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Probabilistic evaluations are commonly conditional and partial
(our “mantra”)

=

Common probabilistic models are imprecise ! (SIPTA “keystone”)
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The present paper comes from the merging (hence it’s
(meta)matching ! ;-) ) of two our previous ISIPTA’s contributions:

• B. Vantaggi. The role of coherence for the integration of
different sources. ISIPTA’05 (Pittsburgh, USA):

• A. Capotorti, G. Regoli and F. Vattari. On the use of a new
discrepancy measure to correct incoherent assessments and to
aggregate conflicting opinions based on imprecise conditional
probabilities. ISIPTA’09 - Durham (UK).
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In particular...

• we deal with the managing of inconsistencies inside the
Statistical Matching (integration of sources) framework;

• when logical relations among the variables are present
incoherence can arise in the probability evaluations

• different methods can be used to remove such incoherences:

• maximize the “partial likelihood function” on the base of
observed data;

• least committal imprecise probability extensions;
• specific precise “distances” minimization.
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Coherent Extension

To adjust the initially incoherent assessment (E ,p) it is possible to
determine a coherent sub-assessment (G,p|G) with maximal
cardinality and coherently extend it to the rest F = E \ G by the
generalized Bayesian updating scheme obtaining an imprecise
sub-assessment

(F , [pF ,pF ]).

Note that inference on decision targets can be performed again
through the generalized Bayesian updating scheme but applied to
imprecise evaluations.

Whenever too vague, inference bounds can be eventually reduced
to coherent cores, i.e. total coherent subintervals with highest
degree of support.
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(Pseudo)distances among probability
distributions

Given two conditional assessments p = [p1, . . . , pn] and
q = [q1, . . . , qn] on the same set of conditional events
E = [E1|H1, . . . ,En|Hn], the most widely adopted divergencies
among them are:

1 L1(p,q) =
n∑

i=1

|qi − pi |;

2 L2(p,q) =
n∑

i=1

(qi − pi )
2;

3 KL(p,q) =
n∑

i=1

(qi ln(qi/pi )− qi + pi ).
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Our main tool

... but for partial conditional probability assessments p ∈ (0, 1)n on
E recently we tailored the following “discrepancy”

∆(p,α) =
∑

i |α(Hi )>0

α(Hi )

(
qi ln

qi
pi

+ (1− qi ) ln
(1− qi )

(1− pi )

)
,

where qα is an assessment on E induced by the probability mass
distribution α,

that now we specialize for Statistical Matching with a mixture of
discrepancies ∆mix(p, {αi}i )...
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Integration of sources in a coherent setting

(X1,Y1), ..., (XnA ,YnA) and (XnA+1,ZnA+1), ..., (XnA+nB ,ZnA+nB )
two random samples (with a finite range) related to two sources A
and B concerning the same population of interest, and drawn
according to the same sampling scheme, with

(X1,Y1), ..., (XnA ,YnA) and (XnA+1,ZnA+1), ..., (XnA+nB ,ZnA+nB )
exchangeable, as well as the sequence

X1, ...,XnA , XnA+1, ...,XnA+nB

We can elicit from the two files the relevant probability values:

Yj |i = PY |(X=xi )(Y = yj)Zk|i = PZ |(X=xi )(Z = zk) X i = PX (X = xi )



self-Intro About the paper Statistical Matching Example

Integration of sources in a coherent setting

(X1,Y1), ..., (XnA ,YnA) and (XnA+1,ZnA+1), ..., (XnA+nB ,ZnA+nB )
two random samples (with a finite range) related to two sources A
and B concerning the same population of interest, and drawn
according to the same sampling scheme, with

(X1,Y1), ..., (XnA ,YnA) and (XnA+1,ZnA+1), ..., (XnA+nB ,ZnA+nB )
exchangeable, as well as the sequence

X1, ...,XnA , XnA+1, ...,XnA+nB

We can elicit from the two files the relevant probability values:

Yj |i = PY |(X=xi )(Y = yj)Zk|i = PZ |(X=xi )(Z = zk) X i = PX (X = xi )



self-Intro About the paper Statistical Matching Example

Integration of sources in a coherent setting

(X1,Y1), ..., (XnA ,YnA) and (XnA+1,ZnA+1), ..., (XnA+nB ,ZnA+nB )
two random samples (with a finite range) related to two sources A
and B concerning the same population of interest, and drawn
according to the same sampling scheme, with

(X1,Y1), ..., (XnA ,YnA) and (XnA+1,ZnA+1), ..., (XnA+nB ,ZnA+nB )
exchangeable, as well as the sequence

X1, ...,XnA , XnA+1, ...,XnA+nB

We can elicit from the two files the relevant probability values:

Yj |i = PY |(X=xi )(Y = yj)Zk|i = PZ |(X=xi )(Z = zk) X i = PX (X = xi )



self-Intro About the paper Statistical Matching Example

Integration of sources in a coherent setting

(X1,Y1), ..., (XnA ,YnA) and (XnA+1,ZnA+1), ..., (XnA+nB ,ZnA+nB )
two random samples (with a finite range) related to two sources A
and B concerning the same population of interest, and drawn
according to the same sampling scheme, with

(X1,Y1), ..., (XnA ,YnA) and (XnA+1,ZnA+1), ..., (XnA+nB ,ZnA+nB )
exchangeable, as well as the sequence

X1, ...,XnA , XnA+1, ...,XnA+nB

We can elicit from the two files the relevant probability values:

Yj |i = PY |(X=xi )(Y = yj)Zk|i = PZ |(X=xi )(Z = zk) X i = PX (X = xi )



self-Intro About the paper Statistical Matching Example

... and the main problem

Given Yj |i ,Zk|i , X i , for any i , j , k , with (Yj |i , X i ) and (Zk|i , X i )
separately coherent and with some logical constraints among the
variables Y and Z , incoherence in the whole assessment

(E ,p) with
E =

{
(X = xi ), (Y = yj)|(X = xi ), (Z = zk)|(X = xi )

for any xi , yj , zk

}
,

p = {X i , Yj |i ,Zk|i}i ,j ,k .

can localize only in association to elements of E with the same
conditioning event (X = xi ).
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A mixture of discrepancies

Hence our discrepancy ∆(p,α) can be reformulated into

∆mix(p, {αi}i ) =
∑
i

X i

∑
j

(
qαi

j |i ln
qαi

j |i

Yj |i
+ (1− qαi

j |i ) ln
(1− qαi

j |i )

(1− Yj |i )

)
+

+
∑
k

(
qαi

k|i ln
qαi

k|i

Zk|i
+ (1− qαi

k|i ) ln
(1− qαi

k|i )

(1− Zk|i )

)]

where each distribution αi works just on the sample space spanned
by the conditional events {(Y = yj)|(X = xi ), (Z = zk)|(X = xi )},
it is constrained to fulfill the normalizing condition
αi (X = xi ) = X i , and generates the conditional probabilities

qαi

j |i =
αi (Y = yj)

αi (X = xi )
qαi

k|i =
αi (Z = zk)

αi (X = xi )
.
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Our results

We applied the three methodologies (likelihood maximization,
coherent extension and distances minimizations) to real data
representing a subset of employees extracted from a pilot survey of
the Italian Population and Household Census that induce an
incoherent initial assessment.
Three categorical variables have been analyzed: Age, Educational
Level and Professional Status.
And we obtained...

S1|A4 S2|A4 S3|A4 E1|A4 E2|A4 E3|A4 E4|A4 S3|E4
p 0.6667 0.1111 0.2222 0.6667 0 0.2000 0.1333 ∅
L1|F 0.2222 - 0.6667 0.6667 - - - [0,0.6285]

L1|A4 0.5266 0 0.4734 0.4734 0 0.2836 0.2431 [0,0.6234]

L2|A4 0.5333 0.0389 0.4278 0.4278 0.0389 0.3 0.2333 [0,0.6238]

KL|A4 0.4856 0.1179 0.3965 0.3965 0.1179 0.2914 0.1942 [0,0.6257]

∆mix 0.4985 0.0939 0.4077 0.4077 0.0939 0.2943 0.2042 [0,0.6252]
ML 0.4286 0.0714 0.5000 0.5000 0 0.3000 0.2000 [0,0.6254]

IPE\F [0 , 0.2222] - [0.6667 0.8889] - - - - [0,0.6386]

core [0.0017,0.6286]
IPE\{·|A4} [0 , 1] [0 , 1] [0 , 1] [0 , 1] [0 , 1] [0 , 1] [0 , 1] [0,0.6607]

core [0,0.6349]

... details at the poster ! but here we can say...
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Conclusion

• conditional events involved in incoherencies are those
conditioned to the age status A4,in particular, the minimal set
is F = {E1|A4,S1|A4,S3|A4};

• L1|F and IPE\F perform quite well: even though a drastic
change on the probability values, they induce quite reasonable
inference bounds;

• L1|A4 and ML give similar results and in particular they leave
to 0 the probability of E2|A4 since the absence of observations
in the original data;

• others “precise” adjustments have all quite similar behaviors;

• ∆mix has the advantage of automatically localize of the
scenarios where the adjustment can be performed;

• the wider imprecise correction IPE\{·|A4}, being the one with
less assumption requirement, surely performs worst.
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A final remark...
This research is financed by national ministry PRIN research
project ....
... but till now mainly influenced by government financial and
motivational destruction of public and free universities
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Rome-Perugia Axis...
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