferences in all situations, with equal influence to
the uninformative part in case of TPDA. This latter
aspect can be realized by choosing αl = 0.5. When
compared to the situation in Section 3.1, this choice
moves, in Figure 6, A and D away from 0 and 1,
respectively, but does not affect B and C. It also
brings E and F a bit closer to the corresponding upper
and lower probabilities, respectively, hence reducing
imprecision in the TPDA.

3.3 Weighted Inference Model Properties

The basic model presented in Section 3.1 is fits in
the Bayesian framework, but its use of prior informa-
tion is different to the usual way in Bayesian statis-
tics. The lower and upper probabilities are mainly
driven by the uninformative part, which e.g. implies
that P ≤ s

n ≤ P for all values of s. While in (im-
precise, generalized) Bayesian statistics any part of
the model that uses an informative prior can be re-
garded as adding information to the data, the infor-
mative part of the basic model leads to more careful
inferences when there is prior-data conflict. Figure 6
shows that, for the basic case of Section 3.1, the points
A and D are based only on the uninformative part of
the model, but the points B and C are based on the
informative part of the model.

Prior-data conflict can be of different strength, one
would expect to only talk about ‘conflict’ if consider-
ation is required, hence the information in the prior
and in the data should be sufficiently strong. The pro-
posed method in Section 3.1 takes as starting point
inference that is fully based on the data, it uses the
informative prior part of the model to widen the in-
terval of lower and upper probabilities in the direction

of the value si

ni . For example, if one observed s = 0,
the upper probability of a success at the next obser-

vation is equal to si+1
ni+n+1 , which reflects inclusion of

the information in the prior set for the informative
part of the model that is most supportive for this

event, equivalent to si + 1 successes in ni + 1 obser-
vations. As such, the effect of the prior information
is to weaken the inferences by increasing imprecision
in case of prior-data conflict.

One possible way in which to view this weighted in-
ference model is as resulting from a multiple expert or
information source problem, where one wishes to com-
bine the inferences resulting individually from each
source. The basic model of Section 3.1 leads to the
most conservative inference such that no individual
model or expert disagrees, while the restriction on
weights provides a guaranteed minimum level for the
individual contributions to the combined inference.

It should be emphasized that the weighted inference
model has wide applicability. The key idea is to com-
bine, by imprecise weighting, the actual inferences re-
sulting from multiple models, and as such there is
much scope for the use and further development of
this approach. The individual models could even be
models such as those described in Sections 2.2 and
2.3, although that would lead to more complications.
If the individual models are coherent lower and up-
per probabilities, i.e. provide separately coherent in-
ferences, then the combined inference via weighted
averaging and taking the lower and upper envelopes
is also separately coherent10.

In applications, it is often important to determine a
sample size (or more general design issues) before data
are collected. If one uses a model that can react to
prior-data conflict, this is likely to lead to a larger data
requirement. One very cautious approach is to choose
n such that the maximum possible resulting impreci-
sion does not exceed a chosen threshold. In the mod-
els presented in this paper, this maximum imprecision
will always occur for either s = 0 or s = n, whichever
is further away from the TPDA. In such cases, a pre-
liminary study has shown an attractive feature if one
can actually sample sequentially. If some data are
obtained with success proportion close to si/ni, the
total data requirement (including these first observa-
tions) to ensure that the resulting maximum impre-
cision cannot exceed the same threshold level is sub-
stantially less than had been the case before any data
were available. This would be in line with intuition,
and further research into this and related aspects is
ongoing, including of course the further data need in
case first sampled data is in conflict with (ni, si), and
the behaviour of the models of Section 2 in such cases.

The weighted inference method combines the infer-
ences based on two models, and can be generalized to
allow more than two models and different inferential
methods. It is also possible to allow more impreci-

10This follows from e.g. [18, 2.6.3f]



sion in each of the models that are combined, leading
to more parameters in the overall model that can be
used to control the behaviour of the inferences. Sim-
ilar post-inference combination via weighted averag-
ing, but with precise weights, has been presented in
the frequentist statistics literature [11, 13], where the
weights are actually determined based on the data and
a chosen optimality criterion for the combined infer-
ence. In Bayesian statistics, estimation or prediction
inferences based on different models can be similarly
combined using Bayes factors [12], which are based on
both the data (via the likelihood function) and prior
weightings for the different models. In our approach,
we do not use the data or prior beliefs about the mod-
els to derive precise weights for the models, instead we
cautiously base our combined lower and upper pre-
dictive probabilities on those of the individual models
with a range of possible weights. This range is set by
the analyst and does not explicitly take the data or
prior beliefs into account, but it provides flexibility
with regard to the relative importance given to the
individual models.

4 Insights and Challenges

We have discussed two different classes of inferential
methods to handle prior-data conflict in the Bernoulli
case. These can be generalized to the multinomial
case corresponding to the IDM. It also seems possi-
ble to extend the approaches to continuous sampling
models like the normal or the gamma distribution, by
utilizing the fact that the basic form of the updating
of n(0) and y(0) in (1) underlying (2) and (3) is valid
for arbitrary canonical exponential families [15, 21].
Further insight into the weighting method may also
be provided by comparing it to Generalized Bayesian
analysis based on sets of conjugate priors consisting of
nontrivial mixtures of two Beta distributions. There,
however, the posterior mixture parameter depends on
the other parameters. For a deeper understanding of
prior-data conflict it may also be helpful to extend our
methods to coarse data, in an analogous way to [17]
and [16], and to look at other model classes of prior
distributions, most notably at contamination neigh-
bourhoods. Of particular interest here may be to
combine both types of prior models, considering con-
tamination neighbourhoods of our exponential family
based-models with sets of parameters, as developed in
the Neyman-Pearson setting by [1, Section 5].

The models presented here address prior-data conflict
in different ways, either by fully utilizing the prior in-
formation in a way that is close to the traditional
Bayesian method, where this information is added to
data information, or by not including them initially
as in Section 3. All these models show the desired in-

crease of imprecision in case of prior-data conflict. It
may be of interest to derive methods that explicitly
respond to (perhaps surprisingly) strong prior-data
agreement. One possibility to achieve this with the
methods presented here is to consider the TPDA as
this situation of strong agreement in which one wants
imprecision reduced further than compared to an ‘ex-
pected’ situation, and to choose the prior set (Sec-
tion 2) or the two inferential models (Section 3) in
such a way to create this effect. This raises inter-
esting questions for elicitation, but both approaches
provide opportunities for this and we consider it as an
important topic for further study.

Far beyond further extensions one has, from the foun-
dational point of view, to be aware that there are
many ways in which people might react to prior-
data conflict, and we may perhaps at best hope to
catch some of these in a specific model and inferential
method. This is especially important when the con-
flict is very strong, and indeed has to be considered as
full contradiction of modeling assumptions and data,
which may lead to a revision of the whole system of
background knowledge in the light of surprising obser-
vations, as Hampel argues.11 In this context applying
the weighting approach to the NPI-based model for
categorical data [6] may provide some interesting op-
portunities, as it explicitly allows to consider not yet
observed and even undefined categories [5].

There is another intriguing way in which one may re-
act to prior-data conflict, namely by considering the
combined information to be of less value than either
the real data themselves or than both information
sources. Strong prior beliefs about a high success
rate could be strongly contradicted by data, as such
leading to severe doubt about what is actually go-
ing on. The increase of imprecision in case of prior-
data conflict in the methods presented in this paper
might be interpreted as reflecting this, but there may
be other opportunities to model such an effect. It
may be possible to link these methods to some pop-
ular approaches in frequentist statistics, where some
robustness can be achieved or where variability of in-
ferences can be studied by round robin deletion of
some of the real observations.This idea may open up
interesting research challenges for imprecise probabil-
ity models, where the extent of data reduction could
perhaps be related to the level of prior-data conflict.
Of course, such approaches would only be of use in
situations with substantial amounts of real data, but
as mentioned before these are typically the situations
where prior-data conflict is most likely to be of suf-
ficient relevance to take its modelling seriously. As

11See in particular the discussion of the structure and role of
background knowledge in [10].



(imprecise, generalized) Bayesian methods all work
essentially by adding information to the real data, it
is unlikely that such new methods can be developed
within the Bayesian framework, although there may
be opportunities if one restricts the inferences to situ-
ations where one has at least a pre-determined num-
ber of observations to ensure that posterior inferences
are proper. For example, one could consider allowing
the prior strength parameter n(0) in the IBBM to take
on negative values, opening up a rich field for research
and discussions.
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