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Introduction

Let us suppose normalized BFs on finite frames.

conjuntive combination of BFs
conflicting belief masses (disjoint focal elements)

belief mass — @ (non-normalized conjunctive rule ... ©)
— relocation/redistribution among some ) = X C Q2
m@(0) ... weight of conflict between BFs (Shafer 76)

— simple examples, which do not support this interpretation
X
— m@g(0) ... really conflicting belief masses, related to conflict

IPMU’10 : my(0) — internal conflict of input BFs

— conflict between BFs
3 new approaches to conflicts were introduced there (ideas, motivations,
open problems) + distingushing: difference x conflict between BFs)

analyzing properties: possibility of decomposition Bel = Belg & Belg
non-conflicting and conflicting part of BF Bel

Existence and uniqueness of BFs Belg and Belg is studied here



Basic notions on belief functions

Exhaustive finite n-element frame of discernment Q2 = {w1,wo, ...wn},
all elements w; are mutually exclusive. unknown actual wgef2

Basic belief assignment (bba) m : P(2) — [0, 1], s.t. Y acom(A) =1
values ..... basic belief masses (bbm), if m(0) =0 ..... normalized bba
Belief function (BF) Bel : P(£2) — [0,1], Bel(A) = Yg+xcam(X),
Bel uniquely corresponds to bba m and vice-versa.

Plausibility function, Commonality function Pl, Q : P(2) — [0, 1],

Focal element ..... X C Q, such that m(X) > 0.
Bayesian Belief function (BBF): |X| =1 for m(X) > 0, U =0
U, ... Uniform BBF ... U,({w;}) =1 (~ uniform prob. distrib. on Q)

n

Dempster’s (conjunctive) rule of combination @:

(m1®m2)(A) = X xny=4 Km1(X)mo(Y) for A# 0, (m1©dm2)(0) =0,
where K = ﬁ, K= yry—gm1(X)m2(Y), ©: K=1, m({0)==r

the disjunctive rule ©, Yager’s rule ©, Dubois-Prade’s rule @,

indecisive (indifferent) BF: h(Bel) = Bel ® Up,=Uy, i.e., Pl({w;}) =const.
non-conflicting BF Bel: (Bel®Bel)(()) =0; conflicting BF otherwise

pignistic prob, BetP(w;); normalized plausib. of singletons (PI_P(m))(w;), ...



————

Dempster’s semigroup Qo = {wi,wo}
Dy = (Do, ®,0,0) (P.Hajek & J.J.Valdés 80's/90’s)

220 m o~ (a,b) = (m({w1}, m({wz})) as m({wy,w2}) =1 - (a+b),
d-pairs ... (a,b) : 0<a,b<1l,a+0b<1

Do ={(a,b)|0<a,b<1l,a+b<1} ... set of non-extremal d-pairs
Dempster’s rule @: (a,b) @ (¢,d) = (1 — d=2)d—0) ¢ (1=b)(1—d),
(for d-pairs)

1—(ad+bc) ’ 1—(ad-+bc)

1 =(0,1) .
extremal d-pairs:
1L =(0,1), T=(1,0)
VBF: 0 = (0,0)
. 0'=Us=(5,3)
s, 0'=(2,12)
h :h(a,b) = (a,b) ® 0’
— . _(a7 b) — (b7 CL)
f : f(&, b) — (aa b)@—(a, b)
N ] 0=(0,0) S T=(1,0)
G={(a,1—a)|0<a<1} ... Bayesian d-pairs
e -~ S = {(a,a)|0<a<i}

S> ={(0,a)|0<a<1}, S1 ={(a,0)|0<a<1}, ... simple d-pairs



Dempster’s semigroup (cont.)

1=(0.1)

G= (a,b) < (c,d) iff
o [h1(a,b) < hi(c,d)
s, DL or hl(a, b) = hl(C, d) and a S C],

< p N\ where h(a,b) = (h1(a,b), ho(a,b)),

/
0=(0.0) Si T=(1L0) thUS h]_(a,, b) — QE—;Eb' Dgo , Dgo

(i) The Dempster’s semigroup Dg with the relation < is an ordered
commutative (Abelian) semigroup with the neutral element O; 0’ is the
only non-zero idempotent of Dg.

(i) G = (G,®,—,0/,<) is an ordered Abelian group, isomorhpic to the
group of reals with the usual ordering. G=°% and G=9 ... its negative and pos. cones.
(iii) The sets S, 51,5, with the operation & and the ordering < form
ordered commutative semigroups with neutral element O, all are isomor-
phic to the positive cone of the additive group of reals.

(iv) his ordered homomorphism: (Dg,®, —,0,0" <) — (G, ®, —, 0, <);
h(Bel) =Bel ® 0'= PI-P(Bel), i.e., normalized plausibility probabilistic transf.

(v) f is homomorphism: (Dg,®, —,0,0") — (S,®, —,0); (not ordered).



Dempster’s semigroup (cont.)

1 L=(0,1)

Let us denote

h=1(z) = {w|h(w) = =}

o D5% N and similarly

D’ f~Ha) = {w| f(w) = z}.

Using the theorem, see (iv) and (v),
we can express @ as:

0=(0,0) N T=(1,0)

(:1;@ y) =h"H(h(x) @ h(y)) N FH(f(@) & f(v).

BFs on n-Element Frames of Discernment

We can represent a BF on any n-element frame €2,, by an enumeration
of its m values (bbms), i.e., by a (2"™=2)-tuple (a1, an,...,aon_»),
or as a (2%1)-tuple (a1, an,...,a>n_o; aon_1) When we want to explicitly

mention also the redundant value m(Q2) = aon_1 =1 — 27;2;]2 a;.

Unfortunately, no algebraic analysis of BFs on €2,, for n > 2 was presented till now.



Non-conflicting and conflicting parts of BFs on €2,

(b,a) = f(a,b)

(a,b) D
= f(ag,bo) @ f(s,s)

(ag,bo) @ (s,5) @ (bg,ap) @ (s,s)
(a,b) = (ag,bo) @ (s, s)
f(a,b) = f(ag,bg)Df(s,s)

f(aa b)7 f(a07 bO) :
= f(s,s)

= (s,5)

Idea of conflicting and
non-conflicting parts




Non-conflicting and conflicting parts of BFs on {25 (ont)

Proposition 2: Any belief function (a,b) € 25 is the result of Demp-
ster's combination of BF (ag,bg) € S1 US> and a BF (s,s) € S, such
that (ag, bg) has the same plausibility support as (a,b) does, and (s, s)
does not prefer any of the elements of £25. (Trivially, (s,s) = (0,0)® (s, s)
for (s,s)e S, and (ao,bo) = (ag,bo)®(0,0) for elements of S1, S2).

(ap, bg) € 51U52 ... no internal conflict ... non-conflicting part. There
is (ag, bg) = (4=7,0) for a > b and (ao,bo) = (0, =%) for a < b,

Lemma 1: (i) For any BFs (u,u), (v,v) on S, such that v < v, we can compute
their Dempster’s 'difference’ (z,x) such that

(u,u) ® (z,x) = (v,v), where (z,z) = (73 3u_|_uv 1 guff_uv)
(ii) For any BF (w,w) on S, we can compute its Dempster’s 'half’ (s,s) such that

(5.5) @ (5,5) = (w,w), where (s, s)=(2=VIZw2e? 1=/ w)(12u))

(iii) There is no Dempster’s 'difference’ on Dg in general.

Theorem 2: Any BF (a,b) on Q5 is Dempster’'s sum of its unique
non-conflicting part (ag,bg) € S1 US> and of its unique conflicting part
(s,s) € S, which does not prefer any element of Q,, i.e. bga,,b) =

_ b(l—a) 0 b(1-
(ap,bp) @ (s,s). It holds true that s T Batb—abra® = 1—atab 52 and

(a,b) = (¢ b,O) ® (s,s) for a > b and analogously for a < b.




Non-conflicting part of BFs on general finite frame <2,

Hypothesis 1: We can represent any BF Bel on n-element frame
of discernment €25, as Dempster's sum Bel = Belg @ Belg of non-
conflicting BF Belg and of indecisive conflicting BF Belg which has
no decisional support, i.e. which does not prefer any element of 2, to

the others. b

< Uy, Bel@Un> BBFs
A 4

@ Un

- Bel @ Bel

Bel

N Non-conflicting
Belo BFS

Schema of Hypothesis 1. Schema of decomposition of a BF

We would like to follow the idea from the case of two-element frames.
Unfortunately, there was not presented any algebraic description of BFs defined on

n-element frames till now.



Non-conflicting part of BFs on general frame €2,, (cont.)
An issue of homomorphism h is quite promissing:

Theorem 3: The mapping h(Bel) = Bel ® U, = Pl_P(Bel) is an
homomorphism of an algebra of BFs on an n-element frame of dis-
cernment with the binary operation of Dempster's sum @ and two
nulary operations (constants) O and U, to the algebra of BBFs on 2,
with binary operation @& and nulary operation U,.

Idea of procedure for computing unique consonant BF Belg to any h(Bel):
h(Bel) = (h1,h»,...,hn,0,0,...,0); k different values of h(Bel)(w;) = h;(Bel)
disjoint splitting of 2 : Q=Q1UU...UR; (k<n)

h(Bel)(w;) = const. for w; €, and h(Bel)(w;) >h(Bel)(w;) for w; € Q,w; €y, 7>
mw($2;) = h(Bel)(wr) — h(Bel)(ws), where w, € Q,ws € Qr1, Mw(L) =
h(Bel)(w;), where w;e;, myw(X)=0 otherwise,

Belg: mg is normalization of my,.

A simplification using h(Bel) = Pl P(Bel) instead of h(Bel) = Bel®Uy,.
(it removes Dempster's rule hidden in original definition of h)

Any Bel has defined its non-conflicting part Belo independently of
any belief combination rule.



Non-conflicting part of BFs on general frame €2,, (cont.)
Looking for —Bel:

®
(0,1,0,0,0,0)

e idea of complements
CXonaron (Q\ X) ... does not
/ work in general

(0.0,000.) f
. \

N2
wwwwwwwwww
\\\\\\\\\\

. e simplification to
\ ,(05 105,0,0,0) .
o] ) (0,0,0,0,1,0).\\“\ . QBBFS . Belo IS o
{©31,7(0,0,1,0.0,0 wopost . ®37(0,0,1)
frequently outside of _ _
General BF on '‘triangle’ Quasi Bayesian BFs
3-element frame 23. on 3-el. €23.

BBFs:
Lemma 3: For any BBF (a1,a9,...,arn,0,0,...,0;0) such that, a; > 0 for
i = 1,...,n, there exists uniquely defined —(a1,ao,...,an,0,0,...,0;0) =
(SU]_,CUQ,...,CCTL,O,O O O) — (1/(1 _|_ ZZ—Q a;”’’ g;ﬂi‘l, g;xla "'7%33170707"'70;0)
such that,

(aq,an,...,arn,0,0,...,0) ® —(a1,an,...,an,0,0,...,0) = Uy,.

(no —Bel for general BFs, neither for all BBFs; there are still open problems there)




Non-conflicting part of BFs on general frame €2,, (cont.)

Theorem 4: For any BF Bel defined on €, there exists unique con-
sonant BF Belg such that,

h(Belg @ Belg) = h(Bel)
for any BF Belg such that Belg @& Uy, = Up,.

I _—— ——— !
l// ——
&« ~—

Bl U U ~sasy,  If for h(Bel) = (hi,ho,..., hn,0,0,
e — T ,0) holds that, 0 < h; < 1, then
56l @ e further exists unique BF —Belg
such that, h(Belg)®—h(Belg) =Uy,
pere T =50 and h(—Belo® Belg) = —h(Bel).
N @B, Corollary 1 (i) For any conso-
2 Losd | nant BF Bel such that Pl({w;}) >
O there exist a unique BF —Bel;
—Bel is consonant in this case.
- Bel

| ; (ii)) There is one-to-one corre-
Schema of current state of spondence between Bayesian BFs

decomposition of BF Bel. and consonant BFs.



Comments on other rules and probilistic transformations

Other combination rules

Belg and Pl_P(Belg) = Pl_P(Bel) independently from any comb. rule.
Pl_P(Bel) # Belg®U,,, Pl_P(Bel) # Belo®U,,, Pl_P(Bel) # BelgOUy,
Even Pl P(Bel) # Pl _P(Belpg©Uy), where © is either ©, @, O or ...

If there exists an analogous couple of homomortphisms for any other rule then ...
Other probabilistic transformations

Considering Smets’ pignistic pignistic prob-
ability BetP we obtain non-conflicting

1

BF Belg_petp, where  my, petp (Ui $2i) =
| Ui~ Q| (h(Bel)(wm1) — h(Bel)(wint1y1)),  Wwhich s
normalized, hence My, Betp = MQ_BetP- BetT
e does not commute with & nor with other ...,
77 thus we cannot use Belg_p.p for decomposition.

Probabilistic Bel P compatible with © ... but reverse ... Bel — O
transformations.

0

no similar decomposition of BFs for ©, ®, © and ...



Ideas for future research

e Algebraic analysis of BFs on a 3-element frame €23.

e Algebraic analysis of BFs on a general finite frame €2,.

e EXxistence and uniqueness of a conflitcting part of BF on a general
finite frame €2,,.

e Interpretation of (s,s) on €25 and of a conflicting part of a BF on
a general finite frame €2,,.

Current related research

F. Cuzzolin — Consistent transformations of BFs. ECSQARU 2011
On consistent approximations of belief functions in the mass space.

F. Cuzzolin — Consonant transformations of BFs. ISIPTA 2011
Lp consonant approximation of belief functions in the mass space.

efevre-Elouedi-Mercier — Partial normalization of conflicting mass

m(0) in TBM. ECSQARU 2011 Towards an alarm for opposition conflict in
a conjunctive combination of belief functions.



Conclusion

Decomposition of a belief function (BF) defined on a two-element
frame of discernment to Dempster’'s sum of its unigue non-conflicting
and unique indecisive conflicting part is defined and presented here.

Homomorphic properties of mapping h(Bel) = Bel ® U, which cor-
responds to normalized plausibility of singletons were verified for
BFs defined on a general finite frame of discernment.

— Bel was generalized to Bayesian BFs and for consonant BFs on
a general n-element frame, s.t. Pl({w;}) > 0 for all i < n.

Unique consonant non-conflicting part Belg of a general BF Bel on
a finite frame was defined. For specification of a corresponding conflicting
part of Bel and its uniqueness/existence properties, an algebraic analysis
of BFs on a general finite frame of discernment is required.

Improvement of gen. understanding of BFs and their combination,
especially in conflicting cases.
One of corner-stones to further study of conflicts between BFs.

THANK YOU FOR YOUR ATTENTION.



