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Abstract

After a brief historical overview over various ap-
proaches to the foundations of statistics, the very gen-
eral, simple and basic concept of (potential) surprises
is introduced, which may be subjective or objective
and goes beyond previous approaches by I.J. Good
and by the author. The surprises are conditional
on the background knowledge or belief of the person
experiencing it; the updating of the so-called back-
ground, and the merging or, if not possible, the con-
trasting of different backgrounds by two or more per-
sons (otherwise they talk past each other) are very
important operations in practice. A number of ex-
amples from real life, in complement to two previous,
more qualitative papers, are given.

Keywords. Foundations of statistics, historical con-
cepts, (potential) surprises, background knowledge or
belief, combining of backgrounds, updating of back-
grounds, merging or contrasting of backgrounds, prac-
tical application of mathematical models, real life ex-
amples.

1 Introduction and overview

Over the centuries, there have been various differ-
ent approaches towards the fundamental concepts of
statistics.

One line of thought focusses on observed and hypo-
thetical frequencies of “random” events, especially —
usually under some symmetry assumptions — the ex-
pectations for games of chance. (I shall leave aside
the various philosophical meanings of “randomness”.)
After some previous isolated attempts, this led to the
work by Pascal ([33], cf. also [18, Ch. 8], and also [3,
Part 4, Ch. XVI, p. 387-388]) and Fermat (starting
1654), Huygens, de Moivre, Laplace, and later the
frequentist theories by von Mises, Neyman-Pearson
(cf., e.g., [31]), and Wald, among others. A basic

tool was the law of large numbers [5, Part 4.5] and its
later refinements, which in practice allowed to approx-
imately equate the observed percentage of successes
in a “long” sequence (whatever that means, cf. [22,
Part 5]) of random experiments with their theoretical
probability.

Besides a lot of mathematical work building upon the
basic assumptions, there is still a chance for new ideas
about this line of foundations, as shown by Cattaneo’s
[8, 9] improvement of Wald’s minimax principle.

A very different approach to the foundations of
stochastics, which apparently has not found much at-
tention, goes back to Jacob Bernoulli [5, Part 4]. Be-
sides continuing the work of Huygens (and discovering
the law of large numbers, his “theorema aurea”, as an
auxiliary tool for something very different), he tried to
develop a quantitative counterpart to the (then very
famous) dichotomic “Logique” by Arnauld and Nicole
[3]. His aim was to measure the degree of “probabil-
ity” in the old, qualitative sense of this word (cf. [7,
Ch. 2.8, 5.2, 5.3], also briefly [30, Ch. 2, espec. first
paragraph, and Ch. 4.3]). Apparently by a misunder-
standing of the eloges at the death of Bernoulli in the
year 1705, the term “probability” was then used also
for games of chance (cf. [7, Ch. 6.4.2]). (It is inter-
esting to observe that both the terms “probability”
and “statistics” (cf. [35, pp. 2f and 8f]) originally had
a very different meaning.) Bernoulli proposed in a
normative way in words (not in formulas) 9 “axioms”
or basic (self-evident) properties which the new prob-
ability ought to obey and which would exclude, for
example, both the Bayesian and the Neyman-Pearson
theory and would not even obey in general the rule
of additivity (cf. [7, Ch. 5.3.2]). But he still counted
cases, as is done in games of chance. Perhaps he hoped
to be able to derive “objective” results. Altogether,
his approach (left incomplete because of his death)
is a bold, fascinating and singular but perhaps shaky
edifice; it seems not clear to me whether it can be
worked out to a fully functioning system.



Another approach has become highly influential,
namely the approach by Bayes [4]. Contrary to com-
mon belief, Bayes was basically a frequentist; only in
his famous Scholium did he leave some open ques-
tions between the lines (which may be even the rea-
son for not publishing his paper during his lifetime)
which led to the later “Bayesian” interpretation (cf.
[23, Ch. 1.3]). But cf. also the critical remarks by
Boole [6].

Variants of the “Bayesian” approach were used by
Laplace, Jeffreys (both normative or “logical” in dif-
ferent ways) and de Finetti (subjectivistic). Espe-
cially de Finetti [11] was a very sharp, radical, philo-
sophically deep and fascinating thinker, building a
pure and clean theory (although he did also applica-
tions). But if his theory is taken literally, I find it in
its last consequence solipsistic, without any relation
to anything like a “real world” — which for him does
not exist - or to any fellow scientist. (I only know from
L.J. Savage, one of his main pupils, that Savage was
sometimes pragmatic in applications; moreover, his
(the latter’s) pupil D. Ellsberg showed with his para-
dox that some basic assumptions of Neo-Bayesians do
not work in practice.)

All Bayesians (including “logical” or “objective”
Bayesians) consider only epistemic probabilities (re-
ferring to our knowledge or belief about Nature, not
about the (principally unknown) state of Nature itself.
(Empirical Bayesians use frequentist methods.) On
the other hand, all (traditional) frequentists consider
only (usually unknown) aleatory probabilities in Na-
ture, without any reference to what we know or may
know (the few cases with known or strongly believed
probability models excepted). Perhaps the first one to
build a formal bridge between aleatory and epistemic
probabilities was R.A. Fisher [15] with his fiducial ar-
gument. Unfortunately, he later made a mistake in its
interpretation, but this mistake can be corrected, and
Fisher’s (corrected) fiducial probabilities just turn out
to be a very special case of a general theory, using up-
per and lower probabilities [21, 23, 24, 26, 27].

It seems still unbelievable to many mathematical
statisticians that one can derive known epistemic
probabilities from unknown aleatory probabilities;
but this is correctly done by most intelligent users of
statistics who have not given up their own intuition in
favor of either the Neyman-Pearson or the Bayesian
theory (which, to be sure, are correct as far as they
go, but in my eyes do not cover all the needs of good
applied statistics, cf. [21, Ch. 4, p. 130], [23, 1.3], [24,
Ch. 1.1]). And it has been done long ago, also at the
early time of Fisher, cf., e.g., Student [38] or Pear-
son & Wishart [34]. Even though Fisher seemed only
intuitively and not rationally clear about it, his con-

cept of confidence intervals was clearly epistemic (and
hence allowing a correct “aposteriori” interpretation),
while that of Neyman was clearly aleatory, explaining
Fisher’s original doubt and later his conviction that
despite all superficial formal similarities the two con-
cepts are indeed different, referring to two different
probability spaces.

In recent times, there are a number of approaches
to statistics in a very broad sense using something
like upper and lower probabilities, instead of strictly
additive probabilities, as is only too well known at
ISTPTA conferences (cf., e.g., [14, 37, 39, 40]; cf. also
the ISTPTA conferences). Also some other statisti-
cians, although claiming to be Bayesians, occasion-
ally or inconspicuously use upper and lower probabil-
ities, notably Dempster [12, 13] and Good (cf., e.g.,
[17]). There are a number of different concepts defined
and many results developed. Also one of my lines of
work [21, 23, 24] which centrally uses bets (like the
Bayesians), but introduces also one-sided bets (thus
leading beyond Bayesians) and uses also upper and
lower fiducial probabilities, bridging the gap between
aleatory and epistemic probabilities, belongs to this
body of research.

A main goal of the present paper is to present several
new concepts, with the help of practical examples,
which ought to be able to describe the inference pro-
cess on a higher level (cf. also [28, 29]). Although in
my opinion inductive reasoning will be done mostly in
a qualitative or semi-quantitative framework (using a
discrete ordinal scale) as in the previous papers, an at-
tempt is made specifically in this paper to allow also
the introduction of a quantitative theory, still leaving
a lot of freedom for the precise choices in detail.

There is a concept which looks so simple and at the
same time so basic that it seems surprising that it is
not more popular in statistical theories: the concept
of potential surprises, or of surprises, for short. It can
be used as a generic, rather encompassing term; in
special situations, it can also be defined as, for exam-
ple, minus the logarithm of a probability, then giving
it a quantitative interpretation. This interpretation
is of course inherent in information theory, though
it is not normally given a special name. I.J. Good
([16], but not [17]), in the spirit of pure mathematics,
has defined a whole mathematical class of surprises.
A related definition of surprise is independently given
by Hampel [21, Ch. 5]; it turned out that it differs
from what Good (orally) considered his most impor-
tant special case just by an additive constant. But
surprises in my present theory can be given any sub-
jective (numerical) interpretation (as is the case with
beliefs, subjective probabilities, etc.). This concept,
which has been neglected so far, is qualitatively (and



semi-quantitatively) investigated in Hampel [28, 29],
with a number of practical examples. Both papers are
in close connection with the present paper. It is my
belief that (like elsewhere in stochastics) the precise
numbers don’t matter so much as the more qualita-
tive features. (This is shown in the examples of the
two previous papers.)

However, some people may want a general quantita-
tive theory, and for this purpose the present paper is
written. Yet, to avoid misunderstandings, this paper
is basically philosophical and is derived from practi-
cal experience of everyday life (including experience
in science). It is not derived from some system of
axioms. Personally (and perhaps in an oldfashioned
way), I do not start with axioms (not even intuitive
looking ones as did Jacob Bernoulli), but rather I
think axioms should be the crown at the end of the
development of a body of knowledge. Later, there
were historical reasons for the Bourbaki style in pure
mathematics (trying to derive everything quickly on
the highest and most abstract level); but I find this
even dangerous, as the connections with the intuitive
sources, including the nonmathematical sources, eas-
ily tend to get lost. As I try to derive all concepts
from practical experience, and as this paper is work
in progress (with some open questions, e.g. at the end
of Ch. 4.2), I shall not try to present an axiomatic de-
velopment of surprise. (It may even be argued that
the problems Jacob Bernoulli had with his approach -
see above - may partly be due to premature axioma-
tization - even though, or perhaps because, he partly
relied on the Logique of Port-Royal, cf. [7, Ch. 5.3.2
and 5.2.2.4.].)

This paper contains several examples for the use of
the new concepts; for more examples, see the other
two papers [28, 29]. One example could even be con-
tinued: while the Arctic Warbler (Phylloscopus bo-
realis) in Poland and South China had exactly the
same song [29, Ch. 6.5], to my big surprise the same
species in Japan had a very different song. It turned
out that in Japan breeds a different subspecies (Ph.
b. xanthodryas), and it is presently being investigated
whether it ought to be separated as a new species from
the nominate form Ph. b. borealis.

As stressed already in the previous two papers, the
surprises are conditional on the assumed background
belief or available background knowledge (both in
their intuitive senses), both formally called back-
ground for short; and updating of the background,
when new information becomes available, is a very
important part of the inference or learning process.

The structure of the background is described more
fully in [29] and the corresponding poster. Briefly,

it consists of all our knowledge, beliefs, conditional
or hypothetical beliefs, etc.; but more importantly, it
exists in layers, and normally we use only the upper-
most layer, containing our most plausible (or likely, or
“normal”) world view; only when we get a (complete
or almost) contradiction with it by some new infor-
mation (an infinite or close to infinite surprise), we
abandon the uppermost layer and fully switch to the
next one [29, Sec. 4]. This is (normally) a qualitative
change of the background, not just a belief revision
(cf., e.g., the article on Belief revision in Wikipedia
(05/02/2011)) which slightly modifies the old belief
system by means of some logical operations, or in-
formation fusion (information integration) or such an
operation. It is not a deductive operation, but an
inductive jump (cf. the examples); the old theory is
false and not just modified, but replaced by something
new, created by inductive thinking from the deeper,
more hidden layers of our background.

(It might be argued that by enough logical opera-
tions one can change the background also to some-
thing qualitatively new; but this is not what I expe-
rience in the real world examples that came to my
mind. I noted already [29, end of Sec. 1] that in the
about 20 pages of [1] T could not find a single real
life example, while they abound in my papers. To be
sure, there is a place for deductive-logical operations;
but I suggest that the creative inductive thinking pro-
cess which generates genuine new knowledge has been
badly neglected in research.)

Another important part of the inference process is the
merging, or, if this is not possible, the contrasting of
the backgrounds of two or more different persons (cf.
Ch. 2.3).

As already briefly mentioned above, surprises in my
approach are completely compatible with belief the-
ory, Bayesian theory, and so on. They may be seen as
a kind of superstructure over the old theories. Aslong
as the surprises (in whatever reasonable way they are
measured) are in an intermediate or low range, noth-
ing essential changes. But if they are equal or close
to infinity, then the background has to be changed. —

A word or two on terminology: It seems there are too
few words in our language for all the different con-
cepts that have been defined. The editors kindly drew
my attention to [36] who used not only the term “sur-
prise”, but even “potential surprise” (loc. cit., Part IT,
espec. Ch. IX). There is much overlap and in part(!) a
very similar intuition; moreover, style and basic philo-
sophical attitude are quite similar. But I am mainly
interested in inference, and Shackle in decisions, espe-
cially in economics; his formal definitions are different
from mine (for example, by always demanding also a



surprise of zero in any disjunction); but most impor-
tantly, I could not find the change of background in
case of (as he calls it) maximum surprise, which is so
central in my approach. He also seems to avoid “...or
any other...” which for me opens the door to the rad-
ical change of background. Some of his argumenta-
tion (against traditional probability theory) now may
seem outdated, especially at an ISIPTA conference,
and he also has run into problems with his attempt
at an axiomatization (cf. above); but overall I find his
thinking and arguing quite inspiring, although there
is only partly an overlap in our approaches. (At least,
the use of the same term does still seem bearable, as
long as one is conscious of the differences.)

Another author who introduced the term “surprise” is
Neumaier [32]. Again, he just tries to modify the old
background in view of contradictions, not abandoning
it, by finding an optimal compromise (with an “army
of computer slaves” in the fictive story of the king
on p. 22), minimizing the total surprise. (This may
be appropriate if the surprise is so moderate that the
background must only be slightly modified, not aban-
doned entirely.) And again, Neumaier finds much ba-
sic intuition in common with Shackle, but many for-
mal differences. —

Our paper starts with basic definitions, properties and
examples, which are not only mathematical since the
application of the theory needs also close connections
with the nonmathematical world (cf. [22]). Then the
case of two or more different background assumptions
is discussed, the connection with cautious surprises
and successful bets is explained, and the problem of
two (or more) persons with different backgrounds is
brought into view. The updating of the background
information is shown with a complex example, and an-
other complex example asks among other points what
to do if an event is totally unexpected. A practical
example on how to concentrate incomplete knowledge
in a fairly effective way concludes the paper.

2 Basic concepts

The following subsections introduce some basic defi-
nitions, properties and examples.

2.1 Basic set-up

Consider one person, say, Ted, with his background
knowledge and collection of beliefs B, and a class of
uncertain (future or unknown) events E which are of
interest to Ted.

Let A be an event in F, and define the nonnegative
number s = s(A|B) to be the surprise of Ted, given
his background B, when A turns out to be true; with

s = 0 meaning no surprise at all; s = oo means Ted
considers A impossible; and s “close to co” means Ted
considers A “practically impossible”.

More precisely, we have to distinguish

(i) the hypothetical surprise of Ted when he imagines
that A shall happen or (unknown to him) has hap-
pened (the potential surprise in the strict sense, cf.
also [36]);

(ii) the reaction of Ted when (perhaps in the future)
he is reliably told that A has happened (or is for sure
going to happen); and

(iii) Ted’s reaction when he observes A himself.
(There is not much difference between (ii) and (iii) ex-
cept the additional reliability by observing A oneself;
on the other hand, Ted can also err himself.) Situa-
tion (i) requires that Ted thinks of the possibility that
A may happen.

There may be possible events which Ted does not even
think of. In such a case, Ted’s surprise under (ii) or
(iii) may still be small if he notes he just has forgotten
a rather likely possibility; the surprise shall be very
large, if on hindsight he considers the event A possi-
ble though highly unlikely; the surprise may be even
infinite if A is not compatible with the assumed back-
ground B. In this case, Ted has to change his back-
ground belief B (one of the most fruitful sources of
qualitatively new knowledge), or else he has to change
his interpretation of the observation A (e.g., by find-
ing an error in the observation).

In general, we shall change the background, going to
the next layer (see above), not only when s is infi-
nite, but also when s is “close to infinity”. This is
in analogy with what is also called Cournot’s prin-
ciple: that in the applications of probability theory,
we consider an event with probability “close to one”
as “practically certain” or (formerly) “morally cer-
tain”. The boundary may depend on circumstances;
Bernoulli gives as an example 999/1000 [7, p. 230],
while Cournot [10, Ch. IV, 48] requires the difference
to one to be “infinitesimally small” for an event to
be “physically certain”. No matter in what way the
surprise is defined, I find the change of background
as described the most important application of the
concept of surprise.

(A logician might ask what is Ted’s surprise by A if he
has an “empty” background, e.g. if he wakes up from a
coma and has lost all memory and all thinking ability.
Then all his surprises are zero, because everything is
fully possible. As soon as Ted starts thinking again,
one has to be very careful in sorting out what he is
able to think and learn again.)



2.2 Some basic properties of surprises

As mentioned above, a surprise s is a real number be-
tween zero and infinity, depending on the background
knowledge or belief B of a person (here called Ted)
and on the (perhaps fictive) occurrence of an event A.

It may be fully subjective, or it may be determined by
objective circumstances, yielding an intersubjectively
determined number (i.e., the same one for every per-
son with the same background B). In either case,
it is an epistemic quantity, that is, it refers to the
knowledge or belief of a person, and not to some “ob-
jective” property of Nature (unless the two happen to
coincide).

Example 1: Let F be a probability space with a known
probability P = P(A) for every (measurable) event A
in F. Then we may define s(A|B = F') = —log P(A).
In this case, s is a very natural “objective” measure
for our surprise in case A happens. Some mathemat-
ical properties of s follow in this case, for example,
its wellknown additivity. In particular, the expected
value of s may be termed the entropy of F'. And this
entropy may be called the minimum possible average
surprise of Ted. If Ted entertains another surprise
function s’, his average surprise, averaged over all pos-
sible events A with their probabilities, will be at least
as large.

2.3 Two background assumptions

Now consider the situation that Ted entertains two
different background belief systems B and C, perhaps
being in doubt which one he should adopt. This may
be the case in a learning situation, or in a conflict
between different beliefs. If he would be not surprised
if either told reliably that B is true, or else that C'
is true, his (minimum) surprise when observing A is

s(A|B or C) = min(s(A|B), s(A]|C)).

A more refined and more realistic situation is that
Ted has different (“apriori”) surprises b(B) and ¢(C)
if told that B or C, resp., is true. (The functions
or numbers b and ¢ measure the surprise if Ted is
told that a specific belief system is true. They may
be different numbers, therefore the change of nota-
tion from s. In the following we require an addi-
tivity property of surprises, as in Example 1.) We
call the three surprises s, b, and ¢ unrelated if no
occurrence of A or B or C (or a subset of these) af-
fects any other surprise. Then Ted’s minimum sur-
prise s(A|(B with b) or (C with ¢)) = min(s(A|B) +
b(B), s(A|C)+c(C)). Naturally, this can also be done
with more than two beliefs (cf. 2.4).

The observation A in turn influences Ted’s (“aposte-
riori”) surprises about B and C, given A: b(B|A) =

b(B) + s(A|B), and correspondingly for ¢(C|A). (The
notation is a bit stretched, as A is not a belief sys-
tem, but the meaning should be clear.) Naturally,
this is close to Bayes’ theorem, except that we do not
introduce and do not need the renormalization.

The main purpose of computing b(B|A) and compar-
ing it with ¢(C|A) is that if b(B|A) is infinite, B
cannot be used anymore as a background belief (ex-
cept in case of an error in A); but also if b(B|A) is
“much” larger than ¢(C|A), B is “practically impossi-
ble”. This is in accordance with common sense think-
ing (except in case of a very strong prejudice in favor
of B which, however, would also imply a very small
b(B)), but it is at variance with the usual procedure
in Bayes theory, belief function theory and similar ap-
proaches, where even tiny probabilities or beliefs are
being renormalized (as long as they are not exactly
7€ero).

If a model assumption or another basic assumption
B is clearly shown by the data to be wrong, we have
to change the model, rather than computing some fic-
tive numbers which have no relation to reality. This,
naturally, holds also for the Neyman-Pearson theory.
As C. Daniel, a highly recognized applied statistician,
once said: “We are told not to change the horses in
the middle of the stream ...”, but to continue along
his line: If the old horses drowned already, we better
use new ones. Cf. also [22].

2.4 More than two background assumptions

This subsection is an obvious generalization of 2.3.
But if every B is not a whole belief system, but just
a single parameter, Example 2 can be interpreted as
a general inference method (related to minimum en-
tropy methods).

Consider now a (finite or infinite) class of background
beliefs or assumptions Bj, Ba,... with (prior) sur-
prises, by = b(By),ba = b(B2),.... In practice, we
start looking only at the smallest b;’s; however, we
have to be able to consider also larger b;’s, once an
observation A is made, because now the (near) small-
est s(A|B;) + b(B;) will be of the greatest interest.
And the B;’s with “very large” s(A|B;) + b(B;) will
be deemed “practically impossible”.

Example 2: Let F' be a measurable space with a set of
parameters B; and a collection of potential probabili-
ties P(A|B;) for all measurable events A and the cor-
responding surprises s(A|B;) = —log P(A|B;). Let
b; = b(B;) the collection of apriori surprises if the
B; were declared to be true. The b; may be a con-
stant, or may be determined by a (subjective or ob-
jective) Bayesian apriori distribution, a likelihood, a
belief function, or some other measure of the apriori



“plausibility” of the B;. Given an observation A, the
aposteriori surprise of B;|A is s; := s(A|B;) + b(B;).
All “small” values of s; are entirely plausible, and
we may just for convenience pick out the minimum
or some similar quantity (perhaps depending also on
“neighboring” B;’s, doing some local “smoothing”).
But all “too large” s; are ruled out as “practically
impossible” (until perhaps — rarely — a very surpris-
ing future observation As forces us to either scrutinize
A and A more closely or to revolutionize the order
of the B;, digging out hypothetical models not yet
considered in practice so far).

For a qualitative and semi-quantitative description of
such a set-up, with many practical examples, cf. [28]
and [29].

3 Additional aspects

3.1 Cautious surprises and successful bets

This subsection is for the readers who either know the
two concepts mentioned, or who may want to study
the pertaining literature, and want to see its relation
to the present paper. (Obviously, there is no space
here to repeat the old theories.) The last three para-
graphs contain sketches of related possible future re-
search problems.

In [21] a function m between 0 and 1 (a kind of upper
probability describing our lack of surprise about some
event A) and two definitions are introduced, namely
“cautious surprises” and “successful bets”. Now we
can put s = — logm, and the property of cautious sur-
prises is nothing but the minimization of the average
surprise mentioned above.

When we linearize the logarithm of m, we obtain a lin-
ear theory with close relationships to other statistical
concepts, especially bets, and the concept of success-
ful bets has been worked out to some extent especially
in [23, 24]. A very special case are the (in)famous
fiducial probabilities [21, 26, 27].

Somewhat related may be the linearization of approx-
imately linear theories, such as Choquet capacities in
a local neighborhood (described, e.g., by the gross-
error model or the total-variation model).

Another aspect may be the robustification of the po-
tential surprises, by putting an upper bound on them.
The need for this may be only moderate, since m logm
is bounded on the unit interval; but the two factors
may not be always so closely related.

The approximate or exact requirements of cautious
surprises or successful bets may also help in the ro-
bustification of the Bayes theory, as in the “weighted

Bayes’ theorem” [25, Ch. 5.3], in which basically ran-
dom weights are treated like fixed weights.

3.2 Ted and Fred: different background
information

We now leave Ted considered in isolation and discuss
informally some situations where more than one per-
son is involved.

An important practical problem is that two (or more)
persons — say, Ted and Fred — may have different
background knowledge or beliefs, while some common
ground, resulting in common or at least similar sur-
prises, should be achieved, otherwise no general opin-
ion, including no general scientific theory, would be
possible.

A first step is to openly discuss the different back-
ground opinions of Ted and Fred, until (hopefully)
some common agreement can be found.

But a frequent obstacle is that many opinions, or even
many reasons for such opinions, are not conscious for
either Ted or Fred. They may be subconscious preju-
dices, which perhaps only by some kind of hard detec-
tive work can be elucidated, for example, by auxiliary
information given by Ted or Fred, or by their family,
educational, sociological or religious background.

Even if the basic reasons for such disagreements can
be brought out into the open, it may be that on cer-
tain points no agreement is possible. Then Ted and
Fred still can “agree to disagree”. An example is the
technical staff for water, electricity etc. in West and
East Berlin during the height of the Cold War, who
had to cooperate in the divided city, and they did so
productively, agreeing on the political disagreements,
but making sure the city would still function.

4 Examples and further aspects

The last chapter provides some more examples of the
rich variety of real-life situations which can be de-
scribed within the framework given. I don’t know all
the literature, but I am not aware of a theory which,
for example, does describe the zigzag in the exam-
ple of 4.1 in an adequate way. Perhaps it is because
most theories are only deductive, while in real life we
need (also) inductive thinking. The formal framework
may still have to be worked out further and refined,
as the example in 4.2 shows. On the other hand, the
example in 4.3 should be a relatively easy one also
for other theories, as it involves no change of back-
ground; moreover, I found it decidedly useful; it may
and should already exist somewhere, in some form or
other.



The last paragraph offers many opportunities for fur-
ther work. But at any rate, this paper, together with
the two previous ones, provides a broad conceptual
framework (if one wishes, even a quantitative one, as
shown specifically in this paper) for describing how
we can deal with incomplete knowledge and how we
can learn in real life.

4.1 TUpdating of the background information

Updating information clearly is an important opera-
tion, which can change potential surprises consider-
ably.

Let us assume Ted is going to visit Fred by train fairly
late in the evening. Fred expects to meet Ted at the
closest major station, perhaps a few minutes late, but
hardly more than half an hour late; any much longer
delay would be a big surprise. But then Ted calls that
he is stuck somewhere, because of a serious accident
on the route, and has no information on how long the
delay will be. It is now conceivable that he cannot
even reach the last local train. Later, he cites the
experience of a fellow traveller that with this type of
accident, the delay is usually around 2 hours. This
would mean still reaching the last local train. Even-
tually, after the train moves again, two official delays
become available, which both are somewhat below 2
hours, but differ by 20 minutes. The true arrival time
is in between.

The consecutive updating of the background informa-
tion changes the potential surprises, first to much less
“knowledge”, then to a more realistic expectation (al-
though, as so often in life, not all discrepancies are
cleared up).

4.2 Unexpected surprises

As mentioned above, some potential surprises are so
unlikely to Ted that he does not even think of them.
Sometimes he would consider them more plausible if
his background information were updated by some ad-
ditional information. Let us consider an example with
various forms of surprises.

A married couple want to celebrate their wedding
anniversary, with the husband secretly organizing it.
First, they arrive at a high-level hotel, a fairly big sur-
prise for the wife, but feasible. Then they get their
room which turns out to be a (“the”) historical room:
almost everything like a hundred years ago: a big un-
expected surprise for both of them. An excursion by
horse-drawn carriage was only a moderate surprise for
the wife, since such carriages exist in the area. But
an excursion by public boat on the nearby lake was
an “impossible” surprise for her, since she knew that

such boats didn’t exist; she needed the updating of
her knowledge that in very recent years public boat
connections had been introduced. But then the hus-
band leads his wife, well-dressed and at a fixed time,
not to the ordinary hotel elevator, but to the remote
staff elevator; they go down and get lost in the sub-
terranean floors; he finds the way again, and they
walk amidst the rooms of the staff and end up in a
little chapel where a priest performs a small private
ceremony for their wedding anniversary. — It seems
hard to formalize such surprises and the lack of any
knowledge on the way there.

4.3 Informative short knowledge
descriptions

Let us close with an example from field ornithology.
There are many books on where to find which birds,
but some of them I find rather unsatisfactory, ei-
ther being not sufficiently informative, or not agree-
ing with my experience (or being even misleading).
However, I discovered one book which, to my own
surprise, I found very useful [2]: in its bird lists (each
for a larger area), the abundance of every species was
coded by just 3 symbols: ¢ (for common), no sym-
bol, or r (for rare). (To be more precise, there are
also symbols for the season (summer, winter, migra-
tion, or year around) and sometimes for the altitude
or other informative features.) Why are just these 3
symbols for abundance so satisfying, according to my
experience?

Clearly, r means rare: not impossible, but each ob-
servation would be a big (pleasant) surprise, unless
one knows and visits the restricted areas (if existing)
where the species is not so rare. But in general it
would be no surprise at all not to find the species,
even after a long search. — And ¢ means common:
the species would be no surprise at all, and with a
decently long search in the right habitat (and per-
haps time of day, weather, etc.), it would be a big
surprise not to find it. — No symbol means neither
¢ nor r; it would be neither a surprise to find the
species, nor a surprise not to find it. The species
may be sparsely distributed, or regional, or temporal
(e.g., during irregular invasions); a more detailed de-
scription of the “probability of encounter” (“Antreff-
Wahrscheinlichkeit”, cf. [19, 20, 22] would be too com-
plicated on limited space. But two out of three cate-
gories are very informative. — I think we can use this
set-up much more generally to distinguish the things
we are pretty sure to happen, the ones we are pretty
sure not to happen, and the ones we just don’t know.

The method can be easily generalized to situations
with more than two alternatives. We can describe pro-
files of potential surprises — and conditional surprises,



given various backgrounds — in very complicated sit-
uations. Surprises imply assumed partial knowledge
(that an event is not likely going to happen). Two
very special cases are deterministic knowledge (all
surprises infinite, except one being zero), and perfect
knowledge of a probability space (the sum of the neg-
ative antilogarithms of all surprises of disjoint events
being one), but obviously there are many more forms
of incomplete knowledge.
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