
7th International Symposium on Imprecise Probability: Theories and Applications, Innsbruck, Austria, 2011

Modelling uncertainties in limit state functions

Thomas Fetz

Institut für Grundlagen der Bauingenieurwissenschaften

Arbeitsbereich Technische Mathematik

Universität Innsbruck, Austria

Thomas.Fetz@uibk.ac.at

Abstract

In this paper uncertainties in limit state functions g as aris-

ing in engineering problems are modelled by adding addi-

tional parameters and by introducing parameterized prob-

ability density functions which describe the uncertainties

of these new additional parameters and of the basic vari-

ables of g. This will lead to a function p f (a,b) for the
probability of failure depending on parameters a and b

corresponding to the two parameterized density functions.

Further the parameters a and b are assumed to be uncer-

tain. Using intervals, sets or random sets to model their

uncertainty results in upper probabilities p f of failure. In

this context we also discuss different notions of indepen-

dence such as strong independence, epistemic irrelevance

and random set independence and present a simple engi-

neering example.

Keywords. Probability of failure, limit state functions,

parameterized probability measures, random sets, random
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1 Introduction

In reliability analysis the probability p f of failure of a sys-

tem is obtained by

p f =

∫

{x: g(x)≤0}

f X (x) dx (1)

where x= (x1, . . . ,xn) are the basic variables of the system
such as material properties and loads and where f X is a

probability density function describing the uncertainty of

the variables x. The function g is the limit state function of

the system telling us for which x the system fails (g(x)≤ 0)

or not (g(x) > 0), see also [14].

In the case of scarce information about the values of the

basic variables x and the behaviour of the system it may

be neither sufficient to model the uncertainty of the vari-

ables x by a single probability density f X nor to describe

the system’s reliability by a single deterministic limit state

function g. To overcome such difficulties, fuzzy sets [17],

random sets [3], credal sets [13] or sets of parameterized

probability measures [9] have been used to model the un-

certainty of the variables x, cf. also [6, 8, 10, 11]. Un-

certainties in the limit state function g have been modelled

using additional random variables [5], fuzzy sets, random

sets [12] or fuzzy probabilities [1, 15].

The aim of this paper is to develop a function

p f (a,b) =

∫∫

{(x,z): h(x,z)≤0}

f Zb (z) dz f Xa (x) dx (2)

depending on vectors of parameters a and b parameter-

izing the probability density functions f Xa and f Zb . These

density functions describe the uncertainty of the basic vari-

ables x and the additional parameters z of an extended limit

state function h. These additional variables z are used

to parameterize a familiy of limit state functions gz with

gz(x) = h(x,z).

In a next step we assume that the parameters a and b are

uncertain themselves modelling their uncertainty by inter-

vals, sets or random sets. This approach gives us the possi-

bility to describe the uncertainty of x and z by sets of prob-

ability measures generated by the density functions f Xa and

f Zb and their uncertain parameters a and b. The functions

f Xa and f Zb allow us to use more specific probability mea-

sures such as Gaussian distributions in contrast to the case

where the uncertainty of x and z is directly modelled by

sets or random sets. Such coarser models of uncertainty

are also encompassed simply by replacing f Xa and f Zb by

Dirac measures.

A simple engineering example with one uncertain basic

variable x exemplifies different cases and models of uncer-

tainty of a and b and the computation of the upper prob-

ability p f of failure by means of p f (a,b) with respect to
different notions of indepence between the limit state func-

tions and the basic variables.



2 Uncertain limit state functions

2.1 Limit state functions

In reliability theory a system and its corresponding contin-

uous limit state function

g : X ⊆ R
n → Y ⊆ R : x→ y = g(x) (3)

is given with output y∈ Y depending on a vector of n basic

variables x= (x1, . . . ,xn) ∈X⊆R
n where g(x)≤ 0 means

failure of the system. The probability p f of failure of the

system is then defined by

p f = P(g(X) ≤ 0) =

∫

X

χ(g(x) ≤ 0) f X (x) dx (4)

where f X is the joint probability density function of the

basic random variables X = (X1, . . . ,Xn) and where

χ(expression) =

{

1 expression true,

0 expression false.
(5)

The set Rf = {x∈X : g(x)≤ 0} is the failure region of the
system which we describe by the indicator function

q : X →{0,1} : x→ χ(g(x) ≤ 0). (6)

2.2 Parameterized limit state functions

We parameterize the limit state function g : X → Y by

means of a vector z = (z1, . . . ,zm) ∈ Z ⊆ R
m of additional

parameters using a function

h : X×Z→ Y : (x,z) → h(x,z) (7)

where again h(x,z) ≤ 0 means failure. A function

gz : X → Y : x→ gz(x) = h(x,z) (8)

is then one of the available limit state functions specified

by a parameter value z. When both the basic variables x

and the parameters z are uncertain, the probability p f of

failure is defined by

p f =

∫

X

∫

Z

χ(h(x,z) ≤ 0) f X ,Z(x,z) dz dx (9)

where f X ,Z :X×Z→ R is the joint density function of the

random variables X = (X1, . . . ,Xn) and Z = (Z1, . . . ,Zm).
The uncertainty of the parameters z is the uncertainty in

the choice of an appropriate limit state function gz.

2.3 Independence of the basic variables and the

parameters

In the following we always assume that the random vari-

ables X and Z are independent which has the following

meaning:

(a) If we learn the values of the basic variables x,

our knowledge about the parameters z and therefore

about the choice of the limit state functions gz does

not change.

(b) Learning the values of the parameters z and therefore

learning which limit state function gz to use has no

influence on our knowledge about the variables x.

Then the probability p f of failure is given by

p f =

∫

X

∫

Z

χ(h(x,z) ≤ 0) f Z(z) dz f X (x) dx (10)

with density functions f X and f Z for their corresponding

random variables X and Z. The inner integral is a function

q : X → [0,1] : x→

∫

Z

χ(h(x,z) ≤ 0) f Z(z) dz (11)

which is a generalization of q in Eq. (6). For q in Eq. (6)

only the function values 1 and 0 are admissible telling us

wether an x ∈ X is in the failure region Rf or not, but here

q describes an uncertain failure region similar to a mem-

bership function of a fuzzy set. The value q(x) is the prob-
ability that x belongs to the failure region Rf .

2.4 Sets of probability measures and notions of

independence

We use now sets MX and MZ of probability measures to

describe the uncertainty of the basic variables x and pa-

rameters z of the limit state function h. Since we want

to keep the assumption that the basic variables x and the

limit state functions gz are independent we have to com-

pute the upper probability of failure with respect to the

different notions of independence for sets of probability

measures [2, 6]. We consider here strong independence,

the weaker and asymmetric epistemic irrelevance and later

on in Sec. 3.3 random set independence.

Strong independence [2, 6, 16]: It is the most restrictive

definition of independence simply considering all possi-

ble product measures PX ⊗PZ for PX ∈ MX and PZ ∈ MZ .

Then the upper probability pSf of failure in case of strong

independence is obtained by

pSf = sup
{

(PX ⊗PZ)(Sf ) : PX ∈ MX , PZ ∈ MZ

}

= sup
PX∈MX

PZ∈MZ

∫

X

∫

Z

χ(h(x,z) ≤ 0) dPZ(z) dPX(x)

= sup
PX∈MX

q∈Q

∫

X

q(x) dPX(x) (12)



where Sf = {(x,z) : h(x,z) ≤ 0} and Q the set

Q =
{

q : X → [0,1] : (13)

q(x) =

∫

Z

χ(h(x,z) ≤ 0) dPZ(z), PZ ∈ MZ

}

of all functions q describing the uncertainty of the failure

region Rf as in Eq. (11).

Epistemic irrelevance [2, 4, 16]: We start with the above

formula for pSf , but move then supPZ∈MZ
inside the outer

integral:

pSf = sup
PX∈MX

PZ∈MZ

∫

X

∫

Z

χ(h(x,z) ≤ 0) dPZ(z) dPX(x)

≤ sup
PX∈MX

∫

X

sup
PZ∈MZ

∫

Z

χ(h(x,z) ≤ 0) dPZ(z) dPX(x)

= sup
PX∈MX

∫

X

q(x) dPX(x) =: p
X 6→Z
f (14)

with

q(x) = sup
PZ∈MZ

∫

Z

χ(h(x,z) ≤ 0) dPZ(z) = sup
q∈Q

q(x). (15)

The result is a formula for the upper probability p
X 6→Z
f in

case of epistemic irrelevance, because for each x we can

choose its own PZ ∈ MZ or more exactly a conditional

probability measure PZ( · |x) given x. The notation X 6→ Z

means that X is epistemically irrelevant to Z, see [4], or

in our case that the basic variables are epistemically irrel-

evant to the parameterized limit state functions gz. Epis-

temic irrelevance is an asymmetric notion of independence

meaning only what we have stated in (a) in Sec. 2.3, but

not necessarily the other way round as in (b). The set

MX 6→Z of all probability measures according to epistemic

irrelevance of X to Z is defined by

MX 6→Z =
{

P : P(E) =

∫

X

∫

Z

χ((x,z) ∈ E) dPZ(z |x) dPX(x),

PX ∈ MX , PZ( · |x) ∈ MZ

}

(16)

where E is an event. In Eq. (14) we write PZ(z) instead of
PZ(z |x) since it is clear that we use different probability
measures PZ and not only one because of the supPZ∈MZ

in

the formula.

When it is possible to assume epistemic irrelevance we

have the advantage that we can treat the uncertainty of the

basic variables and of the limit state functions completely

separately. We can compute q in advance and then using q

for different models of uncertainty of x.

The function q is the upper envelope of the set Q defined

in Eq. (13). If this upper envelope q is an element of Q we

have pSf = p
X 6→Z
f .

3 The probability of failure p f (a,b) with
uncertain parameters a and b

3.1 The function p f (a,b)

Let us now extend Equation (10) by adding parameters

a = (a1, . . . ,ana) ∈ R
na for the probability density func-

tion f X describing the uncertainty of the basic variables x

and parameters b = (b1, . . . ,bnb) ∈ R
nb for the density f Z

of the additional parameters z which leads to a function

p f (a,b) =
∫

X

∫

Z

χ(h(x,z) ≤ 0) f Zb (z) dz f Xa (x) dx .

(17)

This function p f (a,b) provides an interface for control-

ling the shape of the probability density functions used for

modelling the uncertainty of the basic variables x and the

parameters z. We also write p f (a,b; f
X
a , f Zb ) if it is neces-

sary to emphasize which density functions are used.

In the following the parameters a and b are assumed to

be uncertain; intervals, sets or random sets are used to de-

scribe their uncertainty. This and the approach with pa-

rameterized density functions f Xa and f Zb give us a conve-

nient way to generate the sets MX and MZ of probability

measures and the possibility to model the uncertainty of x

and z by means of more specific probability measures than

directly using sets or random sets for x and z. An example

for such a parameterized density f Xa or f Zb is the density

of a Gaussian distribution depending on expectation µ and

variance σ2. Then describing the uncertainty of µ and σ
by sets or random sets leads to sets MX or MZ of proba-

bility measures.

3.2 Uncertainty of the parameters a and bmodelled

by sets A and B

We describe the uncertainty of the parameter a ∈ R
na by a

set A⊆R
na and the uncertainty of b∈R

nb by a set B⊆R
nb

and show how the upper probability of failure is deter-

mined in case of strong independence or epistemic irrele-

vance. But first we have to generate the sets of probability

measures MX and MZ .

Generating MX and MZ:

MX =
{

P : P(E) =

∫

A

∫

X

χ(x ∈ E) f Xa (x) dx dPA(a),

PA ∈ M(A)
}

(18)

where M(A) = {P : P(A) = 1} is the set of all probability
measures living on the set A and where E is an event. The

set MZ is generated in an analogous way using f Zb and

M(B).

Strong independence: Eq. (12) together with Eq. (18)

leads to the following formula for the upper probability



pSf in case of strong independence:

pSf = sup
PX∈MX

PZ∈MZ

∫

X

∫

Z

χ(h(x,z) ≤ 0) dPZ(z) dPX(x)

= sup
PA∈M(A)

PB∈M(B)

∫

A

∫

X

∫

B

∫

Z

χ(h(x,z) ≤ 0) f Zb (z) dz ·

· dPB(b) f
X
a (x) dx dPA(a)

= sup
PA∈M(A)

PB∈M(B)

∫

A

∫

B

p f (a,b) dPB(b) dPA(a) (19)

= sup
a∈A
b∈B

∫

A

∫

B

p f (ξ ,η) dδb(η) dδa(ξ ) = sup
a∈A
b∈B

p f (a,b).

The Dirac measures δa and δb are extreme points in the

sets M(A) and M(B) of probability measures.

Epistemic irrelevance: Eq. (14) together with Eq. (18)

leads to the formula for the upper probability p
X 6→Z
f in case

of epistemic irrelevance:

p
X 6→Z
f = sup

PA∈M(A)

∫

A

∫

X

sup
PB∈M(B)

∫

B

∫

Z

χ(h(x,z) ≤ 0) f Zb (z) ·

· dz dPB(b) f
X
a (x) dx dPA(a)

= sup
a∈A

∫

X

sup
b∈B

∫

Z

χ(h(x,z) ≤ 0) f Zb (z) dz f Xa (x) dx

= sup
a∈A

∫

X

q(x) f Xa (x) dx (20)

with q(x) = supb∈B
∫

Z χ(h(x,z) ≤ 0) f Zb (z) dz , again using
that δa and δb are extreme points in M(A) and M(B).

3.3 Uncertainty of a and bmodelled by random sets

A and B

A random set as introduced by [3] is a family A of focal

sets Ai together withweights mA (Ai)which sum up to one.

Then the upper probability P(E) or plausibility PlA (E) of
an event E is given in the case of a finite random set with

focal sets A1, . . . ,A|A | by the formula

P(E) = PlA (E) = ∑
i:E∩Ai 6=∅

mA (Ai) =
|A |

∑
i=1

mA (Ai) sup
P∈M(Ai)

P(E)

(21)

where |A | denotes the number of focal sets where

M(Ai) = {P : P(Ai) = 1} (22)

is the set of all probability measures on the focal set Ai,

cf. [6]. The lower probability P(E) or belief BelA (E) is
defined by

P(E) = BelA (E) =∑
i:Ai⊆E

mA (Ai) =
|A |

∑
i=1

mA (Ai) inf
P∈M(Ai)

P(E).

(23)

First we have to generate the setsMX andMZ by means of

random sets A and B modelling the uncertainty of a and

b. Then we show how to determine the upper probabilities

of failure for strong independence, epistemic irrelevance

and random set independence.

Generating the sets MX and MZ:

MX =
{

P : P(E) =

∫

A

∫

X

χ(x ∈ E) f Xa (x) dx dPA(a),

PA ∈ M(A )
}

=
{

P : P(E) =
|A |

∑
i=1

mA (Ai) · (24)

·

∫

A

∫

X

χ(x ∈ E) f Xa (x) dx dPAi(a),

PAi ∈ M(Ai), i = 1, . . . ,n
}

where M(A ) is the set of all probability measures gen-
erated by a random set A , cf. [9]. A probability mea-

sure in M(A ) is a weighted sum of probability measures

PAi ∈ M(Ai) living on the focal sets Ai. The set MZ is

obtained in a similar way using f Zb and the random set B.

Strong independence: Eq. (12) together with Eq. (24)

leads to the upper probability

pSf = sup
PAr∈M(Ar),r=1,...,|A |

PBs∈M(Bs),s=1,...,|B|

|A |

∑
i=1

|B|

∑
j=1

mA (Ai)mB(B j) · (25)

·

∫

A

∫

B

p f (a,b) dPAi(a) dPB j
(b)

= sup
ar∈Ar,r=1,...,|A |

bs∈Bs,s=1,...,|B|

|A |

∑
i=1

|B|

∑
j=1

mA (Ai)mB(B j)p f (ai,b j)

in case of strong independence replacing the probability

measures PAi and PB j
by Dirac measures δai and δb j on

their corresponding focal sets Ai and B j similar to the sec-

tion before. A general proof that the upper probability can

be obtained by means of Dirac measures can be found in

[7].

Epistemic irrelevance: Eq. (14) together with Eq. (24) re-

sults in the upper probability p
X 6→Z
f in case of epistemic

irrelevance:

(26)p
X 6→Z
f =

|A |

∑
i=1

mA (Ai) sup
PA∈M(Ai)

∫

A

∫

X

|B|

∑
j=1

mB(B j)·

· sup
PB∈M(B j)

∫

B

∫

Z

χ(h(x,z) ≤ 0) f Zb (z) ·

· dz dPB(b) f
X
a (x) dx dPA(a)

=
|A |

∑
i=1

mA (Ai) sup
a∈Ai

∫

X

|B|

∑
j=1

mB(B j) ·

· sup
b∈B j

∫

Z

χ(h(x,z) ≤ 0) f Zb (z) dz f Xa (x) dx .



The function q is given here by

q(x) =
|B|

∑
j=1

mB(B j) sup
b∈B j

∫

Z

χ(h(x,z) ≤ 0) f Zb (z) dz .

(27)

Random set independence: Let the uncertainty of a vari-

able a be modelled by a random set A with focal sets Ai

and weightsmA (Ai) and the uncertainty of a variable b by
a random set B with focal sets B j and weights mB(B j).
The joint random set, in the classical version assuming

random set independence, is defined as the family C of

all Cartesian products Ci j = Ai ×B j of focal sets Ai and

B j. The weights of these joint focal sets Ci j are given by

the product mC (Ci j) = mA (Ai)mB(B j) and the formula

for the joint plausibility measure Pl by

Pl(E) =
|A |

∑
i=1

|B|

∑
j=1

mA (Ai)mB(B j)χ(E ∩ (Ai×B j) 6= ∅)

(28)

=
|A |

∑
i=1

|B|

∑
j=1

mA (Ai)mB(B j) sup
P∈M(Ai×B j)

P(E)

with set M(Ai×B j) = {P : P(Ai×B j)=1}, cf. [2, 3, 6].
This set is the largest possible set of joint probability mea-

sures generated by the marginal sets M(Ai) and M(B j).
The key properties of random set independence are that

(i) there are no interactions between focal sets Ai and B j,

(ii) the focal sets Ai and B j are chosen in a stochastically

independent way;

(iii) the joint plausibility Pl(E) is obtained by solving

optimization problems supP∈M(Ai×B j)
P(E) on each

joint focal set Ai×B j separately and independently

of the other joint focal sets.

Our problem here is that density functions are involved

in the formulas and that we have to combine not only two

random sets A and B but also two density functions f Xa
and f Zb . So we have to generalize the formula for the joint

plausibility measure. One possibility is to replace the set

M(Ai×B j) by a set of joint probability measures gener-

ated by sets Mi
X and M

j
Z defined by

Mi
X =

{

P : P(E) =

∫

A

∫

E

f Xa (x) dx dPA(a), PA ∈ M(Ai)
}

,

(29)

M
j
Z =

{

P : P(E) =

∫

B

∫

E

f Zb (z) dz dPB(b), PB ∈ M(B j)
}

as the sets MX and MZ in Sec. 3.2. Now the question

arises how to combine Mi
X and M

j
Z . Since M(Ai ×B j)

is the largest possible set of joint probability measures

generated by M(Ai) and M(B j) an analogous approach

would be to use here the set of all possible joint proba-

bility measures generated by Mi
X and M

j
Z. But this means

to consider also all possible joint density functions with

marginals f Xa and f Zb which is not very attractive because

of the computational effort and because independence is

not taken into account on the level of the density functions.

Another approach is to combineMi
X and M

j
Z according to

strong independence or epistemic irrelevance as in Sec. 3.2

which means to replace supP∈M(Ai×B j)
P(E) in Eq. (28) by

the results of Eq. (19) or of Eq. (20):

For strong independence, locally for each pair of sets Mi
X

and M
j
Z , we get the upper probability

pRSf =
|A |

∑
i=1

|B|

∑
j=1

mA (Ai)mB(B j) sup
a∈Ai,b∈B j

p f (a,b) (30)

by means of Eq. (19), cf. also [9]. We denote this upper

probability by a superscript “RS” where “R” means ran-

dom set independence and “S” indicates that the sets Mi
X

and M
j
Z corresponding to Ai × B j are combined accord-

ing to strong independence. The difference to the “global”

version of strong independence in Eq. (25) is that here the

“sup” is inside instead of outside the sums. So it is clear

that we have the ordering pSf ≤ pRSf .

Epistemic irrelevance, locally for each pair of setsMi
X and

M
j
Z, leads to

p
R,X 6→Z
f =

|A |

∑
i=1

|B|

∑
j=1

mA (Ai)mB(B j) sup
a∈Ai

∫

X

q j(x) f
X
a (x)dx

(31)

q j(x) = sup
b∈B j

∫

Z

χ(h(x,z) ≤ 0) f Zb (z) dz , (32)

cf. Eq. (20). We use here the superscript “R,X 6→Z” instead

of “RS” to denote the upper probability.

Summarizing the orderings of all upper probabilities we

have pSf ≤ p
X 6→Z
f ≤ p

R,X 6→Z
f and pSf ≤ pRSf ≤ p

R,X 6→Z
f .

We note that Dirac measures δa and δb instead of arbi-

trary density functions f Xa and f Zb leads to the classical

joint plausibility measure: For Dirac measures we always

have Mi
X = M(Ai), M

j
Z = M(B j). Further the resulting

upper probabilities for M(Ai × B j) as in Eq. (28) or for

sets of probability measures generated by M(Ai), M(B j)
according to strong independence or epistemic irrelevance

coincides since Dirac measures δa⊗δb, a ∈ Ai, b ∈ B j are

extreme points in all these three sets. This means that we

have pRf := pRSf = p
R,X 6→Z
f .

4 Alternative approaches and views

LetY|x = h(x,Z) be the conditional random variable for the

uncertain output of the parameterized limit state function

h given a value of the basic variables x, Z the random vari-

able corresponding to the parameters z, fY |x : Y ⊆ R → R

the probability density ofY|x and F
Y |x : Y→ [0,1] the prob-

ability distribution function. Then q :X→ [0,1] describing
the uncertainty of the failure region is defined here by

q(x) = FY |x(0) =

0
∫

−∞

fY |x(y) dy (33)

since y≤ 0 means failure.



On the one hand the functions fY |x, FY |x and q (or F
Y |x

and q if sets of probability measures are used, see below)

can be used to visualize the uncertainties in the limit state

function. On the other hand the uncertainties in the limit

state function can be specified providing these functions.

Especially describing the uncertainty in the failure region

by means of the function q in case of epistemic irrele-

vance opens the possibility to start also with fuzzy failure

regions. Note that there may be a conceptual but not a for-

mal difference between q and a membership function of a

fuzzy set. To specify the limit state function g in its uncer-

tain format instead of introducing additional parameters

was also suggested in [12].

We show now how the two approaches are connected for

the case that h is given by y = h(x,z) = g(x) + z which

means to add something uncertain to a deterministic limit

state function g. Substituting z= y−g(x) in Eq. (17) leads
to

p f (a,b) =

∫

X

∫

Z

χ(g(x)+ z≤ 0) f Zb (z) dz f Xa (x) dx

=

∫

X

∫

Y

χ(y≤ 0) f Zb (y−g(x)) dy f Xa (x) dx

=

∫

X

0
∫

−∞

f
Y |x
(g(x),b)

(y) dy f Xa (x) dx

=
∫

X

F
Y |x
(g(x),b)

(0) f Xa (x) dx (34)

with f
Y |x
(g(x),b)

(y) = f Zb (y− g(x)). The density f
Y |x
(g(x),b)

de-

scribes the uncertainty of the output of the limit state func-

tion and it is the same density function as f Zb , but moved

from 0 to g(x). This is indicated by the additional param-

eter g(x) of the probability density f
Y |x
(g(x),b)

depending now

on parameters which are not constant on X. Modelling the

uncertainty of parameter b by a set B we get an example

for a function

q(x) = sup
b∈B

∫

Z

χ(h(x,z) ≤ 0) f Zb (z) dz (35)

= sup
b∈B

F
Y |x
(g(x),b)

(0) =: F
Y |x

(0)

using both approaches. The function F
Y |x

is the upper dis-

tribution function of Y|x. In an analogous way we obtain

the lower bound

q(x) = inf
b∈B

∫

Z

χ(h(x,z) ≤ 0) f Zb (z) dz (36)

= inf
b∈B

F
Y |x
(g(x),b)

(0) =: FY |x(0).

It is the lower probability of failure given x ∈ X.

5 Numerical example

5.1 Problem statement

As a simple numerical example we consider a beam of

length 3m supported on both ends and additionally bed-

ded on a spring, cf. Fig. 1. The values of the beam rigidity

EI = 1 kNm2 and of the load f (ξ ) = 100 kN/m are de-

terministic, but the value of the spring constant x (in our

notation for the basic variables) is assumed to be uncertain.

The deterministic limit state function g is given as1

g(x) = Myield − max
ξ∈[0,3]

|M(ξ ,x)| (37)

= Myield −
qL2

4
max

(

(1− c(x))2

2
,c(x)−

1

2

)

with c(x) = 5x/(384EI/L3 + 8x), see Fig. 1. M(ξ ,x) is
the bending moment at ξ ∈ [0,3] on the beam depending

on the spring constant x andMyield = 21 kNm is the elastic

limit moment of the beam for both positive and negative

moments.

spring constant x

g
(x

)

15 20 25 30 35 40 45
−2

0

2

Figure 1: Beam bedded on a spring and deterministic limit

state function g.

5.2 Modelling the uncertainty of spring constant x

The uncertainty of the spring constant x ([kN/m]) is mod-

elled either by an interval A, by a random set A or by a

Gaussian distribution. In the following we present what

we will use for the basic variable x in the examples in the

next section.

Interval A modelling the uncertainty of x:

We will use the interval A = [a,a] = [20,30]kN/m.

Random set A modelling the uncertainty of x:

The random set A is given by the focal sets A1 = [17,30],
A2 = [23,31], A3 = [27,32.5] and weights mA (A1) = 0.2,
mA (A2) = 0.3 and mA (A3) = 0.5.

1Thanks to one of the reviewers for providing an explicit formula.



Probability distribution modelling the uncertainty of the

basic variable x:

We assume that x is Gaussian distributed with parameters

µ = 34 and σ2 = 1.

6 Cases and examples

In this section we present examples and special cases with

respect to the different notions of independence.

6.1 Sets of parameterized limit state functions

Let B be a set and

G = {gz : gz(x) = h(x,z), z ∈ B} (38)

the family of limit state functions parameterized by z ∈
B. Further let the function g be the lower envelope of G

defined by g(x) = infgz∈G gz(x) and g the upper envelope.

In this case we have to set f Zb := δz and b := z in Eqs. (19)

and (20) which leads to

pSf = sup
a∈A
z∈B

p f (x,z; f
X
a ,δz) (39)

= sup
a∈A
z∈B

∫

X

∫

Z

χ(h(x,η) ≤ 0)δz(η) dη f Xa (x) dx

= sup
a∈A
z∈B

∫

X

χ(gz(x) ≤ 0) f Xa (x) dx

for strong independence and to q and the upper probability

for epistemic irrelevance:

q(x) = sup
z∈B

∫

Z

χ(h(x,η) ≤ 0)δz(η) dη (40)

= sup
z∈B

χ(gz(x) ≤ 0) = χ(g(x) ≤ 0),

p
X 6→Z
f = sup

a∈A

∫

X

q(x) f Xa (x)dx = sup
a∈A

∫

X

χ(g(x) ≤ 0) f Xa (x)dx .

(41)

As an example we use h(x,z) = g(x+z) with z ∈ B= [0,2]
moving g to the left and the limit state function g defined in

the previous section. In Fig. 2 the set G, the functions q, q

and the upper and lower probability distribution functions

F
Y |x

and FY |x at x = 20 are depicted, see also Sec. 4.

Uncertainty of x modelled by an interval A:

Here we have to set f Xa := δx and a := x. In this case the

results for strong independence and epistemic irrelevance

coincide:

pSf = sup
x∈A
z∈B

p f (x,z;δx,δz) = sup
x∈A
z∈B

∫

X

χ(h(ξ ,z) ≤ 0)δx(ξ )dξ

= sup
x∈A
z∈B

χ(gz(x) ≤ 0) = sup
x∈A

χ(g(x) ≤ 0), (42)

p
X 6→Z
f = sup

x∈A

∫

X

q(ξ )δx(ξ ) dξ = sup
x∈A

q(x) (43)

= sup
x∈A

χ(g(x) ≤ 0)

because only one single x ∈ A is used at the same time in

the formulas.

We obtain the upper probabilities for our example by

means of

pSf = p
X 6→Z
f = sup

x∈A
χ(g(x) ≤ 0) = χ(g(A)∩ (−∞,0] 6= ∅)

(44)

where g(A) =
[

min
x∈A

g(x),max
x∈A

g(x)
]

= [g(A),g(A)] is the

image of A under a function g. For the computation of

χ(g(A)∩ (−∞,0] 6= ∅) it is sufficient to know the lower

bound g(A) of the image g(A):

χ(g(A)∩ (−∞,0] 6= ∅) = χ(g(A) ≤ 0). (45)

Since in our example all gz and g are a concave functions

we have g(A) = min(g(a),g(a)) = 0.2763 for the interval

A = [a,a] = [20,30] and therefore the upper probability of

failure pSf = p
X 6→Z
f = χ(0.2763≤ 0) = 0.
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)

g
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at x = 20

F
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FY |x
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Figure 2: Set G of limit state functions gz, lower envelope

g; q(x) = FY |x(0), q(x) = F
Y |x

(0), focal sets of random set

A (gray bars); FY |x and F
Y |x

at x = 20.

Uncertainty of x modelled by a random set A :

First we do some preliminary work replacing in Eqs. (25),

(26), (30) and (31) the density functions by Dirac mea-

sures:

pSf = sup
xr∈Ar,r=1,...,|A |

zs∈Bs,s=1,...,|B|

|A |

∑
i=1

|B|

∑
j=1

mA (Ai)mB(B j)p f (xi,z j)

(46)



p
X 6→Z
f =

|A |

∑
i=1

mA (Ai) sup
x∈Ai

∫

X

|B|

∑
j=1

mB(B j) · (47)

· sup
z∈B j

∫

Z

χ(h(ξ ,η) ≤ 0)δz(η) dη δx(ξ ) dξ

=
|A |

∑
i=1

mA (Ai) sup
x∈Ai

|B|

∑
j=1

mB(B j) sup
z∈B j

χ(h(x,z) ≤ 0)

=
|A |

∑
i=1

mA (Ai) sup
x∈Ai

q(x)

q(x) =
|B|

∑
j=1

mB(B j) sup
z∈B j

χ(h(x,z) ≤ 0), (48)

pRSf = p
R,X 6→Z
f =

|A |

∑
i=1

|B|

∑
j=1

mA (Ai)mB(B j) sup
x∈Ai
z∈B j

p f (x,z)

(49)

where p f (x,z) = χ(h(x,z) ≤ 0) and where pRSf = p
R,X 6→Z
f

coincides for Dirac measures as already mentioned. While

these equations are needed in the next section we further

use here that we have only one set B with weight 1 which

leads to the following simplified versions:

pSf = sup
xr∈Ar,r=1,...,|A |

z∈B

|A |

∑
i=1

mA (Ai)p f (xi,z), (50)

p
X 6→Z
f =

|A |

∑
i=1

mA (Ai) sup
x∈Ai

sup
z∈B

χ(h(x,z) ≤ 0), (51)

pRSf = p
R,X 6→Z
f =

|A |

∑
i=1

mA (Ai) sup
x∈Ai
z∈B

p f (x,z) (52)

where p
X 6→Z
f = p

R,X 6→Z
f because p f (x,z) = χ(h(x,z) ≤ 0).

The difference between pSf and p
X 6→Z
f is that there is a sin-

gle z used for all xr together in case of strong independence

while for epistemic irrelevance z can be chosen for each xr
separately. The numerical results are obtained by

pSf = sup
z∈B

|A |

∑
i=1

mA (Ai) sup
x∈Ai

χ(gz(x) ≤ 0) (53)

= sup
z∈B

PlA (gz(x) ≤ 0) = 0.5

and

p
X 6→Z
f =

|A |

∑
i=1

mA (Ai) sup
x∈Ai

χ(g(x) ≤ 0) (54)

= PlA (g(x) ≤ 0) = 0.2 ·1+0.3 ·0+0.5 ·1= 0.7,

cf. Eqs. (50), (51).

We have always pSf = p
X 6→Z
f if g∈G. This holds in the case

where h(x,z) = g(x)+ z, z ∈ B= [b,b] g(x) = g(x)+b and

g(x) = g(x)+b.

6.2 Random sets of parameterized limit state

functions

Modelling the uncertainty of the limit state function:

For modelling the uncertainty of the parameter z we use

a random set B given by the following focal sets B j and

weights mB(B j):

B1 = [−0.9,1.3], mB(B1) = 0.1,

B2 = [−0.6,0.9], mB(B2) = 0.3,

B3 = [−0.4,0.6], mB(B3) = 0.4,

B4 = [−0.2,0.4], mB(B4) = 0.2.

In the view of Sec. 4 we define a random set G of limit

state functions by the focal sets G j = {gz : z ∈ B j} and

weightsmG (G j) =mB(B j). At a point x∈Xwe have then

a random set G (x) with focal sets G j(x) = {g(x) : g ∈G j}
and the same weights, which describes the output of the

uncertain limit state function.

The function q is obtained by

q(x) = F
Y |x

(0) =
|B|

∑
j=1

mB(B j)χ(G j(x)∩(−∞,0] 6= ∅)

= PlG (x)((−∞,0]) (55)

which is the plausibility measure of (−∞,0] for the ran-
dom set G (x) at x. The lower bound q is the belief measure
at x (cf. Fig. 3):

q(x) = FY |x(0) =
|B|

∑
j=1

mB(B j)χ(G j(x) ⊆ (−∞,0])

= BelG (x)((−∞,0]). (56)
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Figure 3: Random set G , lower envelopes g j; q(x) =

FY |x(0) and q(x) = F
Y |x

(0), focal sets of random set A

(gray bars); FY |x and F
Y |x

at x = 20.

Uncertainty of x modelled by a random set A :

We consider now the special case where h(x,z) is given by
gz(x) = h(x,z) = g(x)+ z resulting in the uncertain limit

state function depicted in Fig. 3.



Then it holds for the lower envelopes g j of the focal sets

G j that g
j ∈G j. It is clear that we can reduce the focal sets

G j to their lower envelopes which leads to a discrete set of

limit state functions eqipped with a probability distribu-

tion induced by the weights of the focal sets G j. But then

there is only one single probability distribution and there-

fore no possibility of choice which leads to pSf = p
X 6→Z
f .

Further we have pSf = pRSf because of the ordering of the

four lower envelopes (g1 ≤ g2 ≤ g3 ≤ g4, see Fig. 3).

In the following the upper probabilities pRSf = p
R,X 6→Z
f and

p
X 6→Z
f are computed: Since in our example the results co-

incide for all notions of independence we have the possi-

bility to choose between two methods for the upper prob-

ability of failure where either discontinuous or continuous

optimization problems involved: For the upper probabil-

ity p
X 6→Z
f in case of epistemic irrelevance we have to solve

|A | discontinuous (q is discontinuous) optimization prob-
lems

p
X 6→Z
f =

|A |

∑
i=1

mA (Ai) sup
x∈Ai

q(x) (57)

=
|A |

∑
i=1

mA (Ai) sup
x∈Ai

|B|

∑
j=1

mB(B j)χ(g j(x) ≤ 0)

= 0.2 ·1.0+0.3 ·0.4+0.5 ·1.0= 0.82

and for the upper probability in case of random set inde-

pendence |A | · |B| continuous one (g is continuous):

pRSf = p
R,X 6→Z
f = ∑

i, j

mA (Ai)mB(B j)sup
x∈Ai
z∈B j

p f (x,z) (58)

=
|B|

∑
j=1

mB(B j)
|A |

∑
i=1

mA (Ai)χ(g j(Ai) ≤ 0)

=
|B|

∑
j=1

mB(B j)PlA (g j(x) ≤ 0)

= 0.1 ·1.0+0.3 ·1.0+0.4 ·0.7+0.2 ·0.7= 0.82.

6.3 Random limit state functions

We have again h(x,z) = g(x)+z and model the uncertainty

of the parameter z by a Gaussian distribution (density f Zb )

with parameters b = (µ ,σ).

Let us start with deterministic parameters, say b= (0,0.5),

which leads to pSf = p
X 6→Z
f . Using the notation of Sec. 4 we

have Y|x = g(x) + Z with random variable Z ∼ N(µ ,σ2)

and conditional random variable Y|x ∼ N(g(x) + µ ,σ2)
given the basic variable x. The function q is obtained by

q(x) =

∫

Z

χ(g(x)+ z≤ 0) f Z(0,0.5)(z) dz = F
Y |x
(g(x),0.5)

(0)

(59)

where FY |x is the probability distribution function of Y|x,

cf. Sec. 4 and Fig. 4.
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Figure 4: Uncertain limit state function g(x)+ z where the

uncertainty of z is described by a Gaussian distribution

with µ = 0 and σ = 0.5; q(x) = F
Y |x
(g(x),0.5)(0), focal sets

of random set A ; F
Y |x
(g(x),0.5) at x = 20.

Uncertainty of x modelled by an interval A = [20,30]:
We obtain

pSf = p
X 6→Z
f = sup

x∈A
p f (x,b;δx, f

Z
b ) = sup

x∈A
q(x) = 0.1222

(60)

using Eqs. (19) and (20).

Uncertainty of x modelled by a random set: We get

pSf = p
R,X 6→Z
f = pRSf = p

X 6→Z
f =

|A |

∑
i=1

mA (Ai) sup
x∈Ai

q(x) (61)

= 0.2 ·0.6604+0.3 ·0.1576+0.5 ·0.3682= 0.3635

for the random set A given in Sec. 5.2 using very simpli-

fied versions of Eqs. (26), (30) and (31).

Uncertainty of x modelled by a single probability distribu-

tion: For a Gaussian distribution (density f Xa ) with deter-

ministic parameters a = (µ ,σ) = (34,1) we get the result

p f ((34,1),(0,0.5), f
X
a , f Zb ) = (62)

=

∫

X

∫

Z

χ(g(x)+ z≤ 0) f Z(0,0.5)(z) dz f
X
(34,1)(x) dx

=

∫

X

q(x) f X(34,1)(x) dx = 0.5976.

Uncertainty of b modelled by a set B:

Let the set B for the parameters b in f Zb given by

[µ ,µ ]× [σ ,σ ] = [−0.3,0.3]× [0.2,0.6].

The function q and the corresponding lower bound q are

obtained here by

q(x) = F
Y |x

(0) =







F
Y |x
(g(x)+µ,σ)

(0) if g(x)+ µ > 0,

F
Y |x
(g(x)+µ,σ)

(0) if g(x)+ µ ≤ 0

(63)



and

q(x) = FY |x(0) =







F
Y |x
(g(x)+µ,σ)

(0) if g(x)+ µ > 0,

F
Y |x
(g(x)+µ,σ)

(0) if g(x)+ µ ≤ 0.

(64)

In Fig. 5 the densities f
Y |x
(g(x)+µ,σ)

and f
Y |x
(g(x)+µ,σ)

resulting

in q are depicted as well as the functions q, q and the upper

and lower distribution functions F
Y |x

and FY |x at x = 20.

The numerical results for uncertain x as above (set A, ran-

dom set A , probability distribution) can be obtained in

case of epistemic irrelevance by simply replacing q by q

in the Eqs. (60), (61) and (62). The results for p
X 6→Z
f are

0.3192 for the set A, 0.6817 for the random set A and

0.9387 for the Gaussian distribution.
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Figure 5: Uncertain limit state function g(x)+ z where the

uncertainty of z is modelled by a set of Gaussian distribu-

tions.

Conclusion

To model uncertainties in limit state functions g we ex-

tended g depending on basic variables x to functions h by

adding additional parameters z and introduced a function

p f (a,b) for the probability of failure. This function pro-
vides an interface for controlling the parameters a and b of

the probability density functions f Xa and f Zb used for mod-

elling the uncertainty of the basic variables x and the new

additional parameters z. In a next step the two parameters

a and bwere assumed to be uncertain using sets or random

sets to model their uncertainty resulting in sets of proabil-

ity measures for x and z. In this context we discussed sev-

eral notions of independence, gave computational formu-

las for different cases of uncertainty models exemplified

by a simple engineering example and addressed visualiza-

tion methods and alternative approaches as well.
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