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Abstract

Nonparametric predictive inference (NPI) is a
framework for statistical inference in the absence of
prior knowledge. We present NPI for multinomial
data with subcategories, motivated by the hierarchical
structure of many multinomial data sets. We
consider situations with known and with unknown
numbers of subcategories, and present lower and
upper probabilities for general events involving one
future observation. We present properties of the
model and an algorithm to derive an approximation
to the maximum entropy distribution.
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1 Introduction

Nonparametric predictive inference (NPI) was
presented by Coolen and Augustin [5, 7] for
multinomial data in the absence of prior knowledge.
A key assumption underlying the model is that the
different categories are not ordered or otherwise
related. The model is, therefore, not suited to
multinomial data sets with a hierarchical structure
in which two or more distinct categories may also
be considered as subcategories of a single main
category. Following the suggestion in [6], we present
an extension of the NPI model for multinomial data
suitable for data sets with subcategories, which we
refer to as the Sub-MNPI model. As in the original
NPI model for multinomial data [5, 7], we assume
that there is no ordering of the main categories, and
we also assume that for a single main category there
is no ordering of its subcategories. Throughout the
paper, categories are denoted by cj and subcategories
are denoted by sj,ij , where sj,ij ⊆ cj . We assume
that there are K main categories in total, and that k
main categories have already been observed and are
labelled c1, ..., ck. Similarly, we assume that there
is a total of Kj subcategories in main category cj ,

of which kj have already been observed. Note that
K and Kj may be known or unknown: these two
situations are considered separately. Let n denote
the total number of observations Y1,...,Yn in the data
set, where nj is the number of observations in main
category cj and nj,ij is the number of observations
in subcategory sj,ij . Some main categories may not
contain any subcategories, or may only be described
at main category level, in which case we continue
to denote these simply by cj . Such categories are
referred to as main-only categories, distinct from
main categories which may or may not have specified
subcategories.
In section 2 of this paper, we explain the probability
wheel representation of the data on which the
NPI model for subcategory data is based. In the
following two sections, we then define the general
events of interest for inference about a future
observation and we present the NPI lower and upper
probabilities for these events. The situation where
K and Kj are known is considered in Section 3,
and the situation where K and Kj are unknown is
considered in Section 4. Some important properties
of the model are then described in Section 5. In
Section 6 we consider the application of the model
to classification, and finally Section 7 provides some
concluding remarks.

2 The Sub-MNPI model

The NPI approach for multinomial data is based
on a variation of Hill’s A(n) assumption [8] called
circular-A(n) [5, 6, 7], which is an assumption
of post-data exchangeability. The model uses a
probability wheel representation of the data [5, 6, 7],
where each of the n observations is represented by
a radial line such that the wheel is partitioned
into n equally-sized slices. From the circular-A(n)

assumption we conclude that the next observation
has probability 1

n of being in any given slice. The
inferences made about a future observation therefore



depend upon which main category or subcategory
each slice of the wheel represents, and this is
determined by the key assumption that each main
category and each subcategory is only allowed to be
represented by one segment of the wheel, where a
segment is defined as a single part of the wheel (note
that the wheel is always divided radially) consisting of
any number of full or partial slices. The assumption
implies the following constraints:

• Two or more lines representing the same
(sub)category must always be positioned next to
each other on the wheel.

• Lines representing different subcategories within
the same main category are always grouped
together in one single segment of the wheel.

• If a slice is bordered by two lines representing the
same (sub)category, it must be assigned to this
(sub)category.

• A slice that is bordered by two lines representing
observations in (sub)categories x and y where
x 6= y, defined as a separating slice, may be
assigned to x or to y or to an unobserved
(sub)category not yet allocated to any other slice.

• Separating slices may be divided radially between
multiple (sub)categories.

All possible configurations of the probability wheel
are considered, and lower and upper probabilities
for an event of interest are derived by respectively
minimising and maximising the number of slices
assigned to the event.

3 Known number of (sub)categories

When K and Kj , j = 1, ...,K, are known, the event
of interest can be expressed generally as

E = {Yn+1 ∈
⋃
j∈J

cj ∪
⋃
j∈J∗

⋃
ij∈Ij

sj,ij} (1)

where J ∩ J∗ = ∅, J ⊆ {1, ...,K}, J∗ ⊆
{1, ...,K} and Ij ⊆ {1, ...,Kj} for j = 1, ...,K. It
should be emphasized that J is the index-set of the
categories which occur in the event of interest only
at main category level, while J∗ is the index-set
of the categories which occur in this event at
subcategory level. We also define Ij = {1, ...,Kj}\Ij .
This notation allows us to describe events which
contain only specific subcategories of particular main
categories, whilst also retaining the possibility of
considering some main categories as a whole.
We define OJ = J ∩ {1, ..., k}, which is the index-set

of observed main-only categories in E, and |OJ | =
rmain. We also define UJ = J ∩ {k+ 1, ...,K}, which
is the index-set of unobserved main-only categories
in E, and |UJ | = lmain. Similarly, OJ∗ = J∗ ∩
{1, ..., k}, where |OJ∗| = rsub. OJ∗ is the index-set
of observed main categories in E which are described
at subcategory level. We also define UJ∗ = J∗ ∩{k+
1, ...,K}, where |UJ∗| = lsub. UJ∗ is the index-set of
unobserved main categories in E which are described
at subcategory level. Let r = rmain + rsub, and let
l = lmain + lsub.
Let OIj = Ij ∩ {1, ..., kj}, where |OIj | = rj , for
j = 1, ...,K. OIj is the index-set of observed
subcategories in E. Also let UIj = Ij∩{kj+1, ...,Kj},
where |UIj | = lj , for j = 1, ...,K. UIj is the
index-set of unobserved subcategories in E. Let
OIj = Ij ∩ {1, ..., kj}, where

∣∣OIj∣∣ = rj , and let
UIj = Ij ∩ {kj + 1, ...,Kj}, where

∣∣UIj∣∣ = lj .
We present the NPI lower and upper probabilities for
E (1). A detailed derivation of these formulae is given
in [4].

3.1 Lower probability

The NPI lower probability is found by constructing
a configuration of the probability wheel which
minimises the number of slices assigned to E. In
order to construct such a configuration, we consider
how many separating slices we can assign to main
categories or subcategories not in E. First, separating
slices on the wheel between different observed main
categories in E can be assigned to main categories
that are not in E. There are (K−r−l) such categories.
Furthermore, if we have subcategories which are not
in E but which are part of a main category that
appears in E, it may be possible to utilise these
subcategories to separate observed main categories in
E. By considering the configuration of the slices, we
find that the number of separating slices which can
potentially be filled in this way (with x+ representing
max{x, 0}) is

SM =
∑
j∈OJ∗

min{(rj + lj − rj + 1)+, 2}

+
∑
j∈UJ∗

min{lj , 1}.

Minimising the number of slices that must be assigned
to E results in the following general formula:

P (E) =
∑
j∈OJ

nj − 1
n

+
∑
j∈OJ∗

∑
ij∈OIj

nj,ij − 1
n

+
1
n

(2r + l −K − SM )+

+
1
n

∑
j∈OJ∗

(2rj + lj −Kj − 1)+.

(2)



Example 1 Consider a multinomial data set with
possible main categories blue (B), green (G), red
(R), yellow (Y), pink (P) and orange (O). These
main categories are labelled 1 to 6 respectively.
Observations in B are further classified as light blue
(LB), medium blue (MB), dark blue (DB) or other
blue (OB), and observations in G are further classified
as light green (LG), dark green (DG) or other green
(OG). The data set consists of eight observations
altogether, including 1 LB, 1 MB, 2 DB, 1 LG, 1 DG,
1 R and 1 Y.
Suppose that we are interested in the event Y9 ∈
{LB,MB,DB,LG,R,Y,P}. We have K = 6, r =
4 and l = 1. For main categories described at
subcategory level, the values of Kj, rj and lj are
shown in Table 1. Here, we are unable to assign all

j Kj rj lj
B 1 4 3 0
G 2 3 1 0

Table 1: Values of Kj , rj and lj for Example 1

separating slices within the B segment to subcategories
not in E. Furthermore, we are unable to configure
the probability wheel such that all observed main
categories in E are separated by main categories not
in E. We find that 2r+l−K = 3 in this example, and
SM = 2. While we can use some subcategories which
are not in E but which are part of a main category that
appears in E, there is still one separating slice between
main categories which has to be assigned to E. Figure

LB
MB

DB

DB

R
DG

LG

Y

OG

O

OB

DG DG

Figure 1: Probability wheel for Example 1

1 shows a possible configuration of the wheel such that
O separates B and Y, OG separates Y and G, and DG
separates G and R. There is then no way of separating
R and B by a main category or subcategory not in E,
and we are therefore forced to assign this slice to E.
Looking specifically at the B segment, we see that OB
separates LB and MB but the slice between MB and
DB then has to be assigned to E. This leads to a NPI

lower probability of 3
8 for the event E. This lower

probability can be verified using (2). We see that the
set OJ contains R and Y, the set OJ∗ contains B and
G, the set OI1 contains LB, MB and DB and the set
OI2 contains LG. Also, 2r + l −K = 3, SM = 2 and∑
j∈OJ∗

max{2rj+lj−Kj−1, 0} = 1, therefore (2) gives

P (E) = 3
8 .

3.2 Upper probability

The NPI upper probability is found by constructing
a configuration of the probability wheel which
maximises the number of slices assigned to E. We
do this by considering which slices can definitely
not be assigned to E and are accounted for by the
k − r observed main categories not in E or by the rj
observed subcategories not in E. In order to construct
such a configuration, we consider the various ways in
which we can separate lines or segments on the wheel
representing different main categories which either are
not in E or which are present in E but have neither
end of their segment in E.
First, we could separate these main categories using
unobserved main categories in E. There are l of
these categories. Secondly, we could separate using
observed main-only categories in E. There are rmain
such categories. Finally, we could separate using
the other observed main categories in E, provided
that the configuration of the relevant segment is such
that each end represents a subcategory in E. There
are rsub main categories in E that are described at
subcategory level. For a segment to have the required
configuration, the category must satisfy kj − rj +
1 ≤ rj + lj . This is because we need kj − rj − 1
subcategories in E to ensure that all subcategories
not in E are separated, and a further two to ensure
that both ends of the segment are in E. We define the
number of main categories which satisfy this condition
as r̃sub. We define the number of main categories
which are present in E but have neither end of their
segment belonging to E, i.e. the number which satisfy
kj − rj − 1 ≥ rj + lj , as r0

sub.
By maximising the number of slices that may be
assigned to E, we find that

P (E) =
∑
j∈OJ

nj − 1
n

+
∑
j∈OJ∗

∑
ij∈OIj

nj,ij − 1
n

+
min{r + l + rmain + r̃sub − r0

sub, k}
n

+
∑
j∈OJ∗

min{2rj + lj , kj − 1}
n

.

(3)

Example 2 Consider the data set described in
Example 1. Suppose that we are interested in the event



Y9 ∈ {LB,DB,P}. We have k = 4, rmain = 0, rsub =
1, r = 1 and l = 1. For main categories described
at subcategory level, the values of kj, rj and lj are
shown in Table 2. Here, we find that (k− r) + r0

sub >

j kj rj lj
B 1 3 2 0
G 2 2 0 0

Table 2: Values of kj , rj and lj for Example 2

l + rmain + r̃sub, i.e. there is no configuration of the
probability wheel such that all of the categories not
in E are separated by a category in E. Also, within
the G segment we cannot assign all separating slices
to subcategories in E. One configuration of the wheel

LB
MB

DB

DB

R
DG

LG

Y

LBDB

DB

P

LB

Figure 2: Probability wheel for Example 2

corresponding to the NPI upper probability is shown in
Figure 2. Figure 2 shows a configuration where R and
Y are separated by B, and G and R are separated by P.
However, we cannot separate G and Y by a category
in E. We also do not have an available subcategory
in E to which we can assign the slice separating DG
and LG. This leads to a NPI upper probability of
6
8 for the event E. This upper probability can be
verified using (3).We see that the set OJ is empty,
the set OJ∗ contains B and the set OI1 contains LB
and DB. Also, r + l + rmain + r̃sub − r0

sub = 3 and∑
j∈OJ∗

min{2rj + lj , kj − 1} = 2, therefore (3) gives

P (E) = 6
8 .

4 Unknown number of (sub)categories

In addition to K and Kj being unknown, it is
important to note that they are not assumed to have
a finite limit. In order to describe the general events
of interest in this situation, we introduce some new
notation. Let cjs , s = 1, ..., r′, be the observed
main-only categories in the event of interest, let

UN be the set of Unobserved New main categories,
which refers to any not yet observed category, and
let DNj , j = 1, ..., l, be the set of Defined New
main categories, which is a subset of UN and which
represents categories we wish to specify in the event
of interest but have not yet observed.
Also, let cjs , s = r′ + 1, ..., r, be the observed main
categories in the event of interest which are described
at subcategory level, and let sjs,ijs , s = r′ + 1, ..., r,
ijs = 1, ..., rs, be the observed subcategories in the
event of interest. Let D̃N js,ijs

, ijs = 1, ..., ds, be the
set of Defined New subcategories within the observed
main categories cjs , and let DNj,ij , j = 1, ..., l,
ij = 1, ..., lj , be the set of Defined New subcategories
within the Defined New main categories. Let ˜UN js ,
s = 1, ..., r be the set of all Unobserved New
subcategories within the observed main categories
cjs , and let UNj , j = 1, ..., l be the set of all
Unobserved New subcategories within the Defined
New main categories. A given event can be expressed
as a union involving some or all of the above terms.
Let A,B ⊆ {1, ..., k} such that A ∩ B = ∅. Any
event of interest can be expressed using one of the
two formulae shown below. The first general event is

Yn+1 ∈
r′⋃
s=1

cjs ∪
r⋃

s=r′+1

(
rs⋃

ijs=1

sjs,ijs )

∪
⋃
s∈A

( ˜UN js \
ds⋃

ijs=1

D̃N js,ijs )

∪
⋃
s∈B

(
ds⋃

ijs=1

D̃N js,ijs
)

∪
l′⋃
j=1

(UNj \
lj⋃
ij=1

DNj,ij ) ∪
l⋃

j=l′+1

(
lj⋃
ij=1

DNj,ij ).

(4)

The second general event is

Yn+1 ∈
r′⋃
s=1

cjs ∪
r⋃

s=r′+1

(
rs⋃

ijs=1

sjs,ijs )

∪
⋃
s∈A

( ˜UN js \
ds⋃

ijs=1

D̃N js,ijs ) ∪
⋃
s∈B

(
ds⋃

ijs=1

D̃N js,ijs )

∪ UN \ {
l′⋃
j=1

(UNj \
lj⋃
ij=1

DNj,ij )

∪
l⋃

j=l′+1

(
lj⋃
ij=1

DNj,ij )}.

(5)

We denote these by E1 (4) and E2 (5). We
now present formulae for the NPI lower and upper



probabilities for each of these general events. A
detailed derivation of these formulae is given in [4].

4.1 Lower probability

First we consider event E1, which includes only a
finite number of unobserved main categories. By
minimising the number of slices of the wheel that must
be assigned to E1, the NPI lower probability is

P (E1) =
r′∑
s=1

njs − 1
n

+
∑
s/∈A

{
r∑

s=r′+1

(
rs∑

ijs=1

njs,ijs − 1
n

)}

+
∑
s∈A
{

r∑
s=r′+1

(
rs∑

ijs=1

njs,ijs − 1
n

) +
Ns
n
}

(6)

where Ns = [(rs − 1)− ds − (kjs − rs)]+.
For E2, which contains all except a finite number of
the UN main categories, the NPI lower probability is

P (E2) =
r′∑
s=1

njs − 1
n

+
∑
s/∈A

{
r∑

s=r′+1

(
rs∑

ijs=1

njsijs − 1
n

)}

+
∑
s∈A
{

r∑
s=r′+1

(
rs∑

ijs=1

njsijs − 1
n

) +
Ns
n
}

+
1
n

(2r − k − l −
r∑

s=r′+1

Ms)+

(7)

where Ms = 2 if s /∈ A and Ms = min{[ds + (kjs −
rs)− (rs − 1)]+, 2} if s ∈ A.

Example 3 Consider a multinomial data set where
the set of possible main categories consists of an
unknown number of different colours. We have
observed the following main categories: red (R),
blue (B), green (G) and pink (P). At subcategory
level, we have observed DB, MB, LB, DG, MG, LG,
MP and DP. In addition we define two new main
categories: orange (O), with defined subcategories LO
and MO, and purple (Pu) with defined subcategory
DPu. We also define the new subcategory LP. We
let UNB represent all unobserved new subcategories
within the main category B, including the defined
new subcategory RB, and let UNPu represent the
equivalent for the main category Pu. The data set
consists of twenty observations including 3 R, 3 DB,
1 MB, 2 LB, 3 DG, 2 MG, 2 LG, 2 MP and 2 DP.
We consider the event Y21 ∈ {(LB∪MB)∪(LG∪MG)∪
(MP) ∪ (UNB\RB) ∪ (LP) ∪ [UN\((UNPu\DPu) ∪
(LO ∪ MO))]}. We label this event E. Let s = 1
correspond to B, s = 2 to G and s = 3 to P. This

is an event of type E2 (5), so (7) is used to compute
the NPI lower probability for this event.
In this example, r = 3. The main categories for which
s /∈ A are G and P, and the only main category for
which s ∈ A is B. We have N1 = [(r1 − 1) − d1 −
(kj1 − r1)]+ = [(2 − 1) − 1 − (3 − 2)]+ = 0. We also
have M1 = min{[d1 + (kj1 − r1) − (r1 − 1)]∗, 2} = 1,

M2 = 2 and M3 = 2. Therefore
3∑
s=1

Ms = 5. The

values of njs and njs,ijs are shown in Tables 3 and 4.
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Figure 3: Probability wheel for Example 3

B G P
njs 6 7 4

Table 3: Values of njs for Example 3

LB MB LG MG MP
njs,ijs 2 1 2 2 2

Table 4: Values of njs,ijs for Example 3

By (7), the NPI lower probability for the event E is
4
20 . Figure 3 shows a corresponding configuration of
the probability wheel. There are four slices assigned
to E, and the remaining slices are assigned to main
categories or subcategories not in E and are labelled
accordingly.

4.2 Upper probability

The NPI upper probabilities for events E1 and E2

are derived by assigning as many slices of the wheel
as possible to the event of interest. The NPI upper



probability for event E1 is

P (E1) =
r′∑
s=1

njs − 1
n

+
∑
s/∈A

{
r∑

s=r′+1

(
rs∑

ijs=1

njs,ijs − 1
n

)

+
kjs − 1− Ps

n
}+

min{r − r0 + l + r̃, k}
n

+
∑
s∈A
{

r∑
s=r′+1

(
rs∑

ijs=1

njs,ijs − 1
n

) +
kjs − 1
n
}

(8)

where Ps = [(kjs − rs − 1) − rs − ds]+, r0 denotes
the number of main categories such that s /∈ A which
satisfy rs + ds − (kjs − rs − 1) ≤ 0, and r̃ denotes
the number of main categories cjs which satisfy either
s ∈ {1, ..., r′}, s ∈ A or the condition

s /∈ A, rs + ds − (kjs − rs − 1) ≥ 2.

The NPI upper probability for event E2 is

P (E2) =
r′∑
s=1

njs − 1
n

+
∑
s/∈A

{
r∑

s=r′+1

(
rs∑

ijs=1

njsijs − 1
n

)

+
kjs − 1− Ps

n
}+

k

n

+
∑
s∈A
{

r∑
s=r′+1

(
rs∑

ijs=1

njsijs − 1
n

) +
kjs − 1
n
}.

(9)

Example 4 Consider the data set described in
Example 3. Suppose that we are interested in the event
Y21 ∈ {(LB∪MB)∪(LG∪MG)∪(MP)∪(UNB\RB)∪
(LP)∪(UNPu\DPu)∪(LO∪MO)}. We label this event
E. This is an event of type E1, so (8) is used for the
NPI upper probability for E.
In this example, r = 3, l = 2 and k = 4. Let s = 1
correspond to B, s = 2 to G and s = 3 to P. The main
categories for which s /∈ A are G and P, and the only
main category for which s ∈ A is B. We have P2 =
[(kj2−r2−1)−r2−d2]+ = [(3−2−1)−2−1]+ = 0 and
P3 = [(kj3−r3−1)−r3−d3]+ = [(2−2−1)−1−1]+ = 0.
The values of njs , kjs and njs,ijs are shown in Tables
5 and 6.

B G P
njs 6 7 4
kjs 3 3 2

Table 5: Values of njs and kjs for Example 4

We have r0 = 0 and r̃ = 3, as both of the main
categories in E for which s /∈ A satisfy the condition
rs + ds − (kjs − rs − 1) ≥ 2. The general formula (8)
shows that the NPI upper probability for the event E

LB MB LG MG MP
njs,ijs 2 1 2 2 2

Table 6: Values of njs,ijs for Example 4
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Figure 4: Probability wheel for Example 4

is 13
20 . Figure 4 shows a corresponding configuration

of the probability wheel. There are four slices of the
wheel that must be assigned to E. The nine further
slices that can be assigned to elements of E are labelled
accordingly.

5 Properties of the model

We now discuss several properties of the Sub-MNPI
model. We focus here on the case where K and Kj

are known, but the following properties are equally
applicable when these quantities are unknown.
A fundamental property for lower and upper
probabilities is the conjugacy property, which states
that P (E) = 1 − P (Ec). This is implicit in the
F-probability property, proven below, but can also be
proven explicitly for the Sub-MNPI model [4]. It can
also be shown [4] that the interval between the lower
and upper probabilities always contains the relative
frequency of observations in the event of interest E,
i.e.

P (E) ≤
∑
j∈OJ

nj
n

+
∑
j∈OJ∗

∑
ij∈OIj

nj,ij
n
≤ P (E). (10)

This is an attractive property, since it shows that the
Sub-MNPI model is not in conflict with the empirical
probability, and one which is not always satisfied by
methods such as Bayesian inferences which typically
assign a positive probability to a category before it has
been observed even once. A third property that can
be proven [4] is that as the number of observations in
the data set becomes infinitely large, the imprecision
vanishes and the interval probability P (E) shrinks to



a point value equal to the relative frequency. This is,
in our situation, a desirable property for the model.
We now prove that the interval probabilities
[P (E), P (E)] given by the Sub-MNPI model are
F-probabilities in the sense of Weichselberger [13].
F-probability is a desirable property, because it
shows that none of the interval probabilities are too
wide and that they could not be made any smaller
given the data available to us. Also, F-probability
is strongly linked to other concepts in imprecise
probability theory. As stated above, conjugacy is
implicit in the F-probability property. Coherence is
a direct consequence of F-probability, by Walley’s
lower envelope theorem [11], and this can be seen
as a rationality requirement. The following is based
on work by Coolen and Augustin [7] that proved the
F-probability property for the original NPI model for
multinomial data.
For the proof we introduce some new notation in
order to describe all the possible configurations of the
probability wheel. Suppose that the wheel is split
into K segments, and each segment is split into Kj

subsegments. We move clockwise around the wheel
numbering the segments as 1, ...,K as shown in Figure
5. We also number the subsegments within segment j
as 1, ...,Kj as shown in Figure 6. The area of these

K

K-1...

j

...

3 2

1

Figure 5: Numbering of segments

segments and subsegments is thus far unspecified: we
allocate a different main category or subcategory to
each segment or subsegment in order to describe the
configuration of the wheel, but a segment assigned to
an unobserved category may have area zero.
As seen in [7], we let Σ represent the set of all
possible configurations σ of the wheel. Each σ can
be described by a sequence

(σ(j))j=1...K+1, σ(K + 1) = σ(1)

where σ(j) is the index of the main category assigned
to segment j, and a set of sequences

(σ(i, j))i=1...Kj , j ∈ J∗

Kj

Kj-1

...
i

...21

Figure 6: Numbering of subsegments

where σ(i, j) is the index of the subcategory within
main category j assigned to subsegment i.
It is also necessary to describe the position of the
observed main categories and subcategories on the
wheel for a given σ. Let the circular sequence

σ(i1), ..., σ(ik+1), σ(ik+1) = σ(i1)

be the indices of the observed main categories as we
move around the wheel, and let the sequence

σ(i1, j), ..., σ(ikj , j), j ∈ J∗

be the indices of the observed subcategories as we
move through the segment representing main category
j.
For l = 1, ..., k, we describe each separating slice
between two main categories as follows:

Jσ,l = {σ(j)|il ≤ j ≤ il+1}

if categories in positions il and il+1 are main-only,

Jσ,l = {σ(j)|il ≤ j < il+1} ∪
i1⋃
x=1

σ(x, l + 1)

if category in position il is main-only but category in
position il+1 has subcategories,

Jσ,l = {σ(j)|il < j ≤ il+1} ∪
Kl⋃

x=ikl

σ(x, l)

if category in position il has subcategories but
category in position il+1 is main-only, and

Jσ,l = {σ(j)|il < j < il+1}∪
i1⋃
x=1

σ(x, l+1)∪
Kl⋃

x=ikl

σ(x, l)

if categories in positions il and il+1 both have
subcategories. Jσ,l is the index set of all main
categories and subcategories to which the separating



slice could be assigned. Let c|Jσ,l| be the set of all
these main categories and subcategories.
We also describe the separating slice between two
observed subcategories within the same main category
using

Bσ,j,l = {σ(b, j)|il ≤ b ≤ il+1}, l = 1, ..., kj−1, j ∈ J∗.

This is the set of indices of all possible subcategories
to which, for the particular configuration σ, we could
assign the separating slice between the subcategories
in positions il and il+1 in the segment representing
main category j. Let s|Bσ,j,l| be the set of these
subcategories.
Now, for a given configuration σ, the Sub-MNPI
model gives the following basic probability assignment
[3] to the event Yn+1 ∈ cj :

mσ(Yn+1 ∈ cj) = max{nj − 1
n

, 0}, j = 1, ...,K.

Similarly, the basic probability assignment given to
the event Yn+1 ∈ sj,ij is

mσ(Yn+1 ∈ sj,ij ) = max{
nj,ij − 1

n
, 0}, i = 1, ...,Kj .

With regard to distributing probability mass
amongst slices separating different main categories or
subcategories, we give the following basic probability
assignments:

mσ(Yn+1 ∈ c|Jσ,l|) =
1
n
, l = 1, ..., k.

mσ(Yn+1 ∈ s|Bσ,j,l|) =
1
n
, l = 1, ..., kj − 1, j ∈ J∗.

Any other event is given the basic probability
assignment of zero.
Let XE represent the index set of the event of
interest E. This set contains some one-dimensional
elements, corresponding to main-only categories, and
some two-dimensional elements, corresponding to
subcategories. We now determine the lower and upper
probabilities for event E via the belief and plausibility
functions [10]. For a particular configuration σ, we
find that the belief function of E is

Pσ(E) =
∑
j∈J

mσ({Yn+1 ∈ cj})

+
∑
j∈J∗

∑
ij∈Ij

mσ({Yn+1 ∈ sj,ij})

+
∑

Jσ,l⊆XE

mσ({Yn+1 ∈ c|Jσ,l|})

+
∑

Bσ,j,l⊆Ij

mσ({Yn+1 ∈ s|Bσ,j,l|})

(11)

and the plausibility function of E is

Pσ(E) =
∑
j∈J

mσ({Yn+1 ∈ cj})

+
∑
j∈J∗

∑
ij∈Ij

mσ({Yn+1 ∈ sj,ij})

+
∑

Jσ,l∩XE 6=∅

mσ({Yn+1 ∈ c|Jσ,l|})

+
∑

Bσ,j,l∩Ij 6=∅

mσ({Yn+1 ∈ s|Bσ,j,l|}).

(12)

We therefore have a set of belief functions and a
set of plausibility functions corresponding to the
set Σ of possible configurations of the probability
wheel. According to Theorem 3.2 of [3], and to
[9], taking the lower and upper envelopes over all
possible configurations leads to F-probability. Since
the lower and upper probability formulae of the
Sub-MNPI model are derived by considering all
possible configurations σ ∈ Σ, resulting in

P (E) = min
σ∈Σ

Pσ(E)

and
P (E) = max

σ∈Σ
Pσ(E),

the interval probability [P (E), P (E)] is an
F-probability.

6 Approximate maximum entropy
distribution

We present an algorithm for approximating the
maximum entropy distribution consistent with the
Sub-MNPI model, with a view to using this maximum
entropy measure in the construction of classification
trees. Further details of such classification at main
category level are presented in [4]; the implementation
of this method at subcategory level is ongoing
research.
The process of computing the maximum entropy
distribution is carried out in two stages. Initially,
we work at main category level only. We apply
the NPI-M algorithm presented in [1], which gives
a maximum entropy probability pmaxE(cj) for each
main category. As a second step, we share the
probability mass pmaxE(cj) as evenly as possible
between the subcategories, in such a way that the
probability p̂j,ij that is assigned by the algorithm to
subcategory sj,ij is within the interval [Lj,ij , Uj,ij ].
Let K(i)j represent the number of subcategories in
main category cj that have been observed i times.
From the NPI-M algorithm [1] we have the results
pj = pmaxE(cj), j = 1, ...,K. This means that for



each main category cj , we have a segment consisting

of npj slices. Of these slices, n(
Kj∑
i=1

Lj,ij ) must be

assigned to observed subcategories in cj . We therefore

have remaining probability mass pj −
Kj∑
i=1

Lj,ij that

may be assigned to any available subcategory in cj ,
and this is termed optional probability mass. For each
cj , we share the optional probability mass between
subcategories of cj , beginning with subcategories
with the fewest observations. This leads to the
Sub-A-NPI-M algorithm, which is shown below in
pseudo-code and which is similar to the A-NPI-M
algorithm presented in [1] and justified in the same
way.

Sub-A-NPI-M

For j = 1 to K

For i = 1 to Kj

Lj,ij ← max{nj,ij−1

n , 0}

opt← pj −
Kj∑
i=1

Lj,ij

p̂j,ij ← Lj,ij

t← 0;
While (opt > 0) do
If (nj,ij = t or nj,ij = t+1) p̂j,ij ←
p̂j,ij + min{ opt

K(t)j+K(t+1)j
, 1
n};

opt← opt−min{ opt
K(t)j+K(t+1)j

, 1
n};

t← t+ 1;

The Sub-A-NPI-M algorithm is illustrated in Example
5.

Example 5 Consider a multinomial data set with
observed main categories blue (B), green (G), red (R)
and pink (P), and unobserved main category orange
(O). Observations in B are further classified as light
blue (LB) or dark blue (DB), and observations in G
are further classified as light green (LG) or dark green
(DG). The data set consists of twenty observations
altogether, including 5 DB, 5 DG, 5 R and 5 P.
First, considering the data at main category level
only, we apply the NPI-M algorithm [1] and find that
the maximum entropy probabilities assigned to the
main categories {O,R,B,G,P} are { 1

20 ,
19
80 ,

19
80 ,

19
80 ,

19
80}.

(For further details on this, see [1] and [4].) A
configuration of the wheel corresponding to this
distribution is shown in Figure 7. The separating
slices are shared in such a way that B, R,
G and P are each assigned 3

4 of a separating

DB

DB
DB

DBDBDG
DG

DG

DG

DG

R

R
R

R R P
P

P

P

P
O

Figure 7: Probability wheel for Example 5

slice. We now consider the subcategories. The
maximum entropy probabilities for the main categories
are distributed over the subcategories using the
Sub-A-NPI-M algorithm. For main category B we
have P (DB) = 4

20 and P (LB) = 0. For main
category G we have P (DG) = 4

20 and P (LG) = 0.
Applying the Sub-A-NPI-M algorithm, we find that
opt = 19

80 −
4
20 = 3

80 for both of these main categories.
Taking t = 0 gives

p̂(LB) = 0 + min{ opt

K(t)j +K(t+ 1)j
,

1
n
} =

3
80
,

p̂(LG) = 0 + min{ opt

K(t)j +K(t+ 1)j
,

1
n
} =

3
80
.

So the probabilities assigned to the set of subcategories
{LB,DB} are { 3

80 ,
4
20} and the probabilities assigned

to the set of subcategories {LG,DG} are { 3
80 ,

4
20}.

The Sub-A-NPI-M algorithm can be implemented for
building classification trees using methodology similar
to that shown in [2] and in [4].

7 Concluding remarks

In this paper we presented the Sub-MNPI model
for inferences from multinomial data described at
subcategory level as well as at main category
level. NPI lower and upper probabilities were
derived for the general events of interest, and some
fundamental properties of the model were explained.
The inferences presented here are more flexible
than those given by the original NPI model for
multinomial data in the sense that observations can
be represented at varying levels of detail, which makes
the model widely applicable to practical problems.
With the view to applying the Sub-MNPI model to
classification problems, an algorithm was presented
for approximating the maximum entropy distribution
consistent with these inferences. Implementation of
this algorithm for building classification trees, and



comparison of the approach with alternative imprecise
and classical methods, is ongoing. It is also of interest
for future research to investigate other applications of
the Sub-MNPI model.
With regard to future research, it will also be
useful to compare classification trees built using
the Sub-A-NPI-M algorithm presented here with
classification trees constructed by ignoring the
hierarchical relationship between the categories and
subcategories and simply using the NPI-M algorithm
presented in [1]. Note that the distinction between
these two methods, and the different results they
achieve, show that the Representation Invariance
Principle (RIP) satisfied by Walley’s IDM [12] does
not generally hold for NPI. This is an issue discussed
in detail by Coolen and Augustin [5, 7].
The Sub-MNPI model presented in this paper could
be extended further by considering inferences about
multiple future observations and by introducing
further layers e.g. subsubcategories to the hierarchy.
Such developments would be of theoretical and
practical interest.
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