Non-conflicting and Conflicting Parts of Belief Functions

Milan Daniel

Institute of Computer Science Academy of Sciences of the Czech Republic

milan.daniel@cs.cas.cz

ISIPTA'11: the 7th International Symposium on Imprecise Probability: Theories and Applications

> Innsbruck, Austria July 25 – 28, 2011

Outline

- Introduction
- Preliminaries basic notions on belief functions
 - BFs on 2-element frame of discernment Dempster's semigroup
 - BFs on n-element frames of discernment
- Non-conflicting and conflicting parts of BFs on 2-element frame unique decomposition
- Non-conflicting part of BFs on general *n*-element frames unique non-conflicting part
 - + several partial results
- Notes on other combination rules and probabilistic transformations
- Open problems and ideas for future research Relation to other current research of belief functions
- Conclusion

Introduction

Let us suppose normalized BFs on finite frames.

conjuntive combination of BFs conflicting belief masses (disjoint focal elements)

belief mass $\longrightarrow \emptyset$ (non-normalized conjunctive rule ... \bigcirc) \longrightarrow relocation/redistribution among some $\emptyset \neq X \subseteq \Omega$ $m_{\bigodot}(\emptyset)$... weight of conflict between BFs (Shafer 76)

- simple examples, which do not support this interpretation \times
- $m_{\bigodot}(\emptyset)$... really conflicting belief masses, related to conflict

IPMU'10 : $m_{\bigcirc}(\emptyset)$ — internal conflict of input BFs — conflict between BFs

3 new approaches to conflicts were introduced there (ideas, motivations, open problems) + distingushing: difference \times conflict between BFs)

analyzing properties: possibility of decomposition $Bel = Bel_0 \oplus Bel_S$ non-conflicting and conflicting part of BF Bel

Existence and uniqueness of BFs Bel_0 and Bel_S is studied here

Basic notions on belief functions

Exhaustive finite *n*-element frame of discernment $\Omega = \{\omega_1, \omega_2, ..., \omega_n\}$, all elements ω_i are mutually exclusive. unknown actual $\omega_0 \in \Omega$

Basic belief assignment (bba) $m : \mathcal{P}(\Omega) \longrightarrow [0,1]$, s.t. $\sum_{A \subseteq \Omega} m(A) = 1$ values basic belief masses (bbm), if $m(\emptyset) = 0$ normalized bba Belief function (BF) Bel : $\mathcal{P}(\Omega) \longrightarrow [0,1]$, $Bel(A) = \sum_{\emptyset \neq X \subseteq A} m(X)$, Bel uniquely corresponds to bba *m* and vice-versa. Plausibility function, Commonality function $Pl, Q : \mathcal{P}(\Omega) \longrightarrow [0,1]$,

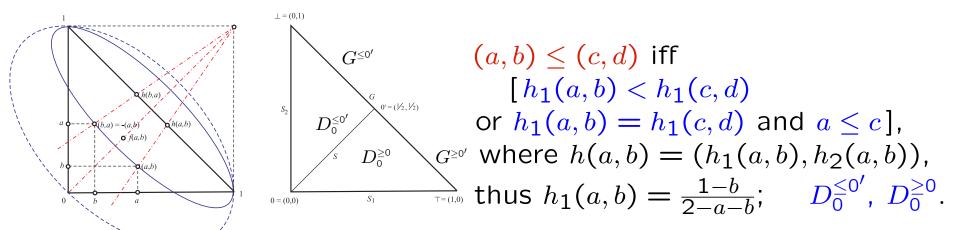
Focal element $X \subseteq \Omega$, such that m(X) > 0. Bayesian Belief function (BBF): |X| = 1 for m(X) > 0, $U_2 = 0'$ U_n ... Uniform BBF ... $U_n(\{\omega_i\}) = \frac{1}{n}$ (~ uniform prob. distrib. on Ω)

Dempster's (conjunctive) rule of combination \oplus : $(m_1 \oplus m_2)(A) = \sum_{X \cap Y = A} Km_1(X)m_2(Y)$ for $A \neq \emptyset$, $(m_1 \oplus m_2)(\emptyset) = 0$, where $K = \frac{1}{1-\kappa}$, $\kappa = \sum_{X \cap Y = \emptyset} m_1(X)m_2(Y)$, \odot : K = 1, $m(\emptyset) = \kappa$ the disjunctive rule \odot , Yager's rule \odot , Dubois-Prade's rule \boxdot , ...

indecisive (indifferent) BF: $h(Bel) = Bel \oplus U_n = U_n$, i.e., $Pl(\{\omega_i\}) = const.$ *non-conflicting* BF Bel: $(Bel \odot Bel)(\emptyset) = 0$; conflicting BF otherwise pignistic prob, $BetP(\omega_i)$; normalized plausib. of singletons $(Pl_P(m))(\omega_i)$, ...

Dempster's semigroup $\Omega_2 = \{\omega_1, \omega_2\}$ (P.Hájek & J.J.Valdés 80's/90's) $\mathbf{D}_0 = (D_0, \oplus, 0, 0')$ Ω_2 : $m \sim (a, b) = (m(\{\omega_1\}, m(\{\omega_2\})) \text{ as } m(\{\omega_1, \omega_2\}) = 1 - (a + b),$ <u>d-pairs</u> ... (a,b) : $0 \le a, b \le 1, a + b \le 1$ $D_0 = \{(a,b) \mid 0 \le a, b < 1, a + b \le 1\}$... set of non-extremal d-pairs Dempster's rule \oplus : $(a,b) \oplus (c,d) = (1 - \frac{(1-a)(1-c)}{1-(ad+bc)}, \ 1 - \frac{(1-b)(1-d)}{1-(ad+bc)})$ (for *d*-pairs) $\perp = (0,1)$ extremal *d*-pairs: $\perp = (0, 1), \ \top = (1, 0)$ VBF: 0 = (0, 0) $0' = U_2 = (\frac{1}{2}, \frac{1}{2})$ $\mathbf{x} \mathbf{h}(b,a)$ $0' = (\frac{1}{2}, \frac{1}{2})$ S_2 $h:h(a,b)=(a,b)\oplus 0'$ h(a,b)(b,a) = -(a,b)**o** *f*(*a*,*b*) -:-(a,b) = (b,a) $f: f(a,b) = (a,b) \oplus -(a,b)$ $\mathbf{Q}(a,b)$ S_1 0 = (0,0) $\top = (1,0)$ $G = \{(a, 1-a) \mid 0 \le a \le 1\} \dots$ Bayesian d-pairs $S = \{(a, a) \mid 0 \le a \le \frac{1}{2}\}$ $S_2 = \{(0, a) \mid 0 \le a \le 1\}, S_1 = \{(a, 0) \mid 0 \le a \le \overline{1}\}, \dots \text{ simple } d\text{-pairs}$

Dempster's semigroup (cont.)

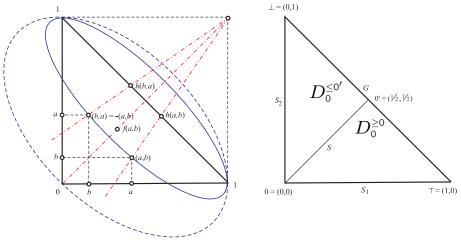


(i) The Dempster's semigroup D_0 with the relation \leq is an ordered commutative (Abelian) semigroup with the neutral element 0; 0' is the only non-zero idempotent of D_0 .

(ii) $\mathbf{G} = (G, \oplus, -, 0', \leq)$ is an ordered Abelian group, isomorphic to the group of reals with the usual ordering. $G^{\leq 0'}$ and $G^{\geq 0'}$... its negative and pos. cones. (iii) The sets S, S_1, S_2 with the operation \oplus and the ordering \leq form ordered commutative semigroups with neutral element 0, all are isomorphic to the positive cone of the additive group of reals.

(iv) *h* is ordered homomorphism: $(D_0, \oplus, -, 0, 0', \leq) \longrightarrow (G, \oplus, -, 0', \leq);$ $h(Bel) = Bel \oplus 0' = Pl - P(Bel)$, i.e., normalized plausibility probabilistic transf. (v) *f* is homomorphism: $(D_0, \oplus, -, 0, 0') \longrightarrow (S, \oplus, -, 0);$ (not ordered).

Dempster's semigroup (cont.)



Let us denote $h^{-1}(x) = \{w \mid h(w) = x\}$ and similarly $f^{-1}(x) = \{w \mid f(w) = x\}.$ Using the theorem, see (iv) and (v), we can express \oplus as:

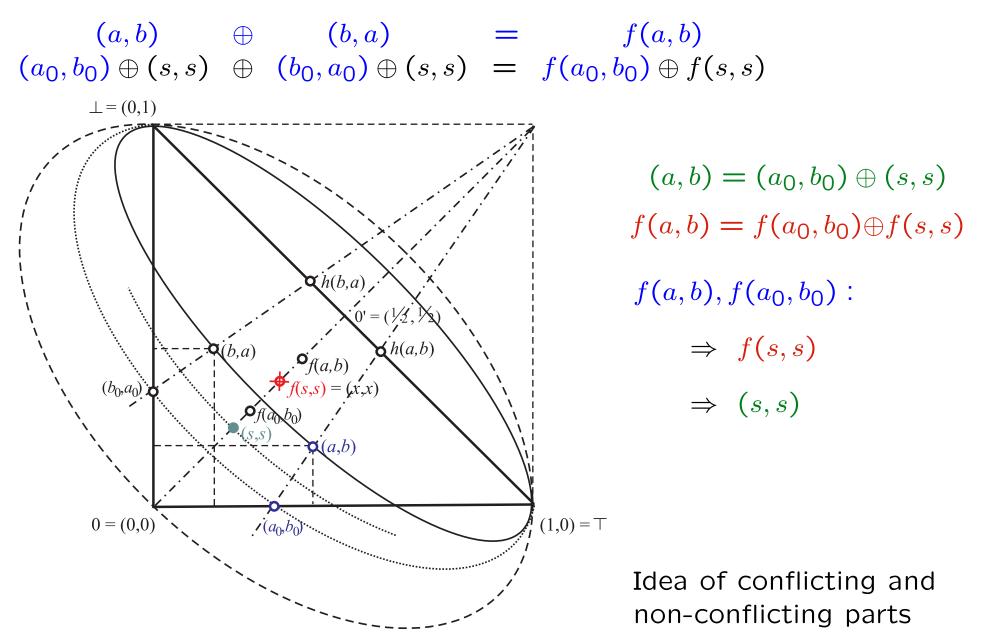
 $(x\oplus y) = h^{-1}(h(x)\oplus h(y)) \cap f^{-1}(f(x)\oplus f(y)).$

BFs on *n*-Element Frames of Discernment

We can represent a BF on any *n*-element frame Ω_n by an enumeration of its *m* values (bbms), i.e., by a (2^n-2) -tuple $(a_1, a_2, ..., a_{2^n-2})$, or as a $(2^{\underline{n}-1})$ -tuple $(a_1, a_2, ..., a_{2^n-2}; a_{2^n-1})$ when we want to explicitly mention also the redundant value $m(\Omega) = a_{2^n-1} = 1 - \sum_{i=1}^{2^n-2} a_i$.

Unfortunately, no algebraic analysis of BFs on Ω_n for n > 2 was presented till now.

Non-conflicting and conflicting parts of BFs on Ω_2



Non-conflicting and conflicting parts of BFs on Ω_2 (cont.)

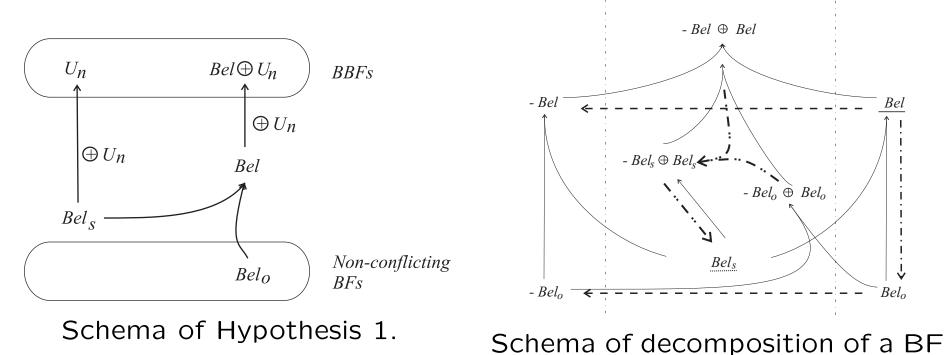
Proposition 2: Any belief function $(a, b) \in \Omega_2$ is the result of Dempster's combination of BF $(a_0, b_0) \in S_1 \cup S_2$ and a BF $(s, s) \in S$, such that (a_0, b_0) has the same plausibility support as (a, b) does, and (s, s) does not prefer any of the elements of Ω_2 . (Trivially, $(s, s) = (0, 0) \oplus (s, s)$ for $(s, s) \in S$, and $(a_0, b_0) = (a_0, b_0) \oplus (0, 0)$ for elements of S_1, S_2). $(a_0, b_0) \in S_1 \cup S_2$... no internal conflict ... *non-conflicting part*. There is $(a_0, b_0) = (\frac{a-b}{1-b}, 0)$ for $a \ge b$ and $(a_0, b_0) = (0, \frac{b-a}{1-a})$ for $a \le b$.

Lemma 1: (i) For any BFs (u, u), (v, v) on S, such that $u \le v$, we can compute their **Dempster's 'difference'** (x, x) such that $(u, u) \oplus (x, x) = (v, v)$, where $(x, x) = (\frac{v-u}{1-3u+uv}, \frac{v-u}{1-3u+uv})$. (ii) For any BF (w, w) on S, we can compute its **Dempster's 'half'** (s, s) Such that $(s, s) \oplus (s, s) = (w, w)$, where $(s, s) = (\frac{1-\sqrt{1-3w+2w^2}}{3-2w}, \frac{1-\sqrt{(1-w)(1-2w)}}{3-2w})$. (iii) There is no Dempster's 'difference' on D_0 in general.

Theorem 2: Any BF (a,b) on Ω_2 is Dempster's sum of its *unique non-conflicting part* $(a_0,b_0) \in S_1 \cup S_2$ and of its *unique conflicting part* $(s,s) \in S$, which does not prefer any element of Ω_2 , i.e. (a,b) = $(a_0,b_0) \oplus (s,s)$. It holds true that $s = \frac{b(1-a)}{1-2a+b-ab+a^2} = \frac{b(1-b)}{1-a+ab-b^2}$ and $(a,b) = (\frac{a-b}{1-b}, 0) \oplus (s,s)$ for $a \ge b$ and analogously for $a \le b$.

Non-conflicting part of BFs on general finite frame Ω_n

Hypothesis 1: We can represent any BF Bel on *n*-element frame of discernment Ω_n as Dempster's sum $Bel = Bel_0 \oplus Bel_S$ of nonconflicting BF Bel_0 and of indecisive conflicting BF Bel_S which has no decisional support, i.e. which does not prefer any element of Ω_n to the others.



We would like to follow the idea from the case of two-element frames. Unfortunately, there was not presented any algebraic description of BFs defined on n-element frames till now.

Non-conflicting part of BFs on general frame Ω_n (cont.)

An issue of homomorphism h is quite promissing:

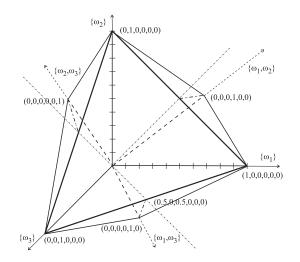
Theorem 3: The mapping $h(Bel) = Bel \oplus U_n = Pl_P(Bel)$ is an **homomorphism** of an algebra of BFs on an *n*-element frame of discernment with the binary operation of Dempster's sum \oplus and two nulary operations (constants) 0 and U_n to the algebra of BBFs on Ω_n with binary operation \oplus and nulary operation U_n .

Idea of procedure for computing unique consonant BF Bel_0 to any h(Bel): $h(Bel) = (h_1, h_2, ..., h_n, 0, 0, ..., 0)$; k different values of $h(Bel)(\omega_i) = h_i(Bel)$ disjoint splitting of Ω : $\Omega = \Omega_1 \cup \Omega_2 \cup ... \cup \Omega_k$ $(k \le n)$ $h(Bel)(\omega_i) = const.$ for $\omega_i \in \Omega_r$ and $h(Bel)(\omega_i) > h(Bel)(\omega_j)$ for $\omega_i \in \Omega_r, \omega_j \in \Omega_s, r > s$ $m_w(\Omega_i) = h(Bel)(\omega_r) - h(Bel)(\omega_s)$, where $\omega_r \in \Omega_i, \omega_s \in \Omega_{i+1}, m_w(\Omega_k) =$ $h(Bel)(\omega_j)$, where $\omega_j \in \Omega_k, m_w(X) = 0$ otherwise, Bel_0 : m_0 is normalization of m_w .

A simplification using $h(Bel) = Pl_P(Bel)$ instead of $h(Bel) = Bel \oplus U_n$. (it removes Dempster's rule hidden in original definition of h) Any Bel has defined its non-conflicting part Bel_0 independently of any belief combination rule.

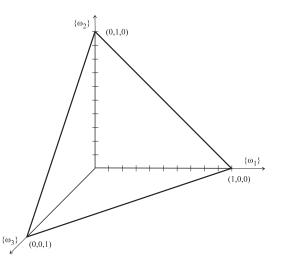
Non-conflicting part of BFs on general frame Ω_n (cont.)

Looking for -Bel:



General BF on 3-element frame Ω_3 .

idea of complements $(\Omega \setminus X)$... does not work in general simplification to qBBFs ... Bel_0 is frequently outside of 'triangle'



Quasi Bayesian BFs on 3-el. Ω_3 .

BBFs:

Lemma 3: For any BBF $(a_1, a_2, ..., a_n, 0, 0, ..., 0; 0)$ such that, $a_i > 0$ for i = 1, ..., n, there exists uniquely defined $-(a_1, a_2, ..., a_n, 0, 0, ..., 0; 0) = (x_1, x_2, ..., x_n, 0, 0, ..., 0; 0) = (1/(1 + \sum_{i=2}^{n} \frac{a_1}{a_i}), \frac{a_1}{a_2} x_1, \frac{a_1}{a_3} x_1, ..., \frac{a_1}{a_n} x_1, 0, 0, ..., 0; 0)$ such that,

 $(a_1, a_2, ..., a_n, 0, 0, ..., 0) \oplus -(a_1, a_2, ..., a_n, 0, 0, ..., 0) = U_n.$

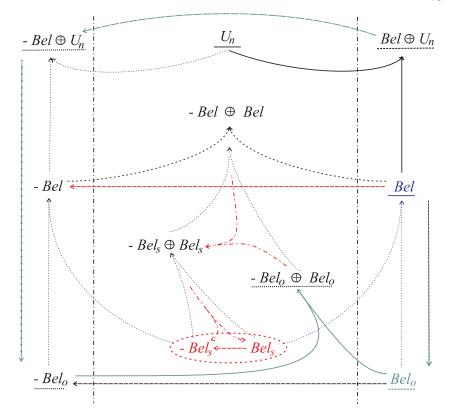
(no -Bel for general BFs, neither for all BBFs; there are still open problems there)

Non-conflicting part of BFs on general frame Ω_n (cont.)

Theorem 4: For any BF Bel defined on Ω_n there exists unique consonant BF Bel_0 such that,

 $h(Bel_0 \oplus Bel_S) = h(Bel)$

for any BF Bel_S such that $Bel_S \oplus U_n = U_n$.



Schema of current state of decomposition of BF *Bel*.

If for $h(Bel) = (h_1, h_2, ..., h_n, 0, 0, ..., 0)$ holds that, $0 < h_i < 1$, then further exists unique BF $-Bel_0$ such that, $h(Bel_0) \oplus -h(Bel_0) = U_n$ and $h(-Bel_0 \oplus Bel_S) = -h(Bel)$.

Corollary 1 (i) For any consonant BF Bel such that $Pl(\{\omega_i\}) > 0$ there exist a unique BF -Bel; -Bel is consonant in this case. (ii) There is one-to-one correspondence between Bayesian BFs and consonant BFs.

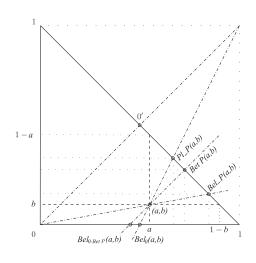
Comments on other rules and probilistic transformations

Other combination rules

 Bel_0 and $Pl_P(Bel_0) = Pl_P(Bel)$ independently from any comb. rule. $Pl_P(Bel) \neq Bel_0 \otimes U_n$, $Pl_P(Bel) \neq Bel_0 \otimes U_n$, $Pl_P(Bel) \neq Bel_0 \otimes U_n$ Even $Pl_P(Bel) \neq Pl_P(Bel_0 \otimes U_n)$, where \otimes is either \otimes , \otimes , \otimes , \otimes or ...

If there exists an analogous couple of homomortphisms for any other rule then ...

Other probabilistic transformations



Probabilistic transformations.

Considering Smets' pignistic pignistic probability BetP we obtain non-conflicting BF Bel_{0-BetP} , where $m_{w-BetP}(\bigcup_{i=1}^{m} \Omega_i) =$ $|\bigcup_{i=1}^{m} \Omega_i|(h(Bel)(\omega_{m1}) - h(Bel)(\omega_{(m+1)1}))$, which is normalized, hence $m_{w-BetP} = m_{0-BetP}$. BetT does not commute with \oplus nor with other ..., thus we cannot use Bel_{0-BetP} for decomposition. Bel_P compatible with \bigcirc ... but reverse ... $Bel \mapsto 0$ no similar decomposition of BFs for \oslash , \oslash , \odot and ...

Ideas for future research

- Algebraic analysis of BFs on a 3-element frame Ω_3 .
- Algebraic analysis of BFs on a general finite frame Ω_n .
- Existence and uniqueness of a conflicting part of BF on a general finite frame Ω_n .
- Interpretation of (s,s) on Ω_2 and of a conflicting part of a BF on a general finite frame Ω_n .

Current related research

F. Cuzzolin — Consistent transformations of BFs. ECSQARU 2011 On consistent approximations of belief functions in the mass space.

F. Cuzzolin — Consonant transformations of BFs. ISIPTA 2011 Lp consonant approximation of belief functions in the mass space.

Lefevre-Elouedi-Mercier — Partial normalization of conflicting mass $m(\emptyset)$ in TBM. ECSQARU 2011 Towards an alarm for opposition conflict in a conjunctive combination of belief functions.

Conclusion

- Decomposition of a belief function (BF) defined on a two-element frame of discernment to Dempster's sum of its unique non-conflicting and unique indecisive conflicting part is defined and presented here.
- Homomorphic properties of mapping $h(Bel) = Bel \oplus U_n$ which corresponds to normalized plausibility of singletons were verified for BFs defined on a general finite frame of discernment. -Bel was generalized to Bayesian BFs and for consonant BFs on
 - a general *n*-element frame, s.t. $Pl(\{\omega_i\}) > 0$ for all $i \leq n$.
- Unique consonant non-conflicting part *Bel*₀ of a general BF *Bel* on a finite frame was defined. For specification of a corresponding conflicting part of *Bel* and its uniqueness/existence properties, **an algebraic analysis of BFs on a general finite frame of discernment is required.**
- Discussion of the topic from the point of view of alternative rules of combination and alternative probabilistic transformations.
- Improvement of gen. understanding of BFs and their combination, especially in conflicting cases.

One of corner-stones to further study of conflicts between BFs.

THANK YOU FOR YOUR ATTENTION.