Modelling Uncertainty in Limit State Functions

Thomas Fetz

Unit for Engineering Mathematics University of Innsbruck, Austria Thomas.Fetz@uibk.ac.at

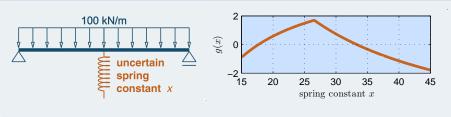
7th International Symposium on Imprecise Probability: Theories and Applications, Innsbruck, Austria, 2011

Limit state functions / probability of failure

Limit state functions

- $x = (x_1, ..., x_n)$ = material properties, loads,... (basic variables)
- $y = g(x) \le 0$ means failure of the system.

Beam bedded on a spring with uncertain spring constant *x*



Limit state functions / probability of failure

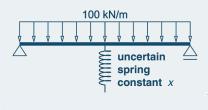
Limit state functions

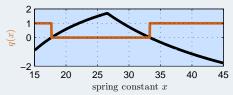
- $x = (x_1, ..., x_n)$ = material properties, loads,... (basic variables)
- $y = g(x) \le 0$ means failure of the system.

Failure regions

• $R_f = \{x \in \mathcal{X} : g(x) \leq 0\}$ described by $q: \mathcal{X} \to \{0,1\} : x \to \chi(g(x) \leq 0)$.

Beam bedded on a spring with uncertain spring constant x





Limit state functions / probability of failure

Limit state functions

- $x = (x_1, ..., x_n)$ = material properties, loads,... (basic variables)
- $y = g(x) \le 0$ means failure of the system.

Failure regions

• $R_f = \{x \in \mathcal{X} : g(x) \leq 0\}$ described by $q : \mathcal{X} \rightarrow \{0,1\} : x \rightarrow \chi(g(x) \leq 0)$.

Probability of failure

- The values of $x = (x_1, ..., x_n)$ are assumed to be uncertain.
- f^X density function of the random variables $X = (X_1, \dots, X_n)$.

$$p_f = P(g(X) \le 0) = \int_{\mathcal{X}} \chi(g(x) \le 0) f^X(x) \, \mathrm{d}x = \int_{\mathcal{X}} q(x) f^X(x) \, \mathrm{d}x$$

Aim of the presentation

Probability of failure $p_f(a,b)$ depending on a and b where

- the parameters *a* are used to model the uncertainty of the basic variables *x* of a limit state function.
- the parameters b are used to model the uncertainty in the limit state function itself.
- the parameters a and b assumed to be uncertain which is described by sets or random sets
 - \rightarrow sets of probability measures
 - ightarrow upper probabilities of failure \overline{p}_f .

Aim of the presentation

Probability of failure $p_f(a,b)$ depending on a and b where

- the parameters *a* are used to model the uncertainty of the basic variables *x* of a limit state function.
- the parameters b are used to model the uncertainty in the limit state function itself.
- the parameters a and b assumed to be uncertain which is described by sets or random sets
 - ightarrow sets of probability measures
 - ightarrow upper probabilities of failure \overline{p}_f .

Outline of the presentation

- Step 1: Parameterized limit state functions → independence.
- Step 2: Introducing $p_f(a,b)$.
- Step 3: Generating sets of probability measures.
- Sets of probability measures and notion independence.
- Step 4: Computational formulas for the upper probability of failure.

Step 1: Parameterized limit state functions

Parameterization g_z of a limit state function g

- $\bullet \ h: \mathfrak{X} \times \mathfrak{Z} \to \mathfrak{Y}: (x,z) \to h(x,z) = g_z(x), \quad z \in \mathfrak{Z} \subseteq \mathbb{R}^m,$
- $y = h(x, z) \le 0$ means failure, values of z are uncertain.

Step 1: Parameterized limit state functions

Parameterization g_z of a limit state function g

- $\bullet \ h: \mathfrak{X} \times \mathfrak{Z} \to \mathfrak{Y}: (x,z) \to h(x,z) = g_z(x), \quad z \in \mathfrak{Z} \subseteq \mathbb{R}^m,$
- $y = h(x, z) \le 0$ means failure, values of z are uncertain.

Probability of failure

$$p_f = \int_{\mathcal{X}} \int_{\mathcal{Z}} \chi(h(x, z) \le 0) f^{Z}(z) \, dz f^{X}(x) \, dx$$

assuming independence of X and Z, f^Z density of Z.

Independence of X and Z

- (a) If we learn the values of the variables x, our knowledge about the parameters z and therefore about the choice of the limit state functions gz does not change.
- (b) Learning the values of z and therefore learning which function g_z to use has no influence on our knowledge about the variables x.

Step 1: Parameterized limit state functions

Parameterization g_z of a limit state function g

- $\bullet \ h: \mathfrak{X} \times \mathfrak{Z} \to \mathfrak{Y}: (x,z) \to h(x,z) = g_z(x), \quad z \in \mathfrak{Z} \subseteq \mathbb{R}^m,$
- $y = h(x, z) \le 0$ means failure, values of z are uncertain.

Probability of failure

$$p_f = \int_{\mathcal{X}} \int_{\mathcal{Z}} \chi(h(x,z) \le 0) f^{\mathbf{Z}}(z) \, \mathrm{d}z f^{\mathbf{X}}(x) \, \mathrm{d}x$$

assuming independence of X and Z, f^Z density of Z.

Imprecise failure regions

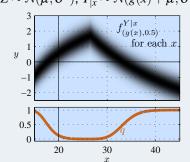
$$q: \mathcal{X} \to [0,1]: x \to \int_{\mathcal{Z}} \chi(h(x,z) \le 0) f^{\mathbb{Z}}(z) dz,$$

cf. membership function of a fuzzy set.

Random limit state function

$$Y_{|x} = h(x, Z) = g(x) + Z,$$

$$Z \sim \mathcal{N}(\mu, \sigma^2), Y_{|x} \sim \mathcal{N}(g(x) + \mu, \sigma^2)$$



Probability of $p_f(a,b)$

$$p_f(a,b) = \int_{\mathcal{X}} \int_{\mathcal{Z}} \chi(h(x,z) \le 0) f_b^{\mathbf{Z}}(z) \, \mathrm{d}z f_a^{\mathbf{X}}(x) \, \mathrm{d}x$$

- Arguments a and b are parameters of the densities f_a^X and f_b^Z , e. g. $f_{(\mu,\sigma)}^X$ density of a Gaussian distribution $\mathcal{N}(\mu,\sigma^2)$.
- Parameters a and b are assumed to be uncertain described by sets or random sets
 - ightarrow sets of probability measures \mathfrak{M}_X for x and \mathfrak{M}_Z for z
 - ightarrow upper probabilities of failure \overline{p}_f .
- Different notions of independence!
- To model the uncertainty of x and z directly by sets or random sets:
 Replace the density functions by Dirac measures.

Step 3: Generating sets M_X and M_Z of probability measures

The unceratianties of x and z are described by \mathcal{M}_X and \mathcal{M}_Z .

Uncertainty of parameters a and b modelled by sets A and B

$$\mathcal{M}_X = \left\{ P \colon P(E) = \int_A \int_X \chi(x \in E) f_a^X(x) \, \mathrm{d}x \, \mathrm{d}P_A(a), \, P_A \in \mathcal{M}(A) \right\}$$

 $\mathfrak{M}(A)=\{P\colon P(A)=1\}$ is the set of all probability measures living on the set $A\subseteq\mathcal{A}$.

 \mathcal{M}_Z is obtained in a similar way using f_b^Z and B.

Step 3: Generating sets M_X and M_Z of probability measures

The unceratianties of x and z are described by \mathcal{M}_X and \mathcal{M}_Z .

Uncertainty of parameters a and b modelled by sets A and B

$$\mathcal{M}_X = \left\{ P \colon P(E) = \int\limits_A \int\limits_Y \chi(x \in E) f_a^X(x) \, \mathrm{d}x \, \mathrm{d}P_A(a), \, P_A \in \mathcal{M}(A) \right\}$$

 $\mathfrak{M}(A)=\{P\colon P(A)=1\}$ is the set of all probability measures living on the set $A\subseteq\mathcal{A}$.

 \mathcal{M}_Z is obtained in a similar way using f_b^Z and B.

Uncertainty of \overline{a} and b modelled by finite random sets $\mathscr A$ and $\mathscr B$

Random sets \mathscr{A} , \mathscr{B} with focal sets A_i , B_j and weights $m_{\mathscr{A}}(A_i)$, $m_{\mathscr{B}}(B_j)$.

$$\mathcal{M}_X = \left\{ P : P(E) = \sum_{i=1}^{|\mathscr{A}|} m_{\mathscr{A}}(A_i) \int_{\mathcal{A}} \int_{\mathcal{X}} \chi(x \in E) f_a^X(x) \, dx \, dP_{A_i}(a), \, P_{A_i} \in \mathcal{M}(A_i) \right\}$$

with $\mathcal{M}(A_i) = \{P : P(A_i) = 1\}$. \mathcal{M}_Z is obtained using f_h^Z and \mathscr{B} .

Strong independence

All possible product measures $P_X \otimes P_Z$ for $P_X \in \mathcal{M}_X$ and $P_Z \in \mathcal{M}_Z$:

$$\overline{p}_f^{\mathbf{S}} = \sup \left\{ (P_X \otimes P_Z)(h(x, z) \le 0) : P_X \in \mathcal{M}_X, P_Z \in \mathcal{M}_Z \right\}$$
$$= \sup_{\substack{P_X \in \mathcal{M}_X \\ P_Z \in \mathcal{M}_Z}} \iint_{\mathcal{X}} \chi(h(x, z) \le 0) \, dP_Z(z) \, dP_X(x)$$

Strong independence

All possible product measures $P_X \otimes P_Z$ for $P_X \in \mathcal{M}_X$ and $P_Z \in \mathcal{M}_Z$:

$$\begin{split} \overline{p}_f^{\mathbf{S}} &= \sup \left\{ (P_X \otimes P_Z) (h(x,z) \leq 0) : P_X \in \mathcal{M}_X, P_Z \in \mathcal{M}_Z \right\} \\ &= \sup_{\substack{P_X \in \mathcal{M}_X \\ P_Z \in \mathcal{M}_Z}} \int\limits_{\mathcal{X}} \frac{\chi(h(x,z) \leq 0) \, dP_Z(z) \, dP_X(x) = \sup\limits_{\substack{P_X \in \mathcal{M}_X \\ q \in \mathcal{Q}}} \int\limits_{\mathcal{X}} \frac{q(x) \, dP_X(x)}{x} \, dP_X(x) \end{split}$$

Set of imprecise failure regions

$$Q = \left\{ q : q(x) = \int\limits_{\mathcal{Z}} \chi(h(x, z) \le 0) \, dP_Z(z), P_Z \in \mathcal{M}_Z \right\}$$

• The entire set Q is needed for computations!

Strong independence, swap supremum and integral

$$\overline{p}_f^{S} = \sup_{P_X \in \mathcal{M}_X} \sup_{P_Z \in \mathcal{M}_Z} \int_{\mathcal{X}} \int_{\mathcal{Z}} \chi(h(x, z) \le 0) \, dP_Z(z) \, dP_X(x)$$

$$= \sup_{P_X \in \mathcal{M}_X} \sup_{q \in \mathcal{Q}} \int_{\mathcal{X}} q(x) \, dP_X(x)$$

Strong independence → Epistemic irrelevance

$$\begin{split} \overline{p}_{f}^{S} &\leq \sup_{P_{X} \in \mathcal{M}_{X}} \int_{\mathcal{X}} \sup_{P_{Z} \in \mathcal{M}_{Z}} \int_{\mathcal{Z}} \chi(h(x, z) \leq 0) \, dP_{Z}(z) \, dP_{X}(x) \\ &= \sup_{P_{X} \in \mathcal{M}_{X}} \int_{\mathcal{X}} \sup_{q \in \mathcal{Q}} q(x) \, dP_{X}(x) = \sup_{P_{X} \in \mathcal{M}_{X}} \int_{\mathcal{X}} \overline{q}(x) \, dP_{X}(x) =: \overline{p}_{f}^{X \to Z} \end{split}$$

Strong independence \rightarrow Epistemic irrelevance

$$\begin{split} \overline{p}_f^{\mathbf{S}} &\leq \sup_{P_X \in \mathcal{M}_X} \int_{\mathcal{X}} \sup_{P_Z \in \mathcal{M}_Z} \int_{\mathcal{Z}} \chi(h(x,z) \leq 0) \; \mathrm{d}P_Z(z) \; \mathrm{d}P_X(x) \\ &= \sup_{P_X \in \mathcal{M}_X} \int_{\mathcal{X}} \sup_{q \in Q} q(x) \; \mathrm{d}P_X(x) = \sup_{P_X \in \mathcal{M}_X} \int_{\mathcal{X}} \overline{q}(x) \; \mathrm{d}P_X(x) =: \overline{p}_f^{X \to Z} \end{split}$$

Epistemic independence

- Each x can choose its own $P_Z \in \mathcal{M}_Z$ or more exactly a $P_Z(\cdot | x)$ given x.
- $X \not\rightarrow Z$ means that X is epistemically irrelevant to Z or that the basic variables x are epistemically irrelevant to the parameterized limit state functions g_z .
- Epistemic irrelevance is an asymmetric notion of independence meaning only part (a): If we learn the values of the variables x, our knowledge about the parameters z and therefore about the choice of the limit state functions g_z does not change.

Strong independence \rightarrow Epistemic irrelevance

$$\begin{split} \overline{p}_f^{\mathbf{S}} &\leq \sup_{P_X \in \mathcal{M}_X} \int_{\mathcal{X}} \sup_{P_Z \in \mathcal{M}_Z} \int_{\mathcal{Z}} \chi(h(x,z) \leq 0) \; \mathrm{d}P_Z(z) \; \mathrm{d}P_X(x) \\ &= \sup_{P_X \in \mathcal{M}_X} \int_{\mathcal{X}} \sup_{q \in \mathcal{Q}} q(x) \; \mathrm{d}P_X(x) = \sup_{P_X \in \mathcal{M}_X} \int_{\mathcal{X}} \overline{q}(x) \; \mathrm{d}P_X(x) =: \overline{p}_f^{X \to Z} \end{split}$$

Upper envelope of the failure regions

$$\overline{q}(x) = \sup_{P_Z \in \mathcal{M}_Z} \int_{\gamma} \chi(h(x, z) \le 0) \, \mathrm{d}P_Z(z) = \sup_{q \in \mathcal{Q}} q(x).$$

• It is sufficient to specify the function \overline{q} !

Uncertainties modelled by ordinary sets A and B

Strong independence:

$$\overline{p}_f^{\mathbf{S}} = \sup_{\substack{a \in A \\ b \in B}} p_f(a, b)$$

Epistemic irrelevance:

$$\overline{p}_{f}^{X \to Z} = \sup_{a \in A} \int_{\mathcal{X}} \overline{q}(x) f_{a}^{X}(x) dx$$

$$\overline{q}(x) = \sup_{b \in B} \int_{\mathcal{Z}} \chi(h(x, z) \le 0) f_{b}^{Z}(z) dz$$

Uncertainties modelled by random sets $\mathscr A$ and $\mathscr B$

Strong independence:

$$\overline{p}_{f}^{S} = \sup_{\substack{a_r \in A_r, r = 1, \dots, |\mathscr{A}| \\ b_s \in B_s, s = 1, \dots, |\mathscr{B}|}} \sum_{i=1}^{|\mathscr{A}|} \sum_{j=1}^{|\mathscr{B}|} m_{\mathscr{A}}(A_i) m_{\mathscr{B}}(B_j) p_f(a_i, b_j)$$

Epistemic irrelevance:

$$\overline{p}_{f}^{X \neq Z} = \sum_{i=1}^{|\mathscr{A}|} m_{\mathscr{A}}(A_{i}) \sup_{a \in A_{i}} \int_{\mathfrak{X}} \overline{q}(x) f_{a}^{X}(x) dx$$

$$\overline{q}(x) = \sum_{j=1}^{|\mathscr{B}|} m_{\mathscr{B}}(B_{j}) \sup_{b \in B_{j}} \int_{\mathfrak{T}_{c}} \chi(h(x, z) \leq 0) f_{b}^{Z}(z) dz$$

Random set independence:

$$\begin{split} \overline{p}_f^{\text{RS}} &= \sum_{i=1}^{|\mathscr{A}|} \sum_{j=1}^{|\mathscr{B}|} m_{\mathscr{A}}(A_i) m_{\mathscr{B}}(B_j) \sup_{\substack{a \in A_i \\ b \in B_j}} p_f(a,b), \text{ cf. } \overline{p}_f^{\text{S}} &= \sup_{\substack{a \in A \\ b \in B}} p_f(a,b) \text{ for sets } A, B. \\ \overline{p}_f^{\text{R},X \not\to Z} &= \sum_{i=1}^{|\mathscr{A}|} \sum_{j=1}^{|\mathscr{B}|} m_{\mathscr{A}}(A_i) m_{\mathscr{B}}(B_j) \sup_{a \in A_i} \int_{\mathscr{X}} \overline{q}_j(x) f_a^X(x) \, \mathrm{d} x, \text{ cf. } \overline{p}_f^{X \not\to Z} &= \sup_{a \in A} \int_{\mathscr{X}} \overline{q}(x) f_a^X(x) \, \mathrm{d} x \\ \overline{q}_j(x) &= \sup_{b \in B_j} \int_{\mathscr{Z}} \chi(h(x,z) \le 0) f_b^Z(z) \, \mathrm{d} z. \end{split}$$

Random set independence:

$$\overline{p_f^{\text{RS}}} = \sum_{i=1}^{|\mathscr{B}|} \sum_{j=1}^{|\mathscr{B}|} m_{\mathscr{A}}(A_i) m_{\mathscr{B}}(B_j) \sup_{\substack{a \in A_i \\ b \in B_j}} p_f(a,b), \text{ cf. } \overline{p_f^{\text{S}}} = \sup_{\substack{a \in A \\ b \in B}} p_f(a,b) \text{ for sets } A, B.$$

$$\overline{p_f^{R,X \to Z}} = \sum_{i=1}^{|\mathscr{A}|} \sum_{j=1}^{|\mathscr{A}|} m_{\mathscr{A}}(A_i) m_{\mathscr{B}}(B_j) \sup_{a \in A_i} \int_{\mathscr{X}} \overline{q_j}(x) f_a^X(x) \, dx, \text{ cf. } \overline{p_f^{X \to Z}} = \sup_{a \in A} \int_{\mathscr{X}} \overline{q}(x) f_a^X(x) \, dx$$

Random set independence together with density functions

Joint plausibility measure

bility measure
$$\sup_{P\in\mathcal{M}(A_i\times B_j)} P(E)$$

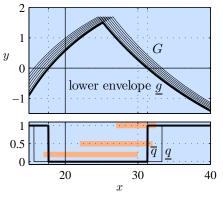
$$\operatorname{Pl}(E) = \sum_{i=1}^{|\mathscr{A}||\mathscr{B}|} \sum_{m_{\mathscr{A}}(A_i)} m_{\mathscr{B}}(B_j) \underbrace{\chi(E\cap (A_i\times B_j)\neq\varnothing)}$$

"Correct" generalization of PI: All possible combinations of f_a^X and f_b^Z . High computational effort, no independence on the level of f_a^X and f_b^Z .

Here: We replace $\sup_{P \in \mathcal{M}(A_i \times B_i)} P(E)$ by \overline{p}_f^S and $\overline{p}_f^{X \to Z}$ for ordinary sets.

For Dirac measures all these approaches coincide with P1!

Examples: Sets of parameterized limit state functions



Uncertainty of x:

$$f_a^X := \delta_x, a := x,$$

random set \(\alpha \) given by three focal sets A_i and weights $m_{\mathcal{A}}(A_i)$.

Parameterization:

$$h(x,z) = g_z(x) = g(x+z).$$

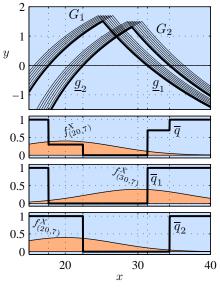
Uncertainty of z:

$$f_b^Z := \delta_z, b := z, z \in B = [\underline{b}, \overline{b}],$$

$$G = \{g_z : g_z(x) = h(x, z), z \in B\}.$$

Lower envelope g corresponds with upper envelope \overline{a} .

Examples: Random sets of parameterized limit state functions



Uncertainty of x:

 f_a^X is the density of a Gaussian distribution with parameters $a = (\mu, \sigma)$ where the parameter a is uncertain and modelled by the set

$$A = \{(\mu, \sigma) : (\mu, \sigma) \in [20, 30] \times \{7\}\}$$

Parameterization:

$$h(x,z) = g_z(x) = g(x+z_1) - z_2$$

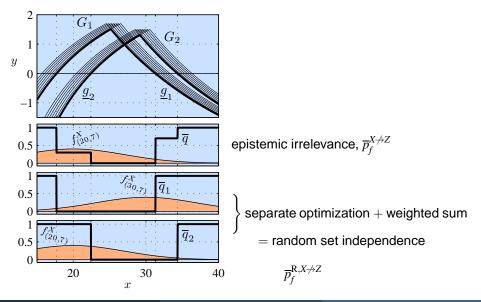
Uncertainty of z:

 $f_b^Z := \delta_z$, b := z, random set \mathscr{B} given by two focal sets $B_1 = [0,2] \times \{0\}$ and $B_2 = [-4, -2] \times \{0.2\}$ with weights $m_{\mathcal{B}}(B_1) = 0.7$ and $m_{\mathcal{B}}(B_2) = 0.3$.

$$G_1 = \{g_z : g_z(x) = g(x+z_1) - z_2, z \in B_1\}$$

$$G_2 = \{g_z : g_z(x) = g(x+z_1) - z_2, z \in B_2\}$$

Examples: Random sets of parameterized limit state functions



Summary

Orderings of the upper probabilities of failure:

$$\overline{p}_f^{\mathrm{S}} \leq \overline{p}_f^{X \!\!\!\! \to \!\!\! Z} \leq \overline{p}_f^{R,X \!\!\!\! \to \!\!\! Z} \quad \text{ and } \quad \overline{p}_f^{\mathrm{S}} \leq \overline{p}_f^{\mathrm{RS}} \leq \overline{p}_f^{R,X \!\!\!\! \to \!\!\! Z}.$$

Summary

Orderings of the upper probabilities of failure:

$$\overline{p}_f^{\mathrm{S}} \leq \overline{p}_f^{X \!\!\!\! \to \!\!\! Z} \leq \overline{p}_f^{R,X \!\!\!\! \to \!\!\! Z} \quad \text{ and } \quad \overline{p}_f^{\mathrm{S}} \leq \overline{p}_f^{\mathrm{RS}} \leq \overline{p}_f^{R,X \!\!\!\! \to \!\!\! Z}.$$

- Strong independence: Complete information about the uncertain limit state function is needed.
- **Epistemic irrelevance:** Sufficient to know the function \overline{a} which condenses the uncertain limit state function. \overline{q} could also be a starting point for uncertainty modelling.
- Random set independence: Possibility to combine upper probabilities of failure resulting from different and independent computations.

Summary

Orderings of the upper probabilities of failure:

$$\overline{p}_f^{\mathrm{S}} \leq \overline{p}_f^{X \!\!\!\! \to \!\!\! Z} \leq \overline{p}_f^{\mathrm{R}, X \!\!\! \to \!\!\! Z} \quad \text{ and } \quad \overline{p}_f^{\mathrm{S}} \leq \overline{p}_f^{\mathrm{RS}} \leq \overline{p}_f^{\mathrm{R}, X \!\!\! \to \!\!\! Z}.$$

- Strong independence: Complete information about the uncertain limit state function is needed.
- **Epistemic irrelevance:** Sufficient to know the function \overline{q} which condenses the uncertain limit state function. \overline{q} could also be a starting point for uncertainty modelling.
- Random set independence: Possibility to combine upper probabilities of failure resulting from different and independent computations.
- The amount of information to deal with decreases from the uncertain limit state function itself to the function \overline{q} and to single upper probabilities which is reflected in the computational effort and in the above orderings of the upper probabilities.