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Limit state functions / probability of failure

Limit state functions

Qg XCR"-YCR: x—=y=g(X)

o x= (Xq,...,%) = material properties, loads,... (basic variables)
0 y=¢g(x) <0 means failure of the system.

Beam bedded on a spring with uncertain spring constant x
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Limit state functions / probability of failure

Limit state functions

0 g:XCR"-YCR: x—=y=g(X)

o x= (Xq,...,%) = material properties, loads,... (basic variables)
0 y=¢g(x) <0 means failure of the system.

Failure regions

0 R ={xeX: g(x) <0} described by q: X — {0,1} : x— x(g(x) <0).
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Limit state functions / probability of failure

Limit state functions
0 g:XCR"-YCR: x—=y=g(X)
o x= (Xq,...,%) = material properties, loads,... (basic variables)
0 y=¢g(x) <0 means failure of the system.

Failure regions
0 R ={xeX: g(x) <0} described by q: X — {0,1} : x— x(g(x) <0).

Probability of failure

o The values of x= (xg,...,%,) are assumed to be uncertain.
o fX density function of the random variables X = (Xy,...,Xy).

P =P(g00) <0) = [ X(gx) < 0) () ck = [ () ax
X X
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Aim of the presentation

Probability of failure ps(a,b) depending on a and b where

o the parameters a are used to model the uncertainty of the basic
variables x of a limit state function.

o the parameters b are used to model the uncertainty in the limit
state function itself.

o the parameters a and b assumed to be uncertain which is
described by sets or random sets
— sets of probability measures
— upper probabilities of failure p;.
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Aim of the presentation

Probability of failure ps(a,b) depending on a and b where

o the parameters a are used to model the uncertainty of the basic
variables x of a limit state function.

o the parameters b are used to model the uncertainty in the limit
state function itself.

o the parameters a and b assumed to be uncertain which is
described by sets or random sets
— sets of probability measures
— upper probabilities of failure p;.

y

Outline of the presentation

@ Step 1: Parameterized limit state functions — independence.

@ Step 2: Introducing pr (a,b).

@ Step 3: Generating sets of probability measures.

@ Sets of probability measures and notion independence.

@ Step 4: Computational formulas for the upper probability of faiIure.J
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Step 1: Parameterized limit state functions

Parameterization g, of a limit state function g
o h:XxZ—=Y: (X2 —=h(x2 =0g,(x), z€ZCRM
o y=h(x,z) <0 means failure, values of zare uncertain.
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Step 1: Parameterized limit state functions
Parameterization g, of a limit state function g

o h:XxZ—=Y: (X2 —=h(x2 =0g,(x), z€ZCRM
o y=h(x,z) <0 means failure, values of zare uncertain.

y

Probability of failure Independence of X and Z

z X (a) If we learn the values of the
Gis //x(h(x,z) < Y@ ey e variables x, our knowledge
2 about the parameters z and
assuming independence of X and Z, therefore about the choice of
< density of Z. the limit state functions g,

does not change.

(b) Learning the values of zand
therefore learning which
function g; to use has no
influence on our knowledge
about the variables x.
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Step 1: Parameterized limit state functions

Parameterization g, of a limit state function g

o h:XxZ—=Y: (X2 —=h(x2 =0g,(x), z€ZCRM
o y=h(x,z) <0 means failure, values of zare uncertain.

y

Probability of failure Random limit state function

: Yx =h(x,Z) =g(x) + Z,
pr= [ [x(hx2) <02 a2 ek | 7 (102), Yoo N(@0+ 1,02)

Y|z
fg@).09
_ for each x

assuming independence of X and Z,
< density of Z. y

| A\

mprecise failure regions

1
q:X—1[0,1]: x—>/X (x,2) <0)f%(2) dz, o.g\ /ﬁ

cf. membership functlon of a fuzzy set. T
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Step 2: Probability of failure ps(a,b)

Probability of pr(a,b)

pr(ab) = [ [ x(h(x,2) < 0)fF(2) dzf] (x) dx
!l

o Arguments a and b are parameters of the densities £ and fZ,
e.g. f&‘l ») density of a Gaussian distribution N(u,o?).

@ Parameters a and b are assumed to be uncertain described by
sets or random sets
— sets of probability measures Mx for x and Mz for z
— upper probabilities of failure p;.

@ Different notions of independence!

@ To model the uncertainty of x and z directly by sets or random sets:
Replace the density functions by Dirac measures.
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Step 3: Generating sets My and Mz of probability measures

The unceratianties of x and z are described by Myx and M.

Uncertainty of parameters a and b modelled by sets A and B

My = {P: P(E) ://x(xe E)fX(x) dx dPa(a), Pa € M(A)}
A X

M(A) = {P: P(A) =1} is the set of all probability measures living on
the set AC A.

Mz is obtained in a similar way using sz and B.

6/14
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Step 3: Generating sets My and Mz of probability measures
The unceratianties of x and z are described by Myx and M.
Uncertainty of parameters a and b modelled by sets A and B

My = {P: P(E) ://x(xe E)fX(x) dx dPa(a), Pa € M(A)}

M(A) = {P: P(A) =1} is the set of all probability measures living on
the set AC A.

Mz is obtained in a similar way using sz and B.

Uncertainty of a and b modelled by finite random sets .7 and %
Random sets <7, % with focal sets A;, B; and weights m,, (Ai), mz(B;).

My = {P: P(E) = mﬂ(Ai)//X(XG E)f3(x) dx dPa, (a), Pa, GM(Ai)}

with M(A) = {P: P(A) = 1}. M is obtained using fZ and 4.
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Upper probability of failure and independence

Strong independence
All possible product measures Py ® Pz for Px € Mx and Pz € Mz:

PP = sup{(Px®Pz)(h(x,2) < 0) : Px € Mx, Pz € Mz}

= sup //X X,2) < 0) dPz(z) dPx(X)
PxeMyx
PzEMz
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Upper probability of failure and independence

Strong independence

All possible product measures Py ® Pz for Px € Mx and Pz € Mz:
PP = sup{(Px®Pz)(h(x,2) < 0) : Px € Mx, Pz € Mz}

= sup //X x,z) < 0) dPz(z) dPx(X)= sup [ q(x) dPx(x)
PxeMyx PxeMx
PzéMz qu

Set of imprecise failure regions

Q= {q q(x /X (X,z <0)sz()PzeMz}

@ The entire set Q is needed for computations!
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Upper probability of failure / independence

Strong independence, swap supremum and integral

pr= sup sup | [x(h(x.2) <0)dPz(z) dPx(X)
/]

PxeMy PzeMz

= sup sup/ q(x) dPx(x)
P)(EM)(QGQ'X
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Upper probability of failure / independence

Strong independence — Epistemic irrelevance

pP< sup | sup [ x(h(x,2) < 0)dPz(2) dPx()
PxeMxx PZGMZZ

— sup [supq(x) dPx(x) = sup [T(x) dPx(x) =: pr"*

PxeMx : PxeM
X € queQ xEMx s
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Upper probability of failure / independence
Strong independence — Epistemic irrelevance

pP< sup [ sup [ x(h(x,2) <0)dPz(2) dPx()
PxeMxx PzEMzZ

— sup [supq(x) dPx(x) = sup [q(x) dPx(x) =:p;"*
PxeMx % s[S) Py eMx

| 8
A\

Epistemic independence

@ Each x can choose its own Pz € Mz or more exactly a Pz(-|x)

given X.
@ XA Z means that X is epistemically irrelevant to Z or that the

basic variables x are epistemically irrelevant to the parameterized

limit state functions g;.
@ Epistemic irrelevance is an asymmetric notion of independence

meaning only part (a): If we learn the values of the variables x, our
knowledge about the parameters z and therefore about the choice of the
limit state functions g, does not change.
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Upper probability of failure / independence

Strong independence — Epistemic irrelevance

pP< sup [ sup [ x(h(x,2) <0)dPz(2) dPx()
PxeMxx PzEMzZ

— sup [supq(x) dPx(x) = sup [7(x) dPx(x) =: pr7*

PxeM PxeM
XEMX 5. geQ xEMx s

Upper envelope of the failure regions

q(x) = sup [ x(h(x,z) < 0) dPz(2) = supq(x).
PzeMz 5 aeQ

@ It is sufficient to specify the function g
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Step 3: Formulas for the upper probability of failure

Uncertainties modelled by ordinary sets A and B

o Strong independence:
Pr = supp (&, b)

acA
beB

o Epistemic irrelevance:

pr7% = sup [ g(x) £ (x) dx

acA
X
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Step 3: Formulas for the upper probability of failure

Uncertainties modelled by random sets .« and %4
o Strong independence:

|| | 2|
PP=  sup 3 S mu(A)ms(B)pr(a.b)
aeA,r=1.. || i=1j=1
bseBs,s=1,...,| 2|

o Epistemic irrelevance

_X%Z Zmﬂ Ysup [ g(x)fX(x) dx

a€A|

|8

Zlmgg B;) sup [ x(h(x,2) < 0)fZ(2) dz
beB,

Modelling uncertainty in limit state functions = ISIPTA '11, Innsbruck, Austria

Thomas Fetz (University of Innsbruck)



Step 3: Formulas for the upper probability of failure

Random set independence:

||| 2|
Zl Zlmd )mzz(Bj)suppr (a,b), cf. pf = supps(a,b) for sets A, B.
achA acA
beB; beB
Az — lelmﬂ )Mez(B;) sup/qJ X)fX(x) dx, cf. pr7% = sup [ gx) fX(x) dx
aeAx

6,0 = sup [ x(h(x2) < 0)fZ(2) .
bEBjZ
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Step 3: Formulas for the upper probability of failure

Random set independence:
|| |28

pRS= Zi M.y (A)Mg(Bj)suppr (a,b), cf. pf = suppr (a,b) for sets A, B.
i=1j= acA acA

B beB; beB
|| |2

RX?AZ N Zizim,gz{ )mz(B;) Sup/qj X) £ (x) dx, cf. px%z = sup [ g(x) 3 (x) dx
aeA. aeAx

Random set independence together with density functions

Joint plausibility measure sup P(E)
PeM(A; ><Bj)
|||

P|( lelmﬂ mgg(BJ) (EO(AXBJ)#Q)

“Correct” generalization of PI: All possible combinations of fX and sz.
High computational effort, no independence on the level of f,f and fZ.

Here: We replace supbeya <) P(E) by pP and p?<74z for ordinary sets.

For Dirac measures all these approaches coincide with PI!
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Examples: Sets of parameterized limit state functions

Uncertainty of x:

=5, a:=x,
random set <7 given by three focal sets
A; and weights mg, (A)).

Parameterization:
h(X,2) = gz(x) = g(x+ 2).

Uncertainty of z
fZ:=6,b:=2 zeB=b,b],
G={g:: g(x) =h(x,2), z€ B}.

Lower envelope g corresponds
with upper envelope T.
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Examples: Random sets of parameterized limit state functions
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Uncertainty of x:

fX is the density of a Gaussian dis-
tribution with parameters a = (u,0)
where the parameter a is uncertain and
modelled by the set

A={(u,0): (u,0) €[20,30 x {7}}
Parameterization:
h(X,2) = g2(x) = 9(x+z) — 2

Uncertainty of z

fZ = &, b:=z random set Z given
by two focal sets B; = [0,2] x {0} and
B, = [-4,—-2] x {0.2} with weights
m@(Bl) =0.7and mgg(Bz) =0.3.

G1={0:: G(X) =9(X+2)—2,2€By}

4 G, = {921 0(X) =9(X+21) —2,Z€ By}

Thomas Fetz (University of Innsbruck)
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Examples: Random sets of parameterized limit state functions

epistemic irrelevance, p?(*’Z

} separate optimization + weighted sum

= random set independence

ﬁfR,x7z>z
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@ Orderings of the upper probabilities of failure:

pS < px742 < pr7é>z and pS<pRS< pr%z
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@ Orderings of the upper probabilities of failure:
. XAZ —RXAZ - ] R XAZ
pP<pr”? <p*"? and PP <pRS< P

@ Strong independence: Complete information about the
uncertain limit state function is needed.

o Epistemic irrelevance: Sufficient to know the function g which
condenses the uncertain limit state function.
g could also be a starting point for uncertainty modelling.

@ Random set independence: Possibility to combine upper

probabilities of failure resulting from different and independent
computations.
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@ Orderings of the upper probabilities of failure:
. XAZ —RXAZ - ] R XAZ
pP<pr”? <p*"? and PP <pRS< P

@ Strong independence: Complete information about the
uncertain limit state function is needed.

o Epistemic irrelevance: Sufficient to know the function g which
condenses the uncertain limit state function.

g could also be a starting point for uncertainty modelling.

@ Random set independence: Possibility to combine upper
probabilities of failure resulting from different and independent
computations.

@ The amount of information to deal with decreases from the
uncertain limit state function itself to the function g and to single
upper probabilities which is reflected in the computational effort
and in the above orderings of the upper probabilities.
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