Modelling Common-Cause Failures Under Severe Prior Uncertainty

Matthias C. M. Troffaes¹ Dana Kelly²

¹Durham University, Department of Mathematical Sciences, UK

²Idaho National Laboratory (INL), Nuclear Risk and Reliability Group, US

27 July, 2011

Example, Model, and Issues

Main Results

Example

adapted from [1]

three components

- α_j : unknown probability of exactly *j* failed components (conditional on at least one failed component)
- \blacksquare n_i : data, counts cases with exactly *j* failed components

<u><i>P</i>(</u> α ₁) = 0.950	<i>n</i> ₁ = 35
$\overline{P}(\alpha_2) = 0.030$	<i>n</i> ₂ = 1
$\overline{P}(\alpha_3) = 0.015$	<i>n</i> ₃ = 0
$\overline{P}(\alpha_4) = 0.005$	<i>n</i> ₄ = 0

Alpha Factor Model

developed for common cause failures [2]
multinomial model + conjugate Dirichlet prior
easily extendable to imprecise case

How To Pick The Prior?

posterior sensitive to choice in non-informative prior
constrained non-informative methods have too light tails
main problem caused by (close to) zero counts

A Simple Generalised IDM Model

- prior set: { (s, \vec{t}) : $s \in [\underline{s}, \overline{s}], t_j \in [\underline{t}_j, \overline{t}_j]$ }
- $0 \leq \underline{s} \leq \overline{s}$
- \underline{t}_i , \overline{t}_i : coherent lower and upper probability mass functions
- still non-linear, but convex
- easy to bound an arbitrary set by it
- generalises Walley's general beta-binomial model [3, p. 224, §5.4.3] to multinomial case
- elicitation is much more straightforward

Elicitation Of \underline{t}_i And \overline{t}_i

prior lower and upper probabilities of exactly *j* components failing

Elicitation Of \underline{s} And \overline{s}

$\blacksquare \underline{s} = \overline{s} = 2$ is usually a horrible choice

- zero counts have too much influence on the posterior higher value of s needed to increase weight of prior
- but data could be right even for low counts prior-data conflict! \rightarrow lower value of s to cover also data

Going Imprecise: Arbitrary Set of Dirichlet Priors?

'supposedly' simple [4, p. 32, §6]—it's not!
non-linear non-convex optimisation problems even if prior convex example (left = prior, right = posterior):

elicitation difficult, not to say impossible
need for simpler model without too much sacrifice in precision

general guideline:

s̄ is the number of one-component failures required to reduce the upper probability *t̄_j* (*j* ≥ 2) of multi-component failure by half
s is the number of multi-component failures required to reduce the lower probability *t*₁ of one-component failure by half

References

 Dana Kelly and Corwin Atwood.
Finding a minimally informative Dirichlet prior distribution using least squares. Reliability Engineering and System Safety, 96(3):398–402, 2011.

- [2] A. Mosleh, K. N. Fleming, G. W. Parry, H. M. Paula, D. H. Worledge, and D. M. Rasmuson. Procedures for treating common cause failures in safety and reliability studies: Procedural framework and examples. Technical Report NUREG/CR-4780, PLG Inc., Newport Beach, CA (USA), January 1988.
- [3] Peter Walley. Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London, 1991.
- [4] Peter Walley. Inferences from multinomial data: Learning about a bag of marbles. Journal of the Royal Statistical Society, Series B, 58(1):3–34, 1996.

Matthias C. M. Troffaes, Dana Kelly

Modelling Common-Cause Failures Under Severe Prior Uncertainty