Die Ressourcenuniversität. Seit 1765.

The Extension Principle Applied to Stochastic Differential Equations

Dipl.-Math. Björn Sprungk * and Prof. Dr. rer. nat. K. Gerald van den Boogaart **

Motivation

- Laws of natural systems are random and imprecise
- a fox has a random chance to catch a rabbit (randomness)
- the expected hunting performance of the foxes varies over time (fuzzyness)

New Approach

Use fuzzy sets of mappings for
parameters, coefficients (data)
processes, random variables (solution)

W TECHNISCHE W TECHNISCHE UNIVERSITÄT N FIBE

- Fuzzy-valued SDEs can only handle crisp diffusion \rightarrow fuzzyness of state is neglected in modelling randomness

rather than fuzzy-valued mappings \rightarrow no technical problems, great modelling flexibility

General Scheme

Properties

- Beside uncertain range also uncertain behaviour and dependencies between drift and diffusion can be modelled
- Solutions of fuzzy SDEs can be understood as Lipschitz continuous mappings from [0, T] to $\mathcal{F}_k(\mathcal{L}^p(\mathbb{R}^n))$

 \rightarrow admits time-discrete approximations for e.g. fuzzy expectation $\mathbb{E}[X_t]$

Connections to other approaches

Solutions of fuzzy SDEs can be interpreted as fuzzy-valued processes with a.s. continuous paths in special cases (additive noise, multiplicative noise, autonomous noise)
Solutions of fuzzy SDEs are subsets of solution sets of corresponding fuzzy stochastic inclusions (α-cut-wise)

Example

In ecosystems parameters are usually not exactly measurable and vary over time, too. Therefore we consider a stochastic predator-prey system with uncertain parameters

$$dX_{t} = \left[r \frac{k - X_{t}}{k} - a Y_{t} \right] X_{t} dt + \sigma_{1} X_{t} dB_{t}^{(1)}, \ X_{0} = x_{0} \in \mathbb{R},$$

$$dY_{t} = \left[-m + \frac{b_{t}}{k} X_{t} \frac{Y_{t}}{z + Y_{t}} \right] Y_{t} dt + \frac{\sigma_{2} Y_{t} dB_{t}^{(2)}, \ Y_{0} = y_{0} \in \mathbb{R}$$

Of interest is the probability of extinction, consider $\mathbb{P}(\tilde{Y}_t < y_{min})$:

*TU Bergakademie Freiberg Fakultät für Mathematik und Informatik Institut für Numerische Mathematik und Optimierung D-09596 Freiberg **TU Bergakademie Freiberg
 Fakultät für Mathematik und Informatik
 Institut für Stochastik
 D-09596 Freiberg