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Mumber of MaxMal S0QUENCes (Sach backward stop i the backward lrward loop has a knoar
Complexty in the number of maxmal elements at that stage)

Empirical confirmation  In order 10 Gemonstrate hat cur AIGOYINM 1§ Ndeed qude eficent
wo lot It determine the maximal sequences for & rndom Gulpul Sequence of kgt 100. The
HMM we Use 10 detormine the maximal 56quUences i Qenarated by muing precise local
MOGels W & VCUOUS 08, USING & Mixture Cosicient ¢ FOL ¢ ~ 2% there are § maximal
S0quences and I takos 0.2 seconds 10 caloulale hem. If wo let ¢ row 10 3%, we got 764
Mmaximal sequences and these can be determined in 32 seconds. This demonstrates that the
complexity 18 ndeod knear in the number of SOAONS and that the aKOIM can efficiently
calculate The Maximal 50GUONces even 1or 10N OUPU SEUENCes
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State sequence prediction in imprecise hidden Markov models
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Interpretation of the graphical structure Our imprecse haden Markoy
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The EstiHMM algorithm
Computational complexity

Theoretical analysis We prove that the comgutational complasity s af wors! Quadratic in the
longth of the Markov chain. Cubsc in the number of states. and roughly speskung knear in the
Mumber of MaxMal S0QUENCes (Sach backward stop i the backward lrward loop has a knoar
Complexty in the number of maxmal elements at that stage)

Emper n order hat our aigorithm s indeed qude efcient
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HMM we Use 10 detormine the maximal 56quUences i Qenarated by muing precise local
MOGets W\ & VACUOUS ONe. USNg & Mixture Coscent ¢ FOr ¢ 2%, there are § maximal
sequences and I lakes 0.2 seconds 10 caloulate them. I we lef ¢ grow 10 %%, we got 764
maximal sequences and these can be determined i 32 seconds. This demonsirates that the
Complenity 18 indeod knear in the number of SOAEONS and Nt the AGONEm can efficiently
caliuiate The Masmal 5QuUOnces even K 10Ng UL SEqUENCes
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Interpretation of the graphical structure  Our imprecse haden Markoy
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ional complexity

Theorsticel analysis  We prove hat the computational complesily 18 af worst Quadratic in the
longth of the Markov chain. Gutsc in the number of states. and roughly speakung near in the
umber of maxmal S0QUEnces (6ach backward s16p in he backward lorward kop has  knoar
Complexty in the number of maxmal elements at that stage)

Empirical confirmation  In order 10 demonsirate that our MO Ihm s Ndesd quite efficient
wo lot It determine the maximal sequences for & rndom ulpul Sequence of kagih 100. The
IHMM we use 10 detormine the maxmal s0quences & generated by mung precise local
MOels WIh & VECUOUS NG, USING & MIxure CosMCnt ¢ FOI ¢ ~ 2%, there are 5 maximal
s0quences and It takes 0.2 seconds 1o calculale them. If we let ¢ grow 10 3%, we get 764
maximal sequences and these can be determined in 32 seconds. This demonsirates that the
Complenity 18 indeod knear in the number of SOAEONS and Nt the AGONEm can efficiently
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Principle of Optimality Using the recursive expressions  Backward-forward recursion
for the joint model, we can derive an appropriate version ~ We let k run backward from
of Bellman’s Principle of Optimality: n to 1. For each k and every
X1 € 231, we determine
opt (Zk|xx—1,0k,) With our alter-
which in turn implies that native optimality criterion. We
opt ( Zienl|Xk—1,0k:n) © U Xk D Opt ( i+ 1:n| ¥k Okt-1:m) - p.rove it wo c.an g0 tils ol
Py ciently by executing the forward

running procedure demonstrated
in the figure below. The se-
quences of are the
elements of .In
(Refre—1) < 0 (Feen)- this binary example, 2°= {0, 1}.

Xkn € Opl(zl':nlxk—lv(’k:n) = fk41:m € opt (‘%;+I:rllfkaok+lzll) 5

An alternative criterion If we limit ourselves to the pos-
sible sequences selected by the Principle of Optimality, we
can reformulate the optimality criterion as follows:

Xkn € opt('%:n[xk—l,ok:n) = a;?pl
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The EstiHMM algorithm

Computational complexity

Theoretical analysis We prove that the computational complexity is at worst quadratic in the
length of the Markov chain, cubic in the number of states, and roughly speaking linear in the
number of maximal sequences (each backward step in the backward-forward loop has a linear
complexity in the number of maximal elements at that stage).

Empirical confirmation In order to demonstrate that our algorithm is indeed quite efficient,
we let it determine the maximal sequences for a random output sequence of length 100. The
iHMM we use to determine the maximal sequences is generated by mixing precise local
models with a vacuous one, using a mixture coefficient €. For € = 2%, there are 5 maximal
sequences and it takes 0.2 seconds to calculate them. If we let & grow to 5%, we get 764
maximal sequences and these can be determined in 32 seconds. This demonstrates that the
complexity is indeed linear in the number of solutions and that the algorithm can efficiently
calculate the maximal sequences even for long output sequences.
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Principle of Optimality Using the recursive expressions  Backward-forward recursion
for the joint model, we can derive an appropriate version ~ We let k run backward from
of Bellman’s Principle of Optimality: n to 1. For each k and every
X1 € 231, we determine
opt (Zk|xx—1,0k,) With our alter-
native optimality criterion. We
prove that we can do this effi-
ciently by executing the forward
running procedure demonstrated
in the figure below. The se-
quences of are the
elements of .In
(Refre—1) < 0 (Feen)- this binary example, 2°= {0, 1}.

x‘k:n € Opt(ﬂl‘:nlxk~lv0k:n) = XAk+I:n € OPl (ﬂ;«'+|:rl|-fka0k+lill) 5
which in turn implies that
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An alternative criterion If we limit ourselves to the pos-
sible sequences selected by the Principle of Optimality, we
can reformulate the optimality criterion as follows:

a opt
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The EstiHMM algorithm

Computational complexity

Theoretical analysis We prove that the computational complexity is at worst quadratic in the
length of the Markov chain, cubic in the number of states, and roughly speaking linear in the
number of maximal sequences (each backward step in the backward-forward loop has a linear
complexity in the number of maximal elements at that stage).

Empirical confirmation In order to demonstrate that our algorithm is indeed quite efficient,
we let it determine the maximal sequences for a random output sequence of length 100. The
iHMM we use to determine the maximal sequences is generated by mixing precise local
models with a vacuous one, using a mixture coefficient €. For € = 2%, there are 5 maximal
sequences and it takes 0.2 seconds to calculate them. If we let & grow to 5%, we get 764
maximal sequences and these can be determined in 32 seconds. This demonstrates that the
complexity is indeed linear in the number of solutions and that the algorithm can efficiently
calculate the maximal sequences even for long output sequences.

EstiHMM: an efficient
algorithm to determine
the maximal sequences
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for the joint model, we can derive an appropriate version [{We let k run backward from E St I H M M L a n Effl c I e nt
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i S T in the figure below. The se-
sible sequences selected by the Principle of Optimality, we
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can reformulate the optimality criterion as follows:
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Ften € Opt ( ZkenlXk—1,00n) a;_""(fk|xk_.) < o (Reen)- this binary example, 2°= {0,1}.
|

x‘k:n € OPt(zl-:nqu,Ok:n) = j:k-H:n € OPl (‘%;«'+I:rllj'ka0k+lzll) 5

n

repeat for i from k to n until no: | . gk({"k}m’)iﬂl3'({”"}|’2")§"({'§"}|’?"") ® P ri n Ci p I e Of o pti m a I ity

A opt/ &
O (fei) 2 0" (Belvir) ? Can be calculated ef-

I I . .
max o (xn) d>_.|6 ficiently b¥ dynamical
Win€ Zicn programming.
Xhesi =Xk

©@ © ©

opt (gf/}\'+l:n|0-0k+l:n) 0 Q} @ @
O—0@ O O O0—0O—0O—~©0
TO—0O@— 0@ 00— 0O—/—~0

©
©,
©,

®_ opt('f&/k+l:n

|s0k+l:n)

The EstiHMM algorithm

Computational complexity

Theoretical analysis We prove that the computational complexity is at worst quadratic in the
length of the Markov chain, cubic in the number of states, and roughly speaking linear in the
number of maximal sequences (each backward step in the backward-forward loop has a linear
complexity in the number of maximal elements at that stage).

Empirical confirmation In order to demonstrate that our algorithm is indeed quite efficient,
we let it determine the maximal sequences for a random output sequence of length 100. The
iHMM we use to determine the maximal sequences is generated by mixing precise local
models with a vacuous one, using a mixture coefficient €. For € = 2%, there are 5 maximal
sequences and it takes 0.2 seconds to calculate them. If we let & grow to 5%, we get 764
maximal sequences and these can be determined in 32 seconds. This demonstrates that the
complexity is indeed linear in the number of solutions and that the algorithm can efficiently
calculate the maximal sequences even for long output sequences.
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for the joint model, we can derive an appropriate version [{We let k run backward from E St I H M M L a n Effl c I e nt
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The EstiHMM algorithm

Computational complexity

Theoretical analysis We prove that the computational complexity is at worst quadratic in the
length of the Markov chain, cubic in the number of states, and roughly speaking linear in the
number of maximal sequences (each backward step in the backward-forward loop has a linear
complexity in the number of maximal elements at that stage).

Empirical confirmation In order to demonstrate that our algorithm is indeed quite efficient,
we let it determine the maximal sequences for a random output sequence of length 100. The
iHMM we use to determine the maximal sequences is generated by mixing precise local
models with a vacuous one, using a mixture coefficient €. For € = 2%, there are 5 maximal
sequences and it takes 0.2 seconds to calculate them. If we let & grow to 5%, we get 764
maximal sequences and these can be determined in 32 seconds. This demonstrates that the
complexity is indeed linear in the number of solutions and that the algorithm can efficiently
calculate the maximal sequences even for long output sequences.
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for the joint model, we can derive an appropriate version [{We let k run backward from E St I H M M L a n Effl c I e nt
of Bellman’s Principle of Optimality: n to 1. For each k and every L]
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opt (Zk|xx—1,0k,) With our alter-

o o
(B N D opt (i tr o) prove that we can do this effi- t t t
Opt ( ZicalXk—1,040) C u_XA Opt( L 1:2| ¥k Ok +-1:n) ciently by executing the forward
An alternative criterion If we limit ourselves to the pos- r i procedure Semons feg °
i S T in the figure below. The se-
sible sequences selected by the Principle of Optimality, we
S o quences of are the
can reformulate the optimality criterion as follows:
elements of .In

Ken € Opt( Zken|Xk—1,0k0) & a;_’*"()?k|xk_.) < 0 (fken)- this binary example, 2°= {0, 1}.

Xkn € Opl(zi':nlxk—lv(’k:n) = fk41:m € opt (‘%1'4-‘1"'-2",0"4—'2") 5

n

comstorombiomuni ;| S [ SR e * Principle of optimality

AP (f) 2 07 (o) 2 Can be calculated ef-
(1)
O—O
|s0k+l:n)

ax Gl ‘ ficiently by dynamical
n€ L ” programming.
The EstiHMM algorithm

opt (%+l:n|0-0k+l:n)

®@ ©
e

@

_O—0O—©
@ ©;

©
©
=]
)
©

G}_ opt('fl;\’+l:n

Computational complexity

Theoretical analysis We prove that the computational complexity is at worst quadratic in the
length of the Markov chain, cubic in the number of states, and roughly speaking linear in the
number of maximal sequences (each backward step in the backward-forward loop has a linear
complexity in the number of maximal elements at that stage).

Empirical confirmation In order to demonstrate that our algorithm is indeed quite efficient,
we let it determine the maximal sequences for a random output sequence of length 100. The
iHMM we use to determine the maximal sequences is generated by mixing precise local
models with a vacuous one, using a mixture coefficient €. For € = 2%, there are 5 maximal
sequences and it takes 0.2 seconds to calculate them. If we let & grow to 5%, we get 764
maximal sequences and these can be determined in 32 seconds. This demonstrates that the
complexity is indeed linear in the number of solutions and that the algorithm can efficiently
calculate the maximal sequences even for long output sequences.
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for the joint model, we can derive an appropriate version ~ We let k run backward from
of Bellman’s Principle of Optimality: n to 1. For each k and every
X1 € 231, we determine
opt (Zk|xx—1,0k,) With our alter-
native optimality criterion. We
prove that we can do this effi-
ciently by executing the forward
running procedure demonstrated
in the figure below. The se-
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elements of .In
this binary example, .2"= {0, 1}.
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The EstiHMM algorithm

Computational complexity

Theoretical analysis We prove that the computational complexity is at worst quadratic in the
length of the Markov chain, cubic in the number of states, and roughly speaking linear in the
number of maximal sequences (each backward step in the backward-forward loop has a linear
complexity in the number of maximal elements at that stage).

Empirical confirmation In order to demonstrate that our algorithm is indeed quite efficient,
we let it determine the maximal sequences for a random output sequence of length 100. The
iHMM we use to determine the maximal sequences is generated by mixing precise local
models with a vacuous one, using a mixture coefficient €. For € = 2%, there are 5 maximal
sequences and it takes 0.2 seconds to calculate them. If we let & grow to 5%, we get 764
maximal sequences and these can be determined in 32 seconds. This demonstrates that the
complexity is indeed linear in the number of solutions and that the algorithm can efficiently
calculate the maximal sequences even for long output sequences.

EstiHMM: an efficient
algorithm to determine
the maximal sequences

* Principle of optimality
* Deriving an alternative
optimality criterion
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Principle of Optimality Using the recursive expressions  Backward-forward recursion
for the joint model, we can derive an appropriate version ~ We let k run backward from
of Bellman’s Principle of Optimality: n to 1. For each k and every
X1 € 231, we determine
opt (Zk|xx—1,0k,) With our alter-
native optimality criterion. We
prove that we can do this effi-
ciently by executing the forward
running procedure demonstrated
in the figure below. The se-
quences of are the
elements of .In
this binary example, .2"= {0, 1}.
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The EstiHMM algorithm
Computational complexity

Theoretical analysis We prove that the computational complexity is at worst quadratic in the
length of the Markov chain, cubic in the number of states, and roughly speaking linear in the
number of maximal sequences (each backward step in the backward-forward loop has a linear
complexity in the number of maximal elements at that stage).

Empirical confirmation In order to demonstrate that our algorithm is indeed quite efficient,
we let it determine the maximal sequences for a random output sequence of length 100. The
iHMM we use to determine the maximal sequences is generated by mixing precise local
models with a vacuous one, using a mixture coefficient €. For € = 2%, there are 5 maximal
sequences and it takes 0.2 seconds to calculate them. If we let & grow to 5%, we get 764
maximal sequences and these can be determined in 32 seconds. This demonstrates that the
complexity is indeed linear in the number of solutions and that the algorithm can efficiently
calculate the maximal sequences even for long output sequences.

EstiHMM: an efficient
algorithm to determine
the maximal sequences
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The EstiHMM algorithm

Computational complexity

Theoretical analysis We prove that the computational complexity is at worst quadratic in the
length of the Markov chain, cubic in the number of states, and roughly speaking linear in the
number of maximal sequences (each backward step in the backward-forward loop has a linear
complexity in the number of maximal elements at that stage).

Empirical confirmation In order to demonstrate that our algorithm is indeed quite efficient,
we let it determine the maximal sequences for a random output sequence of length 100. The
iHMM we use to determine the maximal sequences is generated by mixing precise local
models with a vacuous one, using a mixture coefficient €. For € = 2%, there are 5 maximal
sequences and it takes 0.2 seconds to calculate them. If we let & grow to 5%, we get 764
maximal sequences and these can be determined in 32 seconds. This demonstrates that the
complexity is indeed linear in the number of solutions and that the algorithm can efficiently
calculate the maximal sequences even for long output sequences.
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* A recursive approach



Principle of Optimality Using the recursive expressions
for the joint model, we can derive an appropriate version
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Computational complexity

Theoretical analysis We prove that the computational complexity is at worst quadratic in the
length of the Markov chain, cubic in the number of states, and roughly speaking linear in the
number of maximal sequences (each backward step in the backward-forward loop has a linear
complexity in the number of maximal elements at that stage).

Empirical confirmation In order to demonstrate that our algorithm is indeed quite efficient,
we let it determine the maximal sequences for a random output sequence of length 100. The
iHMM we use to determine the maximal sequences is generated by mixing precise local
models with a vacuous one, using a mixture coefficient €. For € = 2%, there are 5 maximal
sequences and it takes 0.2 seconds to calculate them. If we let € grow to 5%, we get 764
maximal sequences and these can be determined in 32 seconds. This demonstrates that the
complexity is indeed linear in the number of solutions and that the algorithm can efficiently
calculate the maximal sequences even for long output sequences.
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Principle of Optimality Using the recursive expressions =~ Backward-forward recursion
for the joint model, we can derive an appropriate version ~ We let k run backward from
of Bellman'’s Principle of Optimality: n to 1. For each k and every
X1 € 231, we determine
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The EstiHMM algorithm

Computational complexity

Theoretical analysis We prove that the computational complexity is at worst quadratic in the
length of the Markov chain, cubic in the number of states, and roughly speaking linear in the

number of maximal sequences (each backward step in the backward-forward loop has a linear
complexity in the number of maximal elements at that stage).

Empirical confirmation In order to demonstrate that our algorithm is indeed quite efficient,
we let it determine the maximal sequences for a random output sequence of length 100. The
iHMM we use to determine the maximal sequences is generated by mixing precise local
models with a vacuous one, using a mixture coefficient €. For € = 2%, there are 5 maximal
sequences and it takes 0.2 seconds to calculate them. If we let & grow to 5%, we get 764
maximal sequences and these can be determined in 32 seconds. This demonstrates that the
complexity is indeed linear in the number of solutions and that the algorithm can efficiently
calculate the maximal sequences even for long output sequences.
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Principle of Optimality Using the recursive expressions =~ Backward-forward recursion
for the joint model, we can derive an appropriate version ~ We let k run backward from
of Bellman'’s Principle of Optimality: n to 1. For each k and every
X1 € 231, we determine
opt (Zk|xx—1,0k,) With our alter-
native optimality criterion. We
prove that we can do this effi-
ciently by executing the forward
running procedure demonstrated
in the figure below. The se-
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The EstiHMM algorithm

Computational complexity

Theoretical analysis We prove that the computational complexity is at worst quadratic in the
length of the Markov chain, cubic in the number of states, and roughly speaking linear in the

number of maximal sequences (each backward step in the backward-forward loop has a linear
complexity in the number of maximal elements at that stage).

Empirical confirmation In order to demonstrate that our algorithm is indeed quite efficient,
we let it determine the maximal sequences for a random output sequence of length 100. The
iHMM we use to determine the maximal sequences is generated by mixing precise local
models with a vacuous one, using a mixture coefficient €. For € = 2%, there are 5 maximal
sequences and it takes 0.2 seconds to calculate them. If we let & grow to 5%, we get 764
maximal sequences and these can be determined in 32 seconds. This demonstrates that the
complexity is indeed linear in the number of solutions and that the algorithm can efficiently
calculate the maximal sequences even for long output sequences.
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We let k run backward from
n to 1. For each k and every
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Computational complexity

Theoretical analysis We prove that the computational complexity is at worst quadratic in the
length of the Markov chain, cubic in the number of states, and roughly speaking linear in the

number of maximal sequences (each backward step in the backward-forward loop has a linear

Empirical confirmation In order to demonstrate that our algorithm is indeed quite efficient,
we let it determine the maximal sequences for a random output sequence of length 100. The
iHMM we use to determine the maximal sequences is generated by mixing precise local
models with a vacuous one, using a mixture coefficient €. For € = 2%, there are 5 maximal

sequences and it takes 0.2 seconds to calculate them. If we let € grow to 5%, we get 764
maximal sequences and these can be determined in 32 seconds. This demonstrates that the
complexity is indeed linear in the number of solutions and that the algorithm can efficiently
calculate the maximal sequences even for long output sequences.
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