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Abstract

In this paper uncertainties in limit state functions g as aris-
ing in engineering problems are modelled by adding addi-
tional parameters and by introducing parameterized prob-
ability density functions which describe the uncertainties
of these new additional parameters and of the basic vari-
ables of g. This will lead to a function py(a,b) for the
probability of failure depending on parameters a and b
corresponding to the two parameterized density functions.
Further the parameters a and b are assumed to be uncer-
tain. Using intervals, sets or random sets to model their
uncertainty results in upper probabilities p, of failure. In
this context we also discuss different notions of indepen-
dence such as strong independence, epistemic irrelevance
and random set independence and present a simple engi-
neering example.

Keywords. Probability of failure, limit state functions,
parameterized probability measures, random sets, random
set independence, epistemic irrelevance, strong indepen-
dence.

1 Introduction

In reliability analysis the probability p of failure of a sys-
tem is obtained by

pr= X (x) dx (1)
{x: g(x)<0}

where x = (x1,...,x,) are the basic variables of the system
such as material properties and loads and where fX is a
probability density function describing the uncertainty of
the variables x. The function g is the limit state function of
the system telling us for which x the system fails (g(x) < 0)
or not (g(x) > 0), see also [14].

In the case of scarce information about the values of the
basic variables x and the behaviour of the system it may
be neither sufficient to model the uncertainty of the vari-

ables x by a single probability density /X nor to describe
the system’s reliability by a single deterministic limit state
function g. To overcome such difficulties, fuzzy sets [17],
random sets [3], credal sets [13] or sets of parameterized
probability measures [9] have been used to model the un-
certainty of the variables x, cf. also [6, 8, 10, 11]. Un-
certainties in the limit state function g have been modelled
using additional random variables [5], fuzzy sets, random
sets [12] or fuzzy probabilities [1, 15].

The aim of this paper is to develop a function

pab)= [ Feefwa @
{(x,2): h(x,z)<0}

depending on vectors of parameters a and b parameter-
izing the probability density functions fX and be . These
density functions describe the uncertainty of the basic vari-
ables x and the additional parameters z of an extended limit
state function h. These additional variables z are used
to parameterize a familiy of limit state functions g, with

gz(x) = h(x,z).

In a next step we assume that the parameters a and b are
uncertain themselves modelling their uncertainty by inter-
vals, sets or random sets. This approach gives us the possi-
bility to describe the uncertainty of x and z by sets of prob-
ability measures generated by the density functions fX and
be and their uncertain parameters ¢ and b. The functions
/X and f# allow us to use more specific probability mea-
sures such as Gaussian distributions in contrast to the case
where the uncertainty of x and z is directly modelled by
sets or random sets. Such coarser models of uncertainty
are also encompassed simply by replacing fX and be by
Dirac measures.

A simple engineering example with one uncertain basic
variable x exemplifies different cases and models of uncer-
tainty of a and b and the computation of the upper prob-
ability p of failure by means of pr(a,b) with respect to
different notions of indepence between the limit state func-
tions and the basic variables.



2 Uncertain limit state functions

2.1 Limit state functions

In reliability theory a system and its corresponding contin-
uous limit state function

g XCR' =Y CR: x—y=g(x) (3)

is given with output y € Y depending on a vector of n basic
variables x = (xy,...,x,) € X CR" where g(x) < 0 means
failure of the system. The probability py of failure of the
system is then defined by

pr=PEX) <0)= [2(W <0 Wdr @
X

where fX is the joint probability density function of the
basic random variables X = (Xj,...,X,) and where

1 expression true,

X (expression) = { 3)

0 expression false.

The set Ry = {x € X': g(x) <0} is the failure region of the
system which we describe by the indicator function

g:%—{0,1} :x— x(g(x) <0). (©)
2.2 Parameterized limit state functions

We parameterize the limit state function g : X — Y by
means of a vector z = (z1,...,zm) € Z C R™ of additional
parameters using a function

h:XxZ—Y:(xz2) — h(x,2) @)
where again /(x,z) < 0 means failure. A function
g X —=Y:ix— g (x) =h(x,2) ®

is then one of the available limit state functions specified
by a parameter value z. When both the basic variables x
and the parameters z are uncertain, the probability py of
failure is defined by

pr= [ [xhnd) <0 2w dedx @)
X Z

where X7 : X x Z — R is the joint density function of the
random variables X = (Xy,...,X,) and Z = (Z;,...,Zy).
The uncertainty of the parameters z is the uncertainty in
the choice of an appropriate limit state function g..

2.3 Independence of the basic variables and the
parameters

In the following we always assume that the random vari-
ables X and Z are independent which has the following
meaning:

(a) If we learn the values of the basic variables x,
our knowledge about the parameters 7 and therefore
about the choice of the limit state functions g, does
not change.

(b) Learning the values of the parameters z and therefore
learning which limit state function g, to use has no
influence on our knowledge about the variables x.

Then the probability ps of failure is given by

pr= [ [xh62) 0@ def @ ax - a10)
X Z

with density functions fX and fZ for their corresponding
random variables X and Z. The inner integral is a function

g:%—[0,1] :xﬂ/%(h(x,z) <0)f%(2)dz (1)
Z

which is a generalization of ¢ in Eq. (6). For ¢ in Eq. (6)
only the function values 1 and O are admissible telling us
wether an x € X is in the failure region Ry or not, but here
q describes an uncertain failure region similar to a mem-
bership function of a fuzzy set. The value g(x) is the prob-
ability that x belongs to the failure region R;.

2.4 Sets of probability measures and notions of
independence

We use now sets My and My of probability measures to
describe the uncertainty of the basic variables x and pa-
rameters z of the limit state function 4. Since we want
to keep the assumption that the basic variables x and the
limit state functions g, are independent we have to com-
pute the upper probability of failure with respect to the
different notions of independence for sets of probability
measures [2, 6]. We consider here strong independence,
the weaker and asymmetric epistemic irrelevance and later
on in Sec. 3.3 random set independence.

Strong independence [2, 6, 16]: It is the most restrictive
definition of independence simply considering all possi-
ble product measures Py @ Pz for Py € My and Pz € M.
Then the upper probability ﬁjsc of failure in case of strong
independence is obtained by

ﬁ? = Sup{(PX ®@Pz)(Sf): Px € Mx, Pz € Mz}
= sup //x(h(x, z) <0) dPz(z) dPx(x)

PxeMy
P7eMyz

q(x) dPx(x) (12)
X

= sup
PyeMyx
q€0



where Sy = {(x,z) : h(x,z) <0} and Q the set

Q:{q:xﬂ[o,u: (13)
q(x) = /x(h(x,Z) <0)dPs(z), Pz € Mz}
Z

of all functions g describing the uncertainty of the failure
region Ry as in Eq. (11).

Epistemic irrelevance [2, 4, 16]: We start with the above
formula for ﬁ?, but move then supp,y, inside the outer
integral:

p5= sup [ [x(hx2) <0) aPs(2) ape(

PyeMy

P7eMyz
< sup sup /x(h(x,z) < 0) dPz(z) dPx(x)
PxeMxxpzeMZZ
= sup [ qg(x) dPx(x) = p}"” (14)
PXGMXx

with

G(x) = sup [ x(h(x,z) <0)dPz(z) =supg(x). (15)
PZGMZZ q€0

The result is a formula for the upper probability ﬁff’z in
case of epistemic irrelevance, because for each x we can
choose its own P; € Mz or more exactly a conditional
probability measure Pz(-|x) given x. The notation X 4 Z
means that X is epistemically irrelevant to Z, see [4], or
in our case that the basic variables are epistemically irrel-
evant to the parameterized limit state functions g;. Epis-
temic irrelevance is an asymmetric notion of independence
meaning only what we have stated in (a) in Sec. 2.3, but
not necessarily the other way round as in (b). The set
Mx_sz of all probability measures according to epistemic
irrelevance of X to Z is defined by

Msz = {P: PE) = [ [1((v.2) € B) aPa(el ) dPx (),
X Z

Py € My, Py(-|x) eMZ} (16)

where E is an event. In Eq. (14) we write Pz(z) instead of
Pz(z|x) since it is clear that we use different probability
measures Pz and not only one because of the supp ¢y, in
the formula.

When it is possible to assume epistemic irrelevance we
have the advantage that we can treat the uncertainty of the
basic variables and of the limit state functions completely
separately. We can compute g in advance and then using g
for different models of uncertainty of x.

The function ¢ is the upper envelope of the set Q defined
in Eq. (13). If this upper envelope g is an element of O we
h —S _ —XAZ

ave py =Py

3 The probability of failure p(a,b) with
uncertain parameters a and b

3.1 The function ps(a,b)

Let us now extend Equation (10) by adding parameters
a= (ai,...,an,) € R"™ for the probability density func-
tion fX describing the uncertainty of the basic variables x
and parameters b = (by,...,b,,) € R™ for the density f*
of the additional parameters z which leads to a function

pr(ab) = [ [x(hx2) <O)fF () daf (x) ax.
Xz (17)

This function py(a,b) provides an interface for control-
ling the shape of the probability density functions used for
modelling the uncertainty of the basic variables x and the
parameters z. We also write p(a,b; fX, f7) if it is neces-
sary to emphasize which density functions are used.

In the following the parameters a and b are assumed to
be uncertain; intervals, sets or random sets are used to de-
scribe their uncertainty. This and the approach with pa-
rameterized density functions fX and sz give us a conve-
nient way to generate the sets My and Mgz of probability
measures and the possibility to model the uncertainty of x
and z by means of more specific probability measures than
directly using sets or random sets for x and z. An example
for such a parameterized density fX or sz is the density
of a Gaussian distribution depending on expectation y and
variance 6. Then describing the uncertainty of y and &
by sets or random sets leads to sets My or My of proba-
bility measures.

3.2 Uncertainty of the parameters ad and b modelled
by sets A and B

We describe the uncertainty of the parameter a € R" by a
set A C R and the uncertainty of b € R™ by aset B C R
and show how the upper probability of failure is deter-
mined in case of strong independence or epistemic irrele-
vance. But first we have to generate the sets of probability
measures My and M.

Generating My and My:

Mx = {P: P(E) = [ [1(xe B) () dx dPa(a),
AX  pe M(A)} (18)

where M(A) = {P: P(A) = 1} is the set of all probability
measures living on the set A and where E is an event. The
set Mz is generated in an analogous way using be and

M(B).

Strong independence: Eq. (12) together with Eq. (18)
leads to the following formula for the upper probability



ﬁ? in case of strong independence:

ﬁ?: sup //x h(x,z) <0)dPz(z) dPx(x)
PxeMy
Pz€MZ

- Sup
PAEM
PBGM(

///x (x,2) <0)fZ(z) dz-
-dPg(b) fy (x) dx dPy(a)

//pf a,b) dPy(b) dPy(a) (19)

= sup
PAEM
PBEM

= sup / / pr(&.1) 48,(1) 48,(&) = sup py(a.b)
beBA73 ZEB

The Dirac measures §, and &, are extreme points in the
sets M(A) and M(B) of probability measures.

Eq. (14) together with Eq. (18)

leads to the formula for the upper probability ﬁjf%z in case

of epistemic irrelevance:
/ / x(h,2) < 0)f(2)

S,
-dz dPg(b) £ (x) dx dPy(a)

B
=sup [sup [ x(h(x,z) <0)fF(z) dzf) (x) dx
aeA-x beBZ

Epistemic irrelevance:

_X%’Z = sup

PAGM

=sup [ g(x)f) (x) dx (20)

A
a8y

with g(x) = sup,cp [5 x (h(x,2) < 0)fZ(z) dz, again using
that o, and 8, are extreme points in M(A) and M(B).

3.3 Uncertainty of ¢ and » modelled by random sets
</ and A

A random set as introduced by [3] is a family <7 of focal
sets A; together with weights m o (A;) which sum up to one.
Then the upper probability P(E) or plausibility Pl ., (E) of
an event E is given in the case of a finite random set with
focal sets Ay,...,A| | by the formula

||

- Sl

P(E)=Ply(E

= YA

tEﬂA;éz

sup P(E)
PGM(A,’)

€3y
where |.<7| denotes the number of focal sets where
M(Ai) = {P: P(A;) =1} (22)

is the set of all probability measures on the focal set A;,
cf. [6]. The lower probability P(E) or belief Bel, (E) is
defined by

4

P(E) = zmd

Beld Zmd

i:A;CE

inf P(E).
PGM(A)

(23)

First we have to generate the sets My and Mz by means of
random sets .7 and & modelling the uncertainty of @ and
b. Then we show how to determine the upper probabilities
of failure for strong independence, epistemic irrelevance
and random set independence.

Generating the sets My and Mz:

Mx = {P: PE) = [ [2(x€ B)f¥ () dx dPa(a),
AX PAEM(M)}
||
—{P: P(E)= ¥ mu(A): (24)

. i=1
[ [t B dx apyfa),
AX PAieM(Ai),izl,...,n}

where M(«7) is the set of all probability measures gen-
erated by a random set o7, cf. [9]. A probability mea-
sure in M (<) is a weighted sum of probability measures
Py, € M(A;) living on the focal sets A;. The set Mz is
obtained in a similar way using be and the random set A.

Strong independence: Eq. (12) together with Eq. (24)
leads to the upper probability

s || | 2|
py= sup D me(A)maz(B)) - (25)
Pa,eM(A, ) Lol i=1 j=1
Pp,eM(B, | B
//pfab dPA )dPB (b)
|| \JB’\
= sup Y mu(A)mz(Bj)py(ai,b;)

ar€Ar,r=1,..,|9| i=1 j=1
bseBy,s=1,...,| B|

in case of strong independence replacing the probability
measures Py, and Pg; by Dirac measures &, and 5b on
their corresponding focal sets A; and B; 51m11ar to the sec-
tion before. A general proof that the upper probability can
be obtained by means of Dirac measures can be found in

[71.
Epistemic irrelevance: Eq. (14) together with Eq. (24) re-

sults in the upper probablhty X7Z in case of epistemic
irrelevance:
X4z || i 2%
Py = Zmd(A,') sup ngg (26)
i=1 PyeM(A; ) ax =

cswp [ 1) <0
BNEIB 2 4z dPy(b) £X (x) dx dPy(a)
|| ||

= Zmd(A,') sup 2 me(Bj) -
i=1 aciy. j=1

-sup [ x(h(x,2)

bEBjZ

<0)f# (z) dz £ (x) dx



The function g is given here by

||
a(x) = 3, ma(B;) sup [7(h(,2) <O)fF () .

j=1 bijZ (27)
Random set independence: Let the uncertainty of a vari-
able a be modelled by a random set .7 with focal sets A;
and weights m ., (A;) and the uncertainty of a variable b by
a random set # with focal sets B; and weights mz(B;).
The joint random set, in the classical version assuming
random set independence, is defined as the family % of
all Cartesian products C;; = A; x B; of focal sets A; and
Bj. The weights of these joint focal sets C;; are given by
the product me (C;j) = me (A;)meg(B;) and the formula
for the joint plausibility measure Pl by

|| |5
PI(E) = ; ;m%(Ai)m%(Bj)X(Eﬁ (Ai x Bj) # @)
7| || (28)
= 2 Z md(A,')mgg(Bj) sup P(E)

i=1j=1

with set M(A,' X Bj) = {P : P(A,' X Bj) = 1}, cf. [2, 3, 6].
This set is the largest possible set of joint probability mea-
sures generated by the marginal sets M(4;) and M(B;).
The key properties of random set independence are that

PGM(A,’XBJ')

(i) there are no interactions between focal sets A; and Bj,

(ii) the focal sets A; and B; are chosen in a stochastically
independent way;

(iii) the joint plausibility PI(E) is obtained by solving
optimization problems supp i (4,x Bj)P(E ) on each
joint focal set A; X B; separately and independently
of the other joint focal sets.

Our problem here is that density functions are involved
in the formulas and that we have to combine not only two
random sets </ and % but also two density functions fX
and be . So we have to generalize the formula for the joint
plausibility measure. One possibility is to replace the set
M(A; x Bj) by a set of joint probability measures gener-
ated by sets M}, and MJZ defined by

N = {P: P(E) = [ [ £X(0) dxdpa(@), P € DAY
AE (29)

N, = {P: P(E) = [ [ 7}(:) dzapa(b), Pa e M(B)) }
B E

as the sets My and Mz in Sec. 3.2. Now the question
arises how to combine M}, and M. Since M(A; x B;)
is the largest possible set of joint probability measures
generated by M(A4;) and M(B;) an analogous approach
would be to use here the set of all possible joint proba-
bility measures generated by M} and M. But this means
to consider also all possible joint density functions with
marginals £X and fZ which is not very attractive because
of the computational effort and because independence is
not taken into account on the level of the density functions.

Another approach is to combine M}, and MJZ according to
strong independence or epistemic irrelevance as in Sec. 3.2
which means to replace suppcya, B)) P(E) in Eq. (28) by
the results of Eq. (19) or of Eq. (20)

For strong independence, locally for each pair of sets M}
and M7, we get the upper probability

|| | 5|
7RS Z 2 My (A (Bj) sup pg(a,b) (30)
i=1j= aEA,',bEBj

by means of Eq. (19), cf. also [9]. We denote this upper
probability by a superscript “RS” where “R” means ran-
dom set independence and “S” indicates that the sets M
and M, corresponding to A; x B; are combined accord-
ing to strong independence. The difference to the “global”
version of strong independence in Eq. (25) is that here the

“sup” is inside instead of outside the sums. So it is clear
that we have the ordering 7° <D R f

Epistemic irrelevance, locally for each pair of sets M}, and
M, leads to

|| | A|
=Y me(Ama(Bj) sup [G(x) £X (x) dx
i:1j‘:l aEAlef (31)
q;(x) = sup [ x(h(x,2) <0)fZ(z) dz, 32)

bEBj'Z

cf. Eq. (20). We use here the superscript “R, X-4Z” instead
of “RS” to denote the upper probability.

Summarizing the orderings of all upper probabilities we

We note that Dirac measures &, and &, instead of arbi-
trary density functions fX and be leads to the classical
joint plausibility measure: For Dirac measures we always
have M, = M(A;), M = M(B;). Further the resulting
upper probabilities for M(A; x B;) as in Eq. (28) or for
sets of probability measures generated by M(A;), M(B;)
according to strong independence or epistemic irrelevance
coincides since Dirac measures o, ® 8y, a € A;, b € Bj are

extreme points in all these three sets. This means that we
“R._ _ RXAZ
have pR I =ph f =Dy

4 Alternative approaches and views

Let Y}, = h(x,Z) be the conditional random variable for the
uncertain output of the parameterized limit state function
h given a value of the basic variables x, Z the random vari-
able corresponding to the parameters z, fY"‘ YCR—R
the probability density of ¥, and F¥* : Y — [0, 1] the prob-
ability distribution function. Then g : X — [0, 1] describing
the uncertainty of the failure region is defined here by

a(x) = F(0 / ) (33)

since y < 0 means failure.



On the one hand the functions f**, F¥/* and ¢ (or F**
and g if sets of probability measures are used, see below)
can be used to visualize the uncertainties in the limit state
function. On the other hand the uncertainties in the limit
state function can be specified providing these functions.
Especially describing the uncertainty in the failure region
by means of the function g in case of epistemic irrele-
vance opens the possibility to start also with fuzzy failure
regions. Note that there may be a conceptual but not a for-
mal difference between g and a membership function of a
fuzzy set. To specify the limit state function g in its uncer-
tain format instead of introducing additional parameters
was also suggested in [12].

We show now how the two approaches are connected for
the case that & is given by y = h(x,z) = g(x) + z which
means to add something uncertain to a deterministic limit
state function g. Substituting z =y — g(x) in Eq. (17) leads

to
/(a,b) //x (x) +2 < 0) 7 (2) dz £ (x) dx
://x (y S 0)ff (v —g(x)) dy £ (x) dx
0
:// Y‘X y) dy £ (x) dx
x —oo
/ (x) dx (34)
X
with f ( ) = fZ(y — g(x)). The density f de-

scrlbes the uncertalnty of the output of the limit state func-
tion and it is the same density function as fb , but moved
from 0 to g(x). This is indicated by the additional param-

eter g(x) of the probability density f dependmg now
on parameters which are not constant on f)C Modelling the
uncertainty of parameter b by a set B we get an example

for a function

g(x) =sup [ x(h(x,z) <0)f7(z) dz (35)
beBZ
_ Yl Lk
= Sup iy (0) = F77(0)
Y |x

using both approaches. The function F~ " is the upper dis-
tribution function of Y|,. In an analogous way we obtain
the lower bound

1nf/x (x,2) <0)fZ(2) dz (36)

—infF'* (0)

. pYx
inf Fl (5 (0) =1 £77(0).

It is the lower probability of failure given x € X.

5 Numerical example

5.1 Problem statement

As a simple numerical example we consider a beam of
length 3 m supported on both ends and additionally bed-
ded on a spring, cf. Fig. 1. The values of the beam rigidity
EI = 1kNm? and of the load f(£) = 100kN/m are de-
terministic, but the value of the spring constant x (in our
notation for the basic variables) is assumed to be uncertain.

The deterministic limit state function g is given as'

8(x) = Myield — Jmax, IM(&,x)] (37)

s (2 1)

with ¢(x) = 5x/(384E1/L3 + 8x), see Fig. 1. M(&,x) is
the bending moment at & € [0,3] on the beam depending
on the spring constant x and My;elq = 21 kNm is the elastic
limit moment of the beam for both positive and negative
moments.

100 kN/m

w

m

15 20 25 30 35 40 45
spring constant x

Figure 1: Beam bedded on a spring and deterministic limit
state function g.

5.2 Modelling the uncertainty of spring constant x

The uncertainty of the spring constant x ([kN/m]) is mod-
elled either by an interval A, by a random set </ or by a
Gaussian distribution. In the following we present what
we will use for the basic variable x in the examples in the
next section.

Interval A modelling the uncertainty of x:
We will use the interval A = [a,a] = [20,30] kN/m.

Random set </ modelling the uncertainty of x:

The random set <7 is given by the focal sets A| = [17,30],
Ay =[23,31], A3 = [27,32.5] and weights mo(A;) = 0.2,
m@{(Az) =0.3and m%(A3) =0.5.

Thanks to one of the reviewers for providing an explicit formula.




Probability distribution modelling the uncertainty of the
basic variable x:

We assume that x is Gaussian distributed with parameters
u=234and 6> =1.

6 Cases and examples

In this section we present examples and special cases with
respect to the different notions of independence.

6.1 Sets of parameterized limit state functions
Let B be a set and

G ={g:: g:(x) =h(x,z),z € B} (38)

the family of limit state functions parameterized by z €
B. Further let the function g be the lower envelope of G

defined by g(x) = infg.cc g;(x) and g the upper envelope.

In this case we have to set be := 0, and b := z in Egs. (19)
and (20) which leads to

ﬁ? = sup pf(x,Z;fé(a 62) (39
acA
z€B

— sup / / 2(h(x,1) <0)8.(1) dn £X (x) dx

acA
ZEB Xz

=sup [ x(g:(x) <0)f (x) d
acA
€B X
for strong independence and to g and the upper probability

for epistemic irrelevance:

ﬁ(x):sgg x2(h(x,m) <0)8,(n)dn (40)
=y
= sggx(gz(x) <0)=x(gx) <0),
Py = sup a<x)fj‘<x)dx:su§ x(g(x) < 0)fX(x)dx.
ac X ac X (41)

As an example we use h(x,z) = g(x+z) withz € B=[0,2]
moving g to the left and the limit state function g defined in
the previous section. In Fig. 2 the set G, the functions g, g
and the upper and lower probability distribution functions

FY‘X and F Ylx at x = 20 are depicted, see also Sec. 4.

Uncertainty of x modelled by an interval A:

Here we have to set fX := §, and a := x. In this case the
results for strong independence and epistemic irrelevance
coincide:

P} =sup py(x,2:6:,6;) =sup [x(h(&,2) <0)8:(&)dE

XEA XEA

z€B e X

= sup x(g:(x) <0) =supy(g(x) <0), (42)
XEA XEA
zEB

P77 = sup [q(£)8.(8) dE =supg(x)  (43)

€A - cA
X! X X!

= supx(g(x) <0)

XEA

because only one single x € A is used at the same time in
the formulas.

We obtain the upper probabilities for our example by
means of

py=p)"" = sup((x) < 0) = x(g(A) N (—==,0] # 2)
(44)

where g(A) = [ming(x),maxg(x)] = [g(A),g(A)] is the
XEA XEA —

image of A under a function g. For the computation of

x(g(A) N (—e0,0] # @) it is sufficient to know the lower

bound g(A) of the image g(A):

x(8(A) N (—=,0] # @) = x(g(A) <0).  (45)

Since in our example all g; and g are a concave functions
we have g(A) = min(g(a),g(a)) = 0.2763 for the interval

A = [a,d] = [20,30] and therefore the upper probability of
failure 3 = 7,7 = 1(0.2763 < 0) = 0.

1 T e 005 1
E 0.5 T T — B at x = 20
o 49
20 30 40

Figure 2: Set G of limit state functions g;, lower envelope
g q(x) =FY(0),g(x) = FY‘X(O), focal sets of random set
o (gray bars); Y™ and F' ™ at x = 20.

Uncertainty of x modelled by a random set <7

First we do some preliminary work replacing in Egs. (25),
(26), (30) and (31) the density functions by Dirac mea-
sures:

|2

= sup D M (Ai)maa(B;)py(xi,2;)
XAy r=1,.| | i=1 j=1

%EBy,s5=1,....| | (46)



|2

||
Py % = Y me(A)sup | Y, ma(B))- @7)
i=1 XEAix j=1

sup [ 7(h(&,1) < 0)8.(n) dn 8.(&)

ZEB]"Z
|| | 2|
=Y mu(Ai)sup Y, me(B;) sup x (h(x,z) <0)
i=1 XeA; j=1 Z€B;
||
=Y mq(A;) supg(x)
i=1 XEA;
||
Z ma(Bj) sup x (h(x,z) <0), (48)
ZGB
RS —RXAZ ZlZ|
Py =Dy ZI_Zlmd(A i)ma (B; )f;{) py(x,2)
i=1j= i

ZEB]' (49)

where pr(x,z) = x(h(x,z) <0) and where ﬁf ﬁjlf XPZ

coincides for Dirac measures as already mentioned. While
these equations are needed in the next section we further
use here that we have only one set B with weight 1 which
leads to the following simplified versions:

4
ﬁjsp = sup @{(Ai)pf(xi,Z), (50)
Xr€Ar r=1,.., || i=1
ZEB
pyt = zmﬂ )supsupy (h(x,2) <0),  (51)

x€A; z€EB

S =p*? —me )sup pr(x,z)  (52)

XEA;
ZEB

where p X%Z ﬁ?,x%z

because pr(x,z) = x(h(x,z) <0).

The difference between ﬁf} and ﬁjf%z is that there is a sin-
gle z used for all x, together in case of strong independence
while for epistemic irrelevance z can be chosen for each x,

separately. The numerical results are obtained by

||
Py =sup 3 my(A;) sup x(g:(x) < 0) (53)
€B j—1 XEA;
=supPly(g.(x) <0)=0.5
ZEB
and
pit = zm@f ) sup x(g(x) <0) (54)
XEA;

= le(g(x) <0)=
of. Egs. (50), (51).

02-14+0.3-0+0.5-1=0.7,

Zif g€aG. This holds in the case
[b,b] g(x) = g(x) +band

We have always p} = ﬁjf%
where h(x,z) = g(x)+z,z€B=
g(x) =g(x)+b.

6.2 Random sets of parameterized limit state
functions

Modelling the uncertainty of the limit state function:

For modelling the uncertainty of the parameter z we use
a random set & given by the following focal sets B; and
weights mg(B;):

:[ 09,1.3], m@(Bl)
B, =[-0.6,0.9], mx(B;) =
3= [ 04,0.6], m@(B3)
4 = [ 0. 2,0.4], m@(B4)

In the view of Sec. 4 we define a random set ¢ of limit
state functions by the focal sets G; = {g; : z € B;} and
weights mg (Gj) =mg(B;). Ata pomtx € X we have then
arandom set ¢ (x) with focal sets G(x) = {g(x) : g € G}
and the same weights, which describes the output of the
uncertain limit state function.

The function g is obtained by

_ Y\x =
qx) = Zm@ j(X)N(—e,0] # 2)
- Plg(x)((*“’vo]) (55

which is the plausibility measure of (—eo,0] for the ran-
dom set ¢ (x) at x. The lower bound g is the belief measure
at x (cf. Fig. 3):

Zl
q(x) = F"(0) = 2. mz(B)x(Gj(x) € (—e,0])

(56)

0051
at z =20

Figure 3: Random set ¢, lower envelopes gj ; g(x) =
FY(0) and g(x) = fY‘X(O), focal sets of random set o7
(eray bars); F** and F*™ at x = 20.

Uncertainty of x modelled by a random set <7

We consider now the special case where A(x,z) is given by
gz(x) = h(x,z) = g(x) + z resulting in the uncertain limit
state function depicted in Fig. 3.



Then it holds for the lower envelopes gj of the focal sets

G that g eG ;. Itis clear that we can reduce the focal sets
G; to their lower envelopes which leads to a discrete set of
limit state functions eqipped with a probability distribu-
tion induced by the weights of the focal sets G;. But then
there is only one single probability distribution and there-

fore no possibility of choice which leads to ﬁ? = ﬁ‘;f%z.

Further we have ﬁf} = ﬁ?s because of the ordering of the

four lower envelopes (gl < 52 < 53 < 54, see Fig. 3).

In the following the upper probabilities p&S b plfi XAZ 40d

ﬁff’z are computed: Since in our example the results co-

incide for all notions of independence we have the possi-
bility to choose between two methods for the upper prob-
ability of failure where either discontinuous or continuous
optimization problems involved: For the upper probabil-
ity p X7Z in case of epistemic irrelevance we have to solve
|| dlscontinuous (g is discontinuous) optimization prob-
lems

*X%’ 2 My (A;) sup g(x) (57)
XEA;
|| Zl ,
=Y my(A) sup 2, ma(Bj)x (g’ (x) <0)
i=1 x€A; j=1

=0.2-1.04+0.3-04+0.5-1.0=0.82

and for the upper probability in case of random set inde-
pendence |7 | - | 98| continuous one (g is continuous):
)sup prlx,z)  (58)

—RS _RX Z
P =pp" Z’W Sub

Zl W\ ZEB

21 me )<0)
||

= Zm@(Bj)le(g(x) < 0)
=1

=0.1-1.0+03-1.0+04-0.74+0.2-0.7=0.82.
6.3 Random limit state functions

We have again (x,z) = g(x) +z and model the uncertainty
of the parameter z by a Gaussian distribution (density be )
with parameters b = (U, o).

Let us start with deterministic parameters, say b = (0,0.5),
which leads to ﬁ? = ﬁ‘}(%z. Using the notation of Sec. 4 we
have Y|, = g(x) +Z with random variable Z ~ N(u,c?)
and conditional random variable Y, ~ N(g(x) + u,c?)
given the basic variable x. The function ¢ is obtained by

Y|x
/% x)+2<0) f(o 05)(2) dz = F(g‘(X),O-S)(O)

(39

where F¥1 is the probability distribution function of Y,
cf. Sec. 4 and Fig. 4.

3
. Y|z .
2 g0
1 for.each x
&
= 0 Yy
-1
-2
1 ; 0 051
E 0.5 \ at x =20
o
20 30 40
X

Figure 4: Uncertain limit state function g(x) + z where the
uncertainty of z is described by a Gaussian distribution

with 4 =0 and 6 =0.5; g(x) = é‘(x) )(O), focal sets

Ylx
of random set <7 F(g(x) 0.5) X = 20.
Uncertainty of x modelled by an interval A = [20,30]:
We obtain
pf = pf74 = sup py(x,b; 8, f£) = supg(x) = 0.1222
X€A x€A
(60)

using Egs. (19) and (20).

S _ _RXAZ_ RS _

Uncertainty of x modelled by a random set: We get
py=p;""" =Dy )supg(x) (61)

- Sma
XEA;

=0.2-0.6604+0.3-0.15764-0.5-0.3682 = 0.3635

for the random set .7 given in Sec. 5.2 using very simpli-
fied versions of Egs. (26), (30) and (31).

Uncertainty of x modelled by a single probability distribu-
tion: For a Gaussian distribution (density fj( ) with deter-
ministic parameters a = (1,0) = (34,1) we get the result

pr((34,1),(0,0.5), fX, ) = (62)
—//X (%) +2<0)£{6.0.5)(2) de 34 1)(x) dx

= /q(x)f(%l)(x) dx =0.5976.
X

Uncertainty of b modelled by a set B:
Let the set B for the parameters b in be given by
[, 1] x [0,6] =[-0.3,0.3] x [0.2,0.6].

The function g and the corresponding lower bound ¢ are
obtained here by

Y|x .

g yals Flotuo)(0) ifg(x)+p>0,
q(x) =F (0) - Y|x .

Ftine(0) ifg()+p <0



and

Y|x
oo (0) ifglx)+m>0,
x (g(x)+u,0)
g =EO)=q T
Floosme(0) ifglx)+H<0.

. .. Y|x Y |x .
In Fig. 5 the densities f(g(x) +41.5) and f(g(x) o) resulting
in g are depicted as well as the functions g, ¢ and the upper

and lower distribution functions FY‘X and F Y at x = 20.
The numerical results for uncertain x as above (set A, ran-
dom set <7, probability distribution) can be obtained in
case of epistemic irrelevance by simply replacing g by g
in the Egs. (60), (61) and (62). The results for ﬁff’z are
0.3192 for the set A, 0.6817 for the random set &/ and
0.9387 for the Gaussian distribution.

3
2 PO B
B
= 0 ‘ Y Y
| Y |z |
-1 ! f(g(r)fﬂ:S,E)‘ x
-2
1 X 0051
= at x =20
Zosh\)
0 B .
20 30 40
X

Figure 5: Uncertain limit state function g(x) + z where the
uncertainty of z is modelled by a set of Gaussian distribu-
tions.

Conclusion

To model uncertainties in limit state functions g we ex-
tended g depending on basic variables x to functions % by
adding additional parameters z and introduced a function
pr(a,b) for the probability of failure. This function pro-
vides an interface for controlling the parameters a and b of
the probability density functions £ and f# used for mod-
elling the uncertainty of the basic variables x and the new
additional parameters z. In a next step the two parameters
a and b were assumed to be uncertain using sets or random
sets to model their uncertainty resulting in sets of proabil-
ity measures for x and z. In this context we discussed sev-
eral notions of independence, gave computational formu-
las for different cases of uncertainty models exemplified
by a simple engineering example and addressed visualiza-
tion methods and alternative approaches as well.
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